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Abstract—The Partial Relaxation approach has recently been
proposed to solve the Direction-of-Arrival estimation problem
[1], [2]. In this paper, we investigate the outlier production
mechanism of the Partially Relaxed Deterministic Maximum
Likelihood (PR-DML) Direction-of-Arrival estimator using tools
from Random Matrix Theory. Instead of applying a single source
approximation to multi-source estimation criteria, which is the
case for the MUSIC algorithm, the conventional beamformer, or
the Capon beamformer, the Partial Relaxation approach accounts
for the existence of multiple sources using a non-parametric
modification of the signal model. In this paper, an accurate
description of the probability of resolution for the PR-DML
estimator is provided by analyzing the asymptotic behavior of
the PR-DML cost function, assuming that both the number of
antennas and the number of snapshots increase without bound at
the same rate. The finite dimensional distribution of the PR-DML
cost function is shown to be Gaussian in this asymptotic regime
and this result is used to compute the probability of resolution.

I. INTRODUCTION

Direction-of-Arrival (DoA) estimation has been a major area
of research in the past, mainly due to its wide spread appli-
cations in radar, sonar, seismology or electronic surveillance
and mobile communication [3]–[6]. Several high resolution
algorithms, such as Multiple Signal Classification (MUSIC)
[7], the minimum variance method of Capon [8], Estimation
of Signal Parameters via Rotational Invariance Technique
(ESPRIT) [9] have been proposed [10], [11]. However, the
performance of conventional “low-cost” methods strongly de-
grades when two or multiple sources are closely spaced [12],
[13]. This is due to the fact that conventional spectral search
based approaches ignore the presence of interfering sources
and therefore treat multi-source scenarios as single source
scenarios.

The Partial Relaxation (PR) framework was introduced to
overcome the aforementioned disadvantages of the conven-
tional spectral-based DoA methods [1], [2]. Instead of ignoring
the presence of multiple sources, the PR approach considers
both the signal impinging from the current direction of interest
as well as the interfering ones. To reduce the computational
demand, the manifold structure of the undesired signal compo-
nents is relaxed, whereas the manifold structure of the desired
signal component is kept unchanged. The multi-dimensional
optimization problem reduces to a one-dimensional problem
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that admits a simple spectral based grid search applicable to
any array geometry.

The main objective of this paper is the performance char-
acterization of the recently introduced PR-DML technique in
the threshold region, whereby both the number of samples per
antenna and the Signal-to-Noise Ratio (SNR) take moderate
values. This region is typically characterized by a systematic
appearance of outliers in the DoA estimates, which are mainly
caused by the incapability of resolving closely spaced sources.

The performance characterization of PR DoA estimators
has received little attention in the literature so far. Up to
now, researchers have focused on the performance analysis
of traditional Deterministic Maximum Likelihood (DML) and
Stochastic Maximum Likelihood (SML), see e.g. [14], where
the probability of resolving closely spaced sources for finite
values of snapshots and SNR is studied. Some additional
insights were given in [15], where the outlier production
mechanism was related to the asymptotic eigendecomposition
of the observation covariance matrix. In [16] the probability
of resolution of DML and SML was investigated by studying
the stochastic behavior of the corresponding cost functions
under the assumption that the received signals are Gaussian
random variables. The approach in [16] is asymptotic in both
the number of antennas and the number of snapshots. In
this paper, we follow a similar approach as in [14], [16]
and compute the probability of resolution of the PR-DML
technique by deriving the stochastic behavior of the PR-DML
cost function for Gaussian distributed observations. Tools
from Random Matrix Theory (RMT) are used to compute
the asymptotic equivalent of the PR-DML cost function as
well as the asymptotic covariance where both the number of
snapshots and the number of antennas are large quantities but
their quotient converges to a fixed finite value.

The paper is organized as follows. The signal model is
introduced in Section II followed by the PR-DML DoA
estimation technique in Section III. The asymptotic stochastic
behavior of the PR-DML cost function is given in Section IV
and the corresponding sketch of the proof is given in Section
V. In Section VI an expression for the probability of resolution
is provided. Simulation results are presented in Section VII.
Finally, Section VIII concludes this paper.



