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Abstract—Modern hearing aids are not simple passive sound
enhancers, but rather complex devices that can log (via smart-
phones) multivariate real-time data from the acoustic environ-
ment of a user. In the evotion project (http://h2020evotion.eu)
such hearing aids are integrated with a Big Data analytics plat-
form to bring about ecologically valid evidence to support the
hearing healthcare sector. Here, we present the background of
the Big Data analytics platform and demonstrate that modeling
of longitudinally sampled data from hearing aids can support
clinical investigations with hypotheses about hearing aid usage
prognosis, and support public health decision-making within
the hearing healthcare sector by simulation techniques. We
found, that distinct characteristics of the acoustic environment
significantly modulate how hearing impaired individuals use
their hearing aids. Higher sound levels and an increased sound
diversity but degraded signal quality all predicts more minutes
of use per hour. By simulation, we show that a projected
increase in the overall sound levels by 10dB followed by a 4dB
increase in noise exposure will increase the need for hearing
aid use by an additional 1 hour/day across a population of
hearing impaired hearing aid users.

Keywords-hearing aids, Big Data analytics, mixed models,
multilevel clustered data, evidence-based public-health policies

I. INTRODUCTION

Hearing loss (HL) is a condition that affects approxi-

mately one-third of people over 65 and 5% of the world’s

population [1]. Disabling HL is associated with early cog-

nitive decline in adults [2], and when unaddressed, HL

restricts social integration and reduces employment and

educational opportunities, hampers emotional well-being

and, thus, poses an economic challenge at both the indi-

vidual and national level [3]. Moreover, HL prevalence is

on the rise worldwide, primarily due to increased noise

exposure and increase of the aging population [1]. The

leading management strategy of people suffering from HL

is the provision of hearing aids (HAs). The use of HAs

improve general health-related quality of life and hearing-

specific quality of life associated with participation in daily

activities and listening abilities [4]. However, HA users

still face significant challenges, such as listening in noisy

environments with poor sound qualities, and difficulty to
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select among predefined HA programs and settings [5].

These challenges pose significant risks to the uptake and

successful usage of HAs, which to a large part can be

ascribed to ineffective or poorly fitted HAs. Ideally, HA

fitting should adapt automatically to changing environmental

conditions on a continuous basis rather than apply “one-size

fits all” settings. On the other hand, advances in generating

health-related data by devices and sensors together with the

development of technology and methodologies for process-

ing large data-sets (i.e. so-called Big Data) now permits

the realization of data-driven solutions better adapted to

the treatment needs of individuals [6], [7]. In this paper,

we show how modern hearing aids with acoustic sensors

combined with a platform for processing Big Data could

improve the treatment of HL and enable evidence-based

decision making within the hearing healthcare sector. We

first introduce our Big Data analytics (BDA) platform by

describing the architecture and the implemented catalogue-

based management of analytics tasks and workflows. Next,

we present a case study that demonstrates how our BDA

workflows and modeling applied on longitudinally sampled

real-life data from hearing aids can 1) inform the prognosis

of HA uptake and usage, and 2) simulate outcomes for

public-health relevant stakeholders. Finally, some relevant

works in the context of Big Data platforms for healthcare and

of hearing healthcare are described and our conclusions are

discussed. The work presented in this paper (data collection,

BDA platform implementation, and analytics) is part of

the on-going research project, EVOTION, which aims at

building the evidence base for the formulation of public

health policies related to the prevention, early diagnosis,

long-term treatment and rehabilitation of patients affected

by hearing loss

II. BIG DATA ANALYTIC PLATFORM

Typically, domain experts (e.g., policy-makers, public-

health experts, healthcare professionals) are not familiar

with data science methods and are not always supported

by data scientists to help produce analytical evidence from

Big Data. Thus, there is a need for an easy to use platform

that enables the potential and enlarges the real application

scenarios of Big Data for such relevant stakeholders. Our
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Big Data analytics (BDA) platform is tailored for trial-an-

error style of analysis in order to let domain experts execute

complex analyses intuitively or choose among pre-defined

workflows to support proposals with numerical evidence.

