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Abstract

Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both

cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and

motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other

cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown.

Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform

and spectral features depend on the MEP amplitude. To this aim, we performed two sepa-

rate experiments. In experiment 1, single-pulse TMS was applied at the same supra-thresh-

old intensity on primary motor, prefrontal, premotor and parietal cortices and the

corresponding TEPs were compared by means of local mean field power and time-fre-

quency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in

order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from

high-MEP and low-MEP trials were then compared using the same methods applied in

experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to

other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation

were accompanied by a late event-related desynchronization (ERD—peaking at ~300 ms

after TMS), whose magnitude was strongly dependent on the amplitude of MEPs. Overall,

these results suggest that M1 produces peculiar responses to TMS possibly reflecting spe-

cific anatomo-functional properties, such as the re-entry of proprioceptive feedback associ-

ated with target muscle activation.
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Introduction

The combination of Transcranial Magnetic Stimulation with electroencephalogram (TMS/

EEG) allows recording the immediate response of the cerebral cortex to a focal perturbation

with good spatial and temporal resolution [1]. Indeed, TMS-evoked EEG potentials (TEPs)

provide a reliable read-out of the reactivity of cortical circuits provided that they are not con-

founded by scalp muscle artifacts or spurious sensory activations [2–4]. Typically, TEPs can

last for hundreds of milliseconds and are characterized by sustained increases of power in fre-

quency bands that specifically depend on the cortical target [5–8].

Over the last decade, several TMS/EEG studies have been conducted both on primary

motor and sensory cortical areas [5,9–17] as well as associative cortical areas [6,7,18–22]. In

this respect, the primary motor cortex (M1) has been largely used as the elective experimen-

tal model to study brain reactivity to TMS. However, the EEG response of M1 to TMS may

represent a very special, instead of a representative case. In fact, the stimulation of M1 above

resting motor threshold (RMT) [23,24] implies not only the excitation of cortico-cortical or

cortico-thalamic circuits [5,9,13], but also the excitation of the corticospinal tract [25], which

may, in turn, elicit motor evoked potentials (MEPs) and somatosensory feedback [26,27].

Moreover, M1 presents unique features in term of cytoarchitectonics, due to the strong pres-

ence of large V layer pyramidal cells [28,29] and the synaptic density/efficacy of corticospinal

connections [30]. Previous studies have demonstrated that power and phase of ongoing EEG

oscillations can modulate the amplitude of MEPs [31–33]. Other studies focused on possible

relationship between specific TEPs components, in the time domain, possibly modulated by

the presence of MEP. For instance, Paus et al. [15] found a positive correlation between MEP

and absolute amplitude of N100, Maki et al. [14] found a significant correlation between

N15-P30 and MEP amplitudes whereas Bonato et al. [34] did not find any correlation

between early TEP components (N10, N18, and P30) and MEP amplitude. However, so far

nobody investigated, in the time-frequency domain, if and how the amplitude of MEPs influ-

ences TEPs.

The present study aims at evaluating the specific characteristics of M1 TEPs compared to

those of other cortical regions that do not elicit any peripheral output. Specifically, we per-

formed two different experiments in order (i) to compare M1 TEPs to those elicited by pre-

frontal, premotor and parietal cortex stimulation and (ii) to test whether the TEPs generated

by M1 stimulation are influenced by the related MEP amplitude. Compared to the other corti-

cal areas, we found that TEPs recorded after stimulation of M1 were larger and characterized

by a significant late broadband reduction of power in the time-frequency domain (event-

related desynchronization—ERD). Importantly, we observed that larger MEPs were associated

with larger TEPs and deeper ERD.

Materials and methods

Subjects

Six right-handed healthy subjects (3 female; age: 28 ± 3.6 years, values are given as

mean ± standard error here and in the following) took part in experiment 1 and a different

group of six right-handed healthy subjects (2 female; age: 32 ± 3.0 years) participated in experi-

ment 2 (see Experimental Procedure) after giving written informed consent. All volunteers

were screened for contraindications to TMS during a physical and neurological examination

[35]. Exclusion criteria included history of neurological or psychiatric disease, of CNS active

drugs and abuse of any drug (including nicotine and alcohol). Experiments were approved by

the Ethics Committee Milano Area A.
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TMS targeting

In both experiments, a focal figure-of-eight coil (mean/outer winding diameter 50/70 mm,

biphasic pulse shape, pulse length 280 μs, focal area of the stimulation 0.68 cm2) connected to

a Mobile Stimulator Unit (eXimia TMS Stimulator, Nexstim Ltd) was used to deliver single-

pulse TMS. Stimulation sites included the middle frontal gyrus (Brodmann area [BA] 46), the

superior frontal gyrus (BA 6), the precentral gyrus (BA 4) for M1, and the superior parietal

gyrus (BA 7) on the left (motor dominant) hemisphere. All of these areas were anatomically

identified on a T1-weighted individual magnetic resonance brain scan acquired with an Inge-

nia 1.5 T (Philips) scanner. For the left motor area, we stimulated the hand area corresponding

to the abductor pollicis brevis muscle (APB) of the right hand, which was determined as the

site where TMS consistently produced a selective muscle twitch. Stimulation parameters were

controlled by means of a Navigated Brain Stimulation (NBS) system (Nexstim Ltd.) that

employed a 3D, frameless infrared tracking-position sensor unit to display online, on the indi-

vidual MRI scan, the position of the TMS coil with respect to the subject’s head. NBS also esti-

mated online the distribution and intensity (expressed in V/m) of the intracranial electric field

induced by TMS and allowed to reliably control the stimulation coordinates, within and across

sessions [36,37], by signaling in real-time any deviation from the designated target (error <3

mm). In order to standardize stimulation parameters, the maximum electric field was always

kept on the convexity of the targeted gyrus with the direction of the induced current perpen-

dicular to its main axis.