II. SIGNAL MODEL

Let us consider an antenna array equipped with M sensors
and K impinging narrowband signals that satisfy M > K.
The source signal at time instant n is denoted by s(n) =
[s1(n),...,sK(n)]

T ∈ CK×1. The corresponding DoAs of the
signals are denoted by θ = [θ1,...,θK ]

T . Furthermore, the full-
rank steering matrix is given by A(θ) = [a(θ1),...,a(θK)] ∈
CM×K where a(θi) ∈ CM denotes the sensor array response
for the i-th impinging signal. The number of sources K is
assumed to be known. The received baseband signal x(n) ∈
CM at the n-th time instant is given by

x(n) = A(θ)s(n)+n(n), n = 1,...,N, (1)

where N denotes the number of snapshots and n(n) ∈ CM
the sensor noise. Assuming that signal and noise variables
are statistically independent zero-mean circularly symmetric
Gaussian distributed, the covariance matrix of the received
signal R ∈ CM×M is given by

R = E
{
x(n)xH(n)

}
= ARsA

H+σ2IM ,

where Rs = E
{
s(n)sH(n)

}
denotes the covariance of the

transmitted signal and σ2IM is the noise covariance matrix.
Since the true covariance matrix is unavailable in practice, the
sample covariance matrix R̂ = 1

N

∑N
n=1x(n)xH(n) is used

instead.

III. PARTIALLY RELAXED DETERMINISTIC MAXIMUM
LIKELIHOOD

In the framework of PR, not only the signals from the
desired directions but also from the interfering directions are
considered [1]. However, the structure of the interfering signals
is relaxed and consequently the computational complexity
of the multi-source criteria is greatly reduced. Unlike in
conventional DML and SML DoA estimation criteria, the
steering matrix A is not described by the fully structured array
manifold

AK = {A | A = [a(ϑ1),...,a(ϑK)], ϑ1 < ... < ϑK}.

Instead, A describes the partially relaxed array manifold

ĀK=
{

A | A = [a(ϑ),B], a(ϑ)∈A1, B∈CM×(K−1)
}
,

which still retains some geometric structure of the sensor
array [2]. Applying the PR approach to the conventional DML
method yields{

θ̂
}

= Kargmin
a(θ)∈A1

min
B

1

M
tr
{

P⊥[a(θ),B]R̂
}
, (2)

where P⊥[a(θ),B] denotes the orthogonal projection matrix and
Kargmina(θ)∈A1

the K arguments in θ that minimize the cost.
At first, the objective function in (2) is minimized with respect
to B. A closed-form solution for B is obtained and substituted
back into the objective function. The concentrated objective
function yields [1], [2]

η̂(θ) =
1

M

M−K+1∑
k=1

λ̂k(θ), (3)

where the eigenvalues of the modified sample covariance
matrix R̂(θ) = P⊥a (θ)R̂P⊥a (θ) are sorted in non-descending
order 0 = λ̂1(θ) ≤ ··· ≤ λ̂M (θ). The estimates θ̂ are given
by K arguments that correspond to the K deepest minima
of the concentrated objective function in (3). An efficient
implementation of the PR-DML method is provided in [1].

The distinct true eigenvalues of the modified true covariance
matrix R(θ) = P⊥a (θ)RP⊥a (θ) are denoted by 0 = γ0(θ) <
γ1(θ) < ··· < γM̄(θ)(θ) and their corresponding multiplicities
are given by Km(θ), for m = 0,...,M̄(θ). The number of
distinct true eigenvalues of the modified true covariance matrix
R(θ) amounts to M̄(θ)+1 and the sum of the multiplicities
satisfies

∑M̄(θ)
m=0Km(θ) = M . The non-necessarily Hermitian

M×M positive definite square root of the modified true
covariance matrix R(θ) can also be expressed using the
singular value decomposition

R(θ)
1/2

= P⊥a (θ)R1/2 =

M̄(θ)∑
r=0

√
γr(θ)Ur(θ)V

H
r (θ),

where Ur(θ) ∈ CM×Kr(θ) and Vr(θ) ∈ CM×Kr(θ) generate
the left and right orthonormal basis of R(θ)

1/2.

IV. ASYMPTOTIC BEHAVIOR OF THE PARTIALLY RELAXED
DETERMINISTIC MAXIMUM LIKELIHOOD COST FUNCTION

In the following, the first and second order moments of the
cost function in (3) are derived for the asymptotic case where
M,N → ∞, M/N → c, 0 < c < ∞. The covariance matrix
R̂(θ) is assumed to have uniformly bounded spectral norm for
all M . Furthermore, the covariance matrix can equivalently be
expressed as R̂(θ) = R(θ)1/2 ZZH

N

(
R(θ)1/2

)H
, where Z is

an M×N matrix of i.i.d. Gaussian random variables with law
CN (0,1).