Analytics
Goals

Transformation
Service

Big Data as a
Service Engine

Analytics
Workflows

Stakeholders

Analytics
Tasks

Analytical
Evidence

made of createmade of

use

transform

suitable for

produce

provide
feedback to

Figure 1. A methodological view of our Big Data Analytics as a service.

More specifically, the approach depicted in Figure 1

represents a stakeholder that defines an analytical goal by

means of a set of workflows made of combined pre-defined

analytics tasks. The compossibility of tasks are obtained due

to the fact that they share the same interface exposing three

methods: init, run and post-processing. The init method is

used to process the parameters requested by the task’s algo-

rithm, default values, and the input data flow. It is followed

by the run method used for implementing the algorithm

and the post-processing method preparing the output, for

example to make it suitable for consecutive tasks within

the same workflow. The tasks are implementations of either

readily available or customized algorithms (e.g. for data

preparation, cleaning, statistics, mining). The workflows can

be defined by the stakeholders in a intuitive declarative way

and are automatically converted into executable workflows
by a transformation of their declarative description into code,

which can be executed via our BDA engine (Transformation

Service). The output of an executable workflow can be used

as feedback to a consecutive workflow or to refine the current

workflow structure and parameters. To support the above

process, the BDA platform has to offer i) a declarative way

to specify a workflow made of analytics tasks, ii) Big Data

analytics as a service engine to execute the workflow, iii)

a set of commonly used analytics tasks usable as building

blocks, iv) simple paradigms to define additional analytical

tasks that can be easily embedded into complex workflows,

v) a simple and effective way to aggregate and present results

and summary statistics. Our BDA platform is a concrete

advanced incarnation of the Toreador Model-based Big Data

Analytics as a Service [8], where the landing platform

is based on the Apache Foundation ecosystem [9]. It is

enhanced with additional custom services in order to support

the above requirements, the trial-and-error methodology and

to be offered as a service to stakeholders.
Our BDA platform is composed of:

• Dashboard: Enables a stakeholder to interactively de-

fine a declarative workflow and visualize results.

• BDA Engine: An Ambari cluster of 5 nodes based on

the Apache ecosystem (Spark, Oozie, Hive, Hadboop

etc.).

• Task catalogue: A lists of tasks for which an exe-

cutable implementation is available. For instance, an

entry in the Task Catalogue could be Spark_k-mean,

representing the specific Spark-based implementation

of K-mean. Every task is linked to the executable

implementation deployed within the BDA cluster and

to a meta description of environmental variable and

parameters requested to be executed. It offers APIs for

managing the stored task implementations (add, delete,

modify).

• Workflow catalogue: Composed by three sub-

components: i) a Workflow repository containing the

set of available executable workflows, ii) a workflow

scheduler for the execution of workflows according

to the given scheduling (i.e., periodic, upon request,

or driven by data changes), and iii) the workflow

manager, which is responsible for keeping track of the

running workflows.

• Transformation Service: to transform the declarative

workflow to an executable workflow.

A stakeholder can design, using our Dashboard, an analyt-

ical goal (e.g. hypothesis about dependencies between data

variables) building an analytics workflow based on a set of

tasks provided by the platform’s task catalogue. Available

tasks can be selected and possibly combined, sequentially, in

parallel, or as alternative, to form a declarative workflows. A

declarative workflow is defined using Oozie language (based

on xml). The dashboard graphically assist stakeholders in

building the Oozie workflow. The data flow is represented

as a subsequence of intermediate csv files on the HDFS

that are passed as arguments to the relevant tasks following

the workflow structure. Even if this approach introduces a

latency due to the use of intermediate csv files, performances

are not a strong requirement for the application considered

in this paper and csv files allow having i) a more easy to

use workflow representation, ii) intermediate results to be

inspected aligned with the spirit of a trial-and-error analytics.

Prior to execution, the declarative Oozie workflow re-

quires to be transformed into an executable workflow. This

transformation requires the definition of environmental vari-

ables for the execution engine, mapping of tasks’ argu-

ments and mapping of data flow to the BDA deployment.