TEP and MEP recording

TEPs were recorded with a 60-channel TMS-compatible amplifier (Nexstim Ltd.), that pre-

vents amplifier saturation and reduces, or abolishes, the magnetic artefacts induced by the

coil’s discharge [38]. The EEG signals were bandpass-filtered 0.1–350 Hz, sampled at 1450 Hz

and referenced to an additional forehead electrode. Horizontal and vertical eye movements

were recorded using two additional electrooculogram (EOG) sensors. Impedances at all elec-

trodes were kept < 5 kΩ. As in previous studies, a masking noise capturing the specific time-

varying frequency components of the TMS click was played via earphones throughout the

entire TMS/EEG sessions to avoid contamination of the EEG signal by auditory potentials

evoked [6,18,37]. The volume of the masking noise (always below 90dB) was increased until

the subjects reported that the TMS click was not perceptible and was kept constant across stim-

ulation sessions. The noise masking was interrupted during the inter-sessions intervals without

removing the earplugs. Moreover, bone conduction was attenuated by placing a thin layer of

foam between coil and scalp [39].

A 6-channel eXimia electromyography (EMG) system (3000 Hz sampling rate and 500 Hz

cutoff for low-pass filtering) was used to record MEPs. Ag-AgCl self-adhesive electrodes were

placed over the right APB muscle according to the belly–tendon montage [40].

Experimental procedures

During all TMS/EEG recordings, subjects were seated on a comfortable reclining chair, with

eyes open and with the right hand positioned on a pillow placed over their lap. During stimula-

tion of M1, subjects were instructed to keep the target muscle relaxed while EMG was continu-

ously monitored on a computer screen.

In experiment 1, for every subject we performed 4 TMS/EEG measurements in which 4 cor-

tical target were stimulated with a random order across subjects. For each TMS/EEG measure-

ment we collected ~250 trials at an estimated electric field on the cortical surface of 120 V/m

To obtain this value, stimulation intensity, expressed as percentage of the maximal stimulator
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output (MSO), was adjusted separately for each cortical target according to the scalp-to-cortex

distance (prefrontal cortex = 65 ± 4% MSO and 16.2 ± 2.1 mm distance; premotor cortex:

69 ± 3% MSO and 15.7 ± 1.3 mm distance; motor cortex: 56 ± 4% MSO and 17.7 ± 1.5 mm dis-

tance; parietal cortex: 76 ± 3% MSO and 18.4 ± 2.0 mm distance). These values corresponded

to 110% to 115% of resting motor threshold (RMT, defined as the minimum intensity neces-

sary to elicit a peak-to-peak MEP amplitude higher than 50 μV in at least 5 out of 10 subse-

quent trials while muscle target is at rest, as assessed by the relative frequency method [23,24]).

This intensity range is considered effective to produce significant EEG responses [36,37] and,

at the same time, always evoked a clear but selective APB muscle twitch when targeting M1

(i.e. supra-threshold intensity). For each stimulation target, in experiment 1, inter-stimulus

interval (ISI) randomly jittered between 3000 and 3300 ms. In experiment 2, M1 was stimu-

lated with an ISI of 5000-5300ms (random jittering) to conform to the typical ISI used in the

literature of M1 stimulation [41,42] and to reduce possible cumulative effects [43,44]. In exper-

iment 2, a total number of 500 TMS pulses were delivered at RMT, corresponding to a mean

estimated electric field of 93 ± 5.9 V/m across subjects. All stimulation sessions for both experi-

ment 1 and experiment 2 were performed between late morning and early afternoon

(2:30PM ± 1:45) and subjects were not sleep-deprived nor drowsy at the time of the

experiment.

Data analysis

For both experiments, data analysis was performed using Matlab R2012a (The MathWorks).

Artifact-contaminated channels and trials were manually rejected by visual inspection [22] (in

experiment 2, trial rejection also involved the visual inspection of single-trial MEPs). Then,

EEG data were band-pass filtered (1–80 Hz, Butterworth, 3rd order), half-sampled at 725 Hz

and segmented in a time window of ± 600 ms around TMS pulses. Bad channels were interpo-

lated using EEGLAB spherical interpolation function [45] and signals were average re-refer-

enced and baseline corrected (number of channels interpolated: 3 ± 2.5 in experiment 1,

3.7 ± 1.5 in experiment 2). Independent component analysis (ICA, EEGLAB runica function,

[45]) was applied in order to remove residual eye blinks/movements and scalp muscle activa-

tions. In experiment 1, TEPs were obtained by averaging a minimum of 100 artifact-free single

trials (170 ± 11 for prefrontal stimulation, 158 ± 16 for premotor stimulation, 118 ± 15 for M1

stimulation, 139 ± 18 for parietal stimulation, respectively).

In experiment 2, EMG traces were filtered (2 Hz high-pass, Butterworth, 3rd order) and

segmented in a time window of ± 150 ms around the TMS pulse. Based on their peak-to-peak

amplitude distribution across a large number of artifact-free trials (396 ± 19