In RMT it is well known that under all the previously men-
tioned assumptions, the empirical eigenvalue distribution of
R̂(θ) is almost surely close to an asymptotic non-random dis-
tribution which is absolutely continuous with density qM (x,θ)
[17]. With increasing number of snapshots and therefore
decreasing c = M/N , qM (x,θ) tends to concentrate around
the true eigenvalues forming different eigenvalue clusters. The
number of eigenvalue clusters increases with decreasing c as
clusters begin to split [18]. Assuming there are S distinct
clusters, the support of the cluster is given by the set of
S disjoint compact intervals S(θ) =

[
x−1 (θ),x+

1 (θ)
]
∪···∪[

x−S (θ),x+
S (θ)

]
. Furthermore, it can be observed that each

modified true and distinct eigenvalue γm(θ) is associated to
only one cluster. However, one cluster may be associated
to multiple true eigenvalues which results in a non-bijective
correspondence [18]. For sufficiently small c, there always
exist exactly as many clusters as distinct true eigenvalues
M̄(θ) [18].

In order to distinguish between the eigenvalues that are con-
sidered by the PR-DML cost function in (3) and the remaining
ones it is crucial that the (M−K+1)-th modified sample
eigenvalue asymptotically splits from the (M−K+2)-th one,
which can be formalized as follows. We assume that there



exists an integer m(θ) such that M−K+1 =
∑m(θ)
r=0 Kr(θ),

and the cluster [x−s (θ),x+
s (θ)] associated to the eigenvalue

γm(θ)(θ) separates from the one associated to γm(θ)+1(θ) in
the asymptotic eigenvalue distribution of R̂(θ). Under these
conditions, the first and second order asymptotic behavior of
the PR-DML cost-function are given below.

A. First Order Asymptotic Behavior
It can be shown that the PR-DML cost function η̂(θ) in (3)

becomes asymptotically close to its deterministic counterpart

η̄(θ) =
1

M

m(θ)∑
r=1

Kr(θ)γr(θ)

1− 1

N

M̄(θ)∑
j=m(θ)+1

Kj(θ)
γj(θ)

γj(θ)−γr(θ)


(4)

in the sense that |η̂(θ)−η̄(θ)| → 0 almost surely pointwise in
θ as M,N →∞ at the same rate.

B. Second Order Asymptotic Behavior

In the following, the nature of the fluctuation of the
PR-DML cost function is studied in the asymptotic regime.
Let us consider the two real-valued L×1 vectors

η̂
(
θ̄
)

=
[
η̂
(
θ̄1

)
,...,η̂

(
θ̄L
)]T

(5)

η̄
(
θ̄
)

=
[
η̄
(
θ̄1

)
,...,η̄

(
θ̄L
)]T

, (6)

where θ̄ =
[
θ̄1,...,θ̄L

]T
denotes a set of L points within the

field of view Θ. The asymptotic covariance matrix of the
random vector η̂(θ̄) can be computed by solving the real-
valued integral[

Γ
(
θ̄
)]
p,q

= − 1

π

∫ x+
s (θ̄p)

x−
1 (θ̄p)

Im
(
Ip,q

(
ω
(
x,θ̄p

)))
dx, (7)

for p,q = 1,...,L using numerical integration techniques
such as the Riemann sum or the Simpsons’ rule. Taking
z ∈ C+ ≡ {z ∈ C : Im(z) > 0}, we define ω(z,θ) as the
unique solution on C+ of

z = ω(z,θ)

(
1− 1

N
tr
{

R(θ)(R(θ)−ω(z,θ)IM )
−1
})

.