During workflow execution, notifications are sent to the

dashboard to inform the stakeholder about the ongoing

analytics processing. When the execution terminates, results

are visualized on the dashboard. At that point, the user can

decide if the returned results should be used as input for a

new workflow (e.g., build a model and use it as input for

prediction or simulation).
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III. HEARING AID CASE STUDY

In the following section, we demonstrate how our ana-

lytics methodology could be applied to real-life longitudi-

nal data concerning hearing aid (HA) users. The achieved

results will i) shed light on individualized HA usage and

preferences; ii) enable a better understanding of factors

influencing HA outcomes of a population; and iii) support

public-health policy makers with ecologically valid evidence

and simulations.

A. Background

Several studies have found that self-reported factors pre-

dict the success of HA uptake as measured by hours of

usage per day [10]. However, these studies are often biased

by the fact that people tend to overestimate their actual

HA usage [11]. Therefore, it is important to use objective

data-logging of HA usage for accurate analyses. In addition,

patterns of HA usage (i.e., “how” the HA has been used)

are at least as important in predicting HA outcomes as the

duration of HA use (i.e., “how long” the HA was used) [12].

Combined, these observations advocate the use of real-

time longitudinal data-logging to enable a more detailed

analysis of which environmental factors affect the daily

usage patterns (i.e., “how” the HA has been used).

B. Methods and Data

In the clinical study part of EVOTION [13], participants

with varying degrees of HL are provisioned a pair of Oticon

EVOTION hearing aids (based on the Oticon OpnTM ) and

a Bluetooth connected smart-phone. During normal HA use,

the smart-phone logs a data-vector of 15 acoustic parameters

(recorded by the HA) and a timestamp every minute. The

acoustic parameters covers the momentary sound pressure

level (SPL); the signal-to-noise ratio (SNR); the noise floor

(Nf ); the modulation index (MI); and the modulation enve-

lope (ME) in three frequency bands: 0-1.3kHz; 1.3-4.1kHz;

and 4.1-10kHz.

Using data from EVOTION, we hypothesize that HA

usage of a hearing impaired population is predicted by

variables of the acoustic environment. Specifically, HA users

proactively use their HAs more if they are faced with loud

acoustic environments but low quality signals. In addition,

corroborating previous studies [14], we also hypothesize that

the diversity of the sound environment is positively related

to usage times, which would indicate that individuals who

use their HAs more also lead a more diverse lifestyle.

Note that, to preserve privacy and enable data-sharing, the

data sample for this study is synthesized from the EVOTION

data-repository [15] using DataSynthesizer [16]. DataSyn-

thesizer synthesizes new data based on Bayesian networks,

thus, higher order statistical and co-variance structures are

preserved. In addition, prior to synthesizing, all acoustic

parameters are aggregated for each hour, day, and participant

as both the mean and the variance. This means that absolute

times and unique data-points cannot be inferred from the

synthesized data sample. In total, the data source included

530,167 observations of 25 variables from 54 participants

spanning up to 54 days and a total of approximately 5,000

hours of HA usage.

C. Analytical workflow

The following computational methods (tasks) were ap-

plied to test the hypothesis. Also see Algorithm 1 below for

a pseudo-code description of the first three tasks.

Data selection and aggregation: Relevant grouping

parameters (i.e. participant ID, age) together with usage logs

(i.e. timestamps) and parameters of the acoustic environment

are retrieved and aggregated according to the needs of the

hypotheses being tested.

Dimensionality reduction: The acoustic environments

encountered by HA users are described by 30 parameters

(hourly mean and hourly variance of the five acoustic

characteristics, each measured in three frequency band). To

reduce the amount of dimensions, and to ensure identifia-

bility in subsequent modeling, factor analysis is applied to

identify distinct and interpretive latent factors. Each factor is

defined as a weighted mean of the standardized parameters

exhibiting a factor loading larger than 0.6

Model selection: The predictive variables (here, the

factors resulting from dimensionality reduction) are included

as fixed effects and model selection identifies the most

parsimonious parameterization of the random effects us-

ing generalized linear mixed-modeling (GLMM, see next

section). Each combination of random effects (i.e. random

intercepts and slopes) are compared with regards to Akaike’s

Information Criteria (AIC). The model with the lowest AIC
is chosen for further evaluation and predictions.

