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Objective 

To provide clinically-corroborated evidence of the Parkinson’s disease (PD) diagnostic

potential of machine learning-based approaches for motor symptoms severity

inference via multimodal data, passively captured during the natural use of

smartphones.
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We analyzed longitudinal recordings of tri-axial accelerometer, voice and keystroke

timing data, captured passively from 70 PD patients and healthy controls (HC) [Table

1], in their daily life via the iPrognosis Android smartphone application, for relevant

motor symptoms severity inference. [Fig1], [Fig2] and [Fig3] depict the proposed

processing pipelines, whereas, [Table 2], [Table 3] and [Table 4] epitomize the datasets

exploited per modality. Subjects underwent medical evaluation in order to obtain the

UPDRS Part-III scores used as ground truth.

Fig 1. Processing pipeline of keystroke timing data of a subject’s typing sessions to quantify the

severity of rigidity and bradykinesia. Valid typing sessions are considered those with at least eight

keystroke from where hold-time (HT) and intra-keystroke flight-time (FT) sequences are split in time-

windows (with at least four keystrokes to considered valid), and thereafter statistical features are

extracted from valid windows and used as input in an already trained machine learning model (f)

which produces the estimated severity indices per typing session. The mean of the estimated indices

over all typing sessions constitutes the aggregated index quantifying the severity of the rigidity and

bradykinesia for the particular subject. Parameters were initiated on a separate dataset (D2) to

estimate the correspondence UPDRS Part III single item scores under guided experimental scenarios

in-the-clinic. See [3] for more details.

Fig 2. Processing pipeline of voice sessions to estimate the level of speech impairment. Voice features are

based on the onset/offset detection of the fundamental frequency and subsequent spectral descriptor

extraction for each recording, which after conditional filtering are fed into a machine learning model. The

decisions are aggregated and averaged over a certain period of time, producing the estimator of speech

impairment.

Fig 3. Five steps of the tremor index estimation pipeline using in-the-wild data. A single session is initially processed

by segmenting it into frames using a sliding window. Next, spectrum estimation for each frame is performed using

Welch's periodogram approach. All session features x are encoded into a Fisher Vector z of constant length. A pre-

trained SVM is then used to provide the session score y. The SVM is trained on a lab-controlled dataset of 30

subjects involving both PD patients and healthy controls. Aggregation is performed by collecting the SVM scores

from all the subject's sessions and form a normalized histogram with 4 bins [-inf, -0.5, +0.5, +inf]. The estimated

index corresponds to the amount of sessions within the [+0.5, +inf] bin.

Group

PD patients
Healthy 

controls
p-value

No. of subjects 47 23 0.075

Male/Female rate 66/33 43/57 57/43

Mean Age (std) 61.9 (7.6) 56.0 (10.9) 0.2

Mean UPRDS Part III (std) 18.0 (10.5) 2.70 p<0.01

Group

PD patients Healthy controls Overall

No. of subjects 10 8 18

Avg. duration of data 

contribution per subject, days 

(std)

25 (60) 19 (25) 22 (47)

Total no. of recordings 769 1,818 2,587

No.: number; Avg.: average; Std: standard deviation

Table 2 Keystroke timing dataset. Recordings consist of the timing information of the typing 

activity while using the custom keyboard for the routine typing activities. 

Group

PD patients Healthy controls Overall

No. of subjects 26 15 41

Avg. duration of data 

contribution per 

subject, days (std)

32 (44) 94 (72) 55 (63)

Total no. of recordings 376 664 1,040

No.: number; Avg.: average; Std: standard deviation

Group

PD patients
Healthy 

controls
Overall

No. of subjects 29 16 45

Avg. duration of data 

contribution per subject, days 

(std)

54 (82) 156 (95) 90 (100)

Total no. of recordings 1,717 2,875 4,592

No.: number; Avg.: average; Std: standard deviation

Inferred symptom 

Diagnostic Properties

Speech 

impairment 

Action tremor Rigidity Bradykinesia 

Area Under the ROC 

curve
0.68 0.67 0.89 0.82

Sensitivity 0.55 0.50 1.00 1.00

Specificity 0.72 0.88 0.80 0.70

Diagnostic Accuracy 0.67 0.77 0.89 0.83

The proposed methods for motor symptoms inference show promising PD diagnostic

performance in our relatively small clinically-evaluated cohorts. Our results highlight the

potential of evolving these methods into an objective PD screening/monitoring tool that

could support clinical diagnosis, drug response assessment and decision-making. Passive

capturing of the required input data further fosters evaluation of individuals’ natural

behavior, as well as long-term adherence.

PD symptoms can be mild in the early stages and they usually go unnoticed, leaving

the disease undiagnosed for years [1]. Subtle motor manifestations may start five to

six years prior to PD clinical diagnosis and thereafter progress quickly [2]. Motor

impairment affects daily activities and can severely impact patients’ quality over the

course of the disease. Information derived from mobile electronic sensors can

provide, via algorithmic transformation, objective and dense information of an

individual’s motor status, allowing for frequent relevant symptoms early screening

and subsequent monitoring.

Background

Table 3 Voice features dataset. Recordings consist of extracted features of the voice signals that were 

captured during phone calls. 
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Table 1 Medically valid dataset description.

Table 5 Diagnostic performance of the symptom-inference pipelines. Highest Area under the ROC curve

were achieved via the rigidity (0.89) and bradykinesia (0.82) severity estimators followed by speech

impairment (0.68) and tremor modalities (0.67).

Table 4 Accelerometer dataset. Recordings consist of tri-axial accelerometer signals captured during phone calls.
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