Furthermore, the integrand in (7) is given by

Ip,q(ω1) = −
m(θ̄q)∑
k=1

(
γk
(
θ̄q
)
−ϕk(ω1)

)

−
1

N

m(θ̄q)∑
k=1

M̄(θ̄q)∑
j=m(θ̄q)+1

(
Kk
(
θ̄q
)
γ2
k

(
θ̄q
)

γk
(
θ̄q
)
−γj

(
θ̄q
)− Kk

(
θ̄q
)
γ2
k

(
θ̄q
)

γk
(
θ̄q
)
−ϕj(ω1)

)

+
1

N

m(θ̄q)∑
k=1

M̄(θ̄q)∑
j=m(θ̄q)+1

(
Kj
(
θ̄q
)
γ2
j

(
θ̄q
)

γj
(
θ̄q
)
−γk

(
θ̄q
)− Kj

(
θ̄q
)
γ2
j

(
θ̄q
)

γj
(
θ̄q
)
−ϕk(ω1)

)
, (8)

where ω1 = ω
(
z,θ̄p

)
. The complex-valued scalars ϕr(ω1),

r = 1,...,M̄
(
θ̄q
)

are sorted according to their real-part in
ascending order and given by the solutions to the polynomial
equation

M̄(θ̄q)∑
j=1

M̄(θ̄p)∑
i=1

κij
(
θ̄p,θ̄q

) γi
(
θ̄p
)

γi
(
θ̄p
)
−ω1

γj
(
θ̄q
)

γj
(
θ̄q
)
−ϕr(ω1)

= 1,

where κij
(
θ̄p,θ̄q

)
= 1

N tr
{
Vi

(
θ̄p
)
VH
i

(
θ̄p
)
Vj

(
θ̄q
)
VH
j

(
θ̄q
)}

.

C. Final Result: Asymptotic Distribution

Under the previously mentioned assumptions and as
M,N →∞, M/N → c and 0 < c <∞, the random vector

MΓ−1/2
(
θ̄
)(
η̂
(
θ̄
)
−η̄
(
θ̄
))
→ N (0,IL) (9)

converges in distribution to a multivariate standardized Gaus-
sian distribution. The asymptotic mean of the random vector
η̂(θ̄) in (5) is denoted by η̄(θ̄) in (6) and the corresponding
L×L asymptotic covariance matrix is given by Γ

(
θ̄
)
/M2 in

(7).

V. SKETCH OF THE PROOF

Let us introduce the complex random function

m̂(z,θ) =
1

M
tr
{(

R̂(θ)−zIM
)−1

}
for z ∈ C+ and its asymptotic equivalent [17]

m̄(z,θ) =
ω(z,θ)

z

1

M
tr
{

(R(θ)−ω(z,θ)IM )
−1
}
.

Consider the limit of ω(z,θ) and m̄(z,θ) as z goes to the
real axis and let S(θ) be the positive support1 of Im(m̄(z,θ))
on R. The PR-DML cost function in (3) can be equivalently
expressed as

η̂(θ) =
1

2πj

∮
C(θ)

zm̂(z,θ)dz,

where C(θ) denotes a negatively oriented contour enclosing
the M−K+1 smallest sample eigenvalues of R̂(θ) only.
By replacing m̂(z,θ) with its asymptotic equivalent m̄(z,θ)
one obtains the asymptotic first order behavior η̄(θ) in (4).
Furthermore, the asymptotic second order behavior can be
computed according to the following Theorem.

Theorem 1. According to the above definitions, consider an
L×L matrix Γ

(
θ̄
)

with entries

[
Γ
(
θ̄
)]
p,q

=
−1

(2πj)2

∮
Cω(θ̄p)

∮
Cω(θ̄q)

∂z
(
ω1,θ̄p

)
∂ω1

∂z
(
ω2,θ̄q

)
∂ω2

×

×log(1−Ωp,q(ω1,ω2))dω1dω2 (10)

where Cω(θ) = ω(C(θ),θ),

z(ω,θ) = ω

1− 1

N

M̄(θ)∑
r=1

Kr(θ)
γr(θ)

γr(θ)−ω

, (11)

and

Ωp,q(ω1,ω2) =
1

N
tr
{(

R
(
θ̄p
)1/2)H(

R
(
θ̄p
)
−ω1Im

)−1
R
(
θ̄p
)1/2

×
(
R
(
θ̄q
)1/2)H(

R
(
θ̄q
)
−ω2IM

)−1
R
(
θ̄q
)1/2}

.

Assuming that Γ(θ̄) is invertible and that the spectral norm
of Γ(θ̄)−1 is bounded in M , vector MΓ(θ̄)−1/2

(
η̂(θ̄)−η̄(θ̄)

)
1It can be shown that these limits exist, and that S(θ) is compact. Further-

more, both ω(z,θ) and m̄(z,θ) can be analytically extended to C\{0}∪S(θ).



converges in distribution to a multivariate standardized Gaus-
sian random vector for fixed L and M,N → ∞, M/N → c,
0 < c <∞.