Model evaluation: The quality of the model fit is

evaluated by inspecting the residuals and the predictive

power of the final model is evaluated by the amount of

explained variance. In addition, main effects of the regres-

sion coefficients for each predictive variable are tested for

significance by a MANOVA using Wald’s chi-square tests

(see Table I).

Model simulation: The parameterization of the final

model is re-fitted to the data with a binominal GLMM. This

enables simulation from the model to new data (since the

predicted response is bound by 60 minutes).

D. Modeling details

We used generalized linear mixed models (GLMMs) as

a unified framework for testing the significance of pre-

dictive variables and to simulate outcomes of HA usage

for new, hypothetical, acoustic data. In GLMMs, inter-

observational correlations and group-differences are dealt

with by including random effects besides the independent

predictive variables, which are treated as fixed effects with

regression coefficients [17]. Fixed effects are contributed
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Figure 2. Factor loadings for the parameters describing the acoustic
environment with five characteristics. The characteristics were: SPL =
Sound pressure level; ME = Modulation Envelope; Nf = Noise floor; MI =
Modulation Index; SNR = Signal-to-noise ratio. The indexing ”low”, ”mid”,
and ”high” refers to the three measured frequency bands. ” var” indicates
that the corresponding parameter represents the hourly variance. The three
factors explained 29%, 23%, and 21%, respectively, of the total variance
between the parameters. Only parameters with factor loading larger than 0.6
were included with the associated factor for subsequent modeling workflow.

to variables that are assumed to exhibit constant slopes

and intercepts with the response variable regardless of any

hierarchical grouping - that is, fixed effects are considered

within-participants effects that are general for the whole

tested population. On the other hand, random effects allow

the slope and/or intercept to vary due to grouping variables

(such as age or gender). For example, we might expect that

HA usage within a day vary between participants due to

unmeasurable variables such as preference, which would

suggest including participant IDs as a random variable for

the intercept (i.e. a between-participant effect). We might

also believe that the strength of the associations between

acoustic parameters and HA usage vary between individuals

due to differences in sensitivity, which in turn would suggest

modeling the fixed effects of the acoustic parameters with

random slopes per individual. Thus, individual predictions

can be obtained by combining the fixed with individual

random effects coefficients, and population-wise predictions

can be obtained by inspecting the fixed effects and the

distribution of random effects.

Formally, the dependent response variable (here, HA

usage), y, is modeled on the following form:

y = Xβ + Zγ + ε, (1)

were y is a N × 1 column vector of N observations; X is a

N × p matrix of the p predictor variables (see first column

in Table I); β is a p× 1 column vector of the fixed effects

Algorithm 1 Modelling workflow’s tasks pseudocode

Require: Matrix of static data (Ψr×c); matrix of longitudinal data

(Ωn×k); hypothesis H = [â, b̂] with â = (a1, .., aj) set of j
predictor labels and b̂ = (b1, .., bq) set of q grouping labels.

1: T = timestamp column of Ω
2: S = ID column of Ω
3: Z = Ψ∗,c∪b̂
4: procedure DATA AGGREGATION

5: X1 = ∅, X2 = ∅, y = ∅, N = 0
6: for all i ∈ hour(T ), ii ∈ day(T ), iii ∈ S do
7: N = N + 1
8: n′ ⊂ n where hour(T ) = i ∧ day(T ) = ii ∧ S = iii
9: X1(N) = rowMean(Ωn′,k=â)

10: X2(N) = rowV ariance(Ωn′,k=â)
11: y(N) = rowSum(Ωn′,k=T )

12: XN×2j = XN×J = join longFormat(X1 X2)

13: procedure DIMENSIONALITY REDUCTION

14: ΛF×J = factorAnalysis(X,F = 3)
15: for f = 1, .., F do
16: ẊN,f = J−1 ∑J

p=1 XN,p × Λf,p

17: procedure MODEL SELECTION

18: AIC = ∅, d̂ = ∅
19: for each b ∈ b̂ do
20: mre := glmmfit(y ∼ Ẋβ + Z∗,b̂=bγ + ε)
21: to AIC add aic(mre)

22: b̂ = rank(b̂) ascending by AIC
23: m0 := lm(y ∼ Ẋβ)
24: mfull = m0

25: for each b ∈ b̂ do
26: to d̂ add b
27: mtest := glmmfit(y ∼ Ẋβ + Z∗,b̂∪d̂γ + ε)
28: if aic(mtest) < aic(mfull) then
29: mfull = mtest

30: else from d̂ remove b

regression coefficients (see second column in Table I); Z is

the N × q design matrix for the q random effects; γ is a

q × 1 vector of random effects; and ε is the N × 1 column

vector of the residuals, i.e. the part of y not explained by our

model. We implemented the identified factors of the acoustic

environment from dimensionality reduction (see Figure 2) as

fixed effects, and allowed for random intercepts and slopes

due to participant ID, hour-of-day, and number of days since

HA fitting (i.e., days since study enrollment).

E. Results

Factor analysis of the 30 acoustic parameters yielded

three distinct factors describing the acoustic environment

by the sound level, signal quality, and sound diversity
(see Figure 2), and explaining 73% of the total variance

between the parameters. Sound level is given in dB, signal

quality is given in a dB ratio (i.e. strength of an acoustic

signal compared to noise), and sound diversity is given

in dB2. Time-courses of the factors are shown as grand

averages in Figure 3 (right). Both the Sound level and

the signal quality exhibit noteworthy fluctuations over time:

the sound level is highest between 8am and 4pm and then
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Figure 3. Grand average HA usage (left) and the factors describing the acoustic environment (right). Each acoustic environment factors is defined in
standardized score, that is - the numerical values represents how far from the mean (mean = 0) an observation is in standard deviations. Shaded area
represents the 95% CI.

drops dramatically after 6pm. In addition, the signal quality

peaks from 6pm to the end of the day, but is otherwise

stable. These characteristics are based on population-wise

aggregation of the data, and thus, reflects the ”acoustical

day” of a typical hearing aid user, that is - they indicate

routine activities taking place at roughly the same time every

day (such as lunch, dinner, working, and leisure activities).

Figure 3 (left) shows the grand average HA usage (from

6am to midnight) with the 95% CI indicated by the shaded

areas. Usage is fairly stable just below 30 minutes/hour

from 10am to 8pm. This indicates that the HAs were

turned off for around 50% of all pooled participant days.

Model selection identified the optimal (most parsimonious)

model by comparing each parameterization of the random

effects with a NULL hypothesis that does not allow ran-

dom variation in neither slopes nor intercepts. The best-

fitting model improved the AIC from the NULL model

with ΔAIC = 307. In total the model captured 32%

of the variance between observed HA usage times. The

most contributing random effects were the intercepts for

participant ID and hour-of-day, explaining a total of 16%

of the variance. The regression coefficients of the optimal

model for predicting HA usage are listed in Table I. All

three factors are significantly associated with HA usage.

The sound level and sound diversity are positively related

to usage and the signal quality is negatively associated to

usage. The constant in Table I indicates that, on average,

the HAs were used for 41.6 minutes every hour they were

turned on (i.e. the number of observations = 7,665).

In Figure 4, the distribution of total daily HA usage per

individual is plotted together with the rather well-fitting

predictions of the GLMM models. The grand average total

daily HA usage in the observed data was 6.16 (SD = 3.7)

hours/day.

F. Simulation for policy making scenario

Evidence-based decision-making, whether in healthcare

sectors or in government planning of indoor working en-

vironments, relies on inferences from reliable statistics of

population norms. In the current study, the identified opti-

mal model of HA usage versus the acoustic environment

represents the ground truth (i.e., population norms), that is

- the structure observed in a general population of hearing

impaired hearing aid users. We can now simulate what the

expected daily total HA usage might be for a particular sub-

population of hearing impaired hearing aid users exposed to

a more extreme acoustic environment than what is normal.

For example, say urban planning projects an increase in

everyday acoustic noise due to changed requirements for

noise prevention initiatives. This will lead to an overall

increased sound level and worsened signal quality due to

more noise. In Figure 4, the blue distribution reflects the

Table I
REGRESSION COEFFICIENTS AND SIGNIFICANCE FOR PREDICTING HA

USAGE FOR EACH (SCALED AND CENTERED) PREDICTOR.