Proof. The proof can be obtained using the approach in [19].
Also see Theorem 2 of [16].

Alternatively, the complex double contour integral in (10)
can be expressed as[

Γ
(
θ̄
)]
p,q

=
−1

2πj

∮
Cω(θ̄p)

∂z
(
ω1,θ̄p

)
∂ω1

Ip,q(ω1)dω1, (12)

where

Ip,q(ω1) =
1

2πj

∮
Cω(θ̄q)

∂z
(
ω2,θ̄q

)
∂ω2

log(1−Ωp,q(ω1,ω2))dω2.

Using conventional residue calculus the closed-form expres-
sion for Ip,q(ω1) in (8) is obtained which can be substituted
back into (12). By carefully choosing a parametrization of the
contour Cω

(
θ̄p
)

the simplified expression in (7) is obtained.

VI. PROBABILITY OF RESOLUTION

To analyze the probability of resolution we study a scenario
with two sources K = 2 located at θ1 and θ2. Considering
the minimization problem in (3), the cost function η̂(θ) is
evaluated at the true DoAs θ1 and θ2 and the mid-angle
(θ1+θ2)/2. We declare loss of resolution if the cost function
evaluated at the mid-angle is lower than evaluated at both true
DoAs [20]. The constraint to declare resolution can compactly
be written as uH η̂(θ̄) < 0 where

u =

1/2
1/2
−1

, θ̄ =

 θ1

θ2
θ1+θ2

2

, η̂(θ̄) =

 η̂(θ1)
η̂(θ2)

η̂
(
θ1+θ2

2

)
.

By utilizing the previously obtained stochastic behavior of
the PR-DML cost function in (9), the asymptotic proba-
bility density function (pdf) of the test quantity uH η̂(θ̄)
can easily be computed for M,N → ∞ at the same rate
M
(
uHΓ

(
θ̄
)
u
)−1/2(

uH η̂
(
θ̄
)
−uH η̄

(
θ̄
))
→ N (0,1) [21].

The probability of resolution is therefore obtained by com-
puting the cumulative distribution function [22]

Pres = Pr
(
uH η̂

(
θ̄
)
< 0
)

=

∫ 0

−∞
fuH η̂(θ̄)(x)dx,

where fuH η̂(θ̄)(x) denotes the asymptotic pdf of the test
quantity uH η̂(θ̄).

VII. SIMULATION RESULTS

In this Section, the predicted probability of resolution is
compared to the simulated one. All simulations are carried
out for 10000 Monte-Carlo runs. We consider two uncorrelated
and closely spaced sources at θ = [45°,50°]T and a Uniform
Linear Array (ULA) equipped with M = 10 sensors. The
transmitted signals are zero-mean and statistically independent
with unit power. The SNR is given by SNR = 1/σ2

n. The sep-
aration boundary is defined as the smallest SNR that provides
separation between the eigenvalue clusters associated to the
m
(
θ̄l
)
-th true eigenvalue and larger adjacent true eigenvalues
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Figure 1. Uncorrelated Sources, Number of Snapshots N = 10
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Figure 2. Uncorrelated Sources, Number of Snapshots N = 100

for l = 1,2,3 and θ̄ = [45°,50°,47.5°]T . For SNR values
smaller than the separation boundary it is not possible to
distinguish between the eigenvalues that are considered by the
PR-DML cost-function and the remaining ones.

Figures 1 and 2 depict the probability of resolution versus
the SNR for N = 10 and N = 100 snapshots. As expected, the
probability of declaring resolution increases with increasing
number of snapshots. Clearly, we are able to predict the
probability of resolution remarkably well in both scenarios.

VIII. CONCLUSION

In this paper we have investigated the asymptotic behavior
of the PR-DML DoA estimator under the setting of RMT
where both the number of snapshots N and the number
of sensors M go to infinity at the same rate. The finite
dimensional distribution of the PR-DML cost function has
been derived and shown to be asymptotically Gaussian. Fur-
thermore, the probability distribution of the PR-DML method
was used to characterize the probability of resolution in the
threshold region, where the generation of outliers causes a
total performance breakdown.
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