Dependent variable:
HA usage (minutes/hour)

Sound level 1.398∗
(0.700)

Signal quality −3.046∗∗
(0.659)

Sound diversity 1.288∗
(0.625)

Constant 41.629∗∗
(1.511)

Observations 7665

Note: ∗p<0.05; ∗∗p<0.01
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Figure 4. Observed versus predicted and simulated distribution of daily
total HA usage among individuals in the data-sample. The simulation
assumes a +10dB and -4dB change to the sound level and signal quality,
respectively.

expected daily HA usage in a population that is exposed

to 10dB higher sound levels and 4dB worse signals. The

mean expected daily HA usage is now 7.33 (SD = 4.07)

hours/day. This indicates that the specific change in acoustic

environment have lead to an increased need for HA treatment

by ¿1 hour.

IV. DISCUSSION AND CONCLUSIONS

Using a general linear mixed-models approach, we

demonstrated the capabilities of our BDA platform, and

we identified significant relationships between the acoustic

environment of a HA user and absolute usage times in

patients with hearing loss. More HA usage is associated with

a higher-than-normal sound level, less-than-normal signal

quality (i.e. more noise) and higher-than-normal sound di-

versities. This indicates that users are protectively engaging

with their HAs in potentially difficult acoustic situations.

Moreover, the diversity of the sound environment can be

considered a proxy for life-style activity levels [18]. Thus,

a more active day seems to be associated with increased

HA usage. This finding corroborates earlier studies, showing

that when using the HAs more often, and reporting greater

satisfaction, older adults indicated more diverse listening

situations [14]. One possible future exploitation could be to

link HA usage and the sound diversity with the movement

activity of individual hearing aid users measured through

relative GPS coordinates and by this establish more gen-

eral health-related evidence. The proposed work enables

evidence-informed public-health policy making within the

hearing healthcare sectors. For example, from the current

results, a stakeholder could argue that the provision scheme

of HAs should not only be guided by age and/or hearing

loss but also by the acoustical environment a HA user are

expected to be exposed to. Moreover, healthcare profession-

als could use the information about how the acoustic envi-

ronment affects HA usage to better guide and personalize

consultation. Finally, simulations can help to estimate the

expected effect of provisioning HAs to specific populations,

or to estimate the change in need for hearing loss treatment

due to changes in environmental factors. To conclude, in this

work we have presented one of the first so far experimental

application of a Big Data analytics as a service platform

designed to process health data related to hearing impaired

patients. The work demonstrates the possibilities that a data-

driven approach to healthcare could provide by considering a

restricted sample of user data. Our findings are aligned with

earlier studies and confirm the suitability of a generalized

linear mixed-models approach.

V. RELATED WORKS

Evidence-based decision making have attracted remark-

able attention in the last years both in the medical and in the

data science communities [19]–[22]. Big Data techniques are

considered useful tools in translating personalized medicine

initiatives into clinical practice. For example, medical anal-

yses could be personalized by linking health-related data

(e.g., medication list and family history) to personal data

(e.g., income, education, place of living, dietary habits,

sport activity, entertainment), and to environmental data (e.g.

polluted or noisy workplaces). Moreover, novel streams of

data are increasingly available from sensors and medical de-

vices, providing opportunities to study correlations between

multiple factors related to healthcare [23], [24]. However, as

also indicated in a report by the Institute of Medicine, several

open problems still remains [25]. With respect to hearing

healthcare, Big Data approaches are still underexplored. The

most relevant work, up to now, was presented by Mellor,

Stone, & Keane [26] as ”proof-of-concept” examples of how

BDA methods could be used to extract useful information

from healthcare data, and they went on showing how cluster-

ing methods applied to a large data-set containing a number

of variables concerning hearing aid users could be used

to mine for interesting patterns. For example, the authors

found that specific hearing aid settings (i.e. gain-reduction

profiles) could be associated with specific distributions of

sound pressure levels of the acoustic environment. However,

no other attempts at integrating a BDA framework with real-

time data-feeds from hearing aids have been made to date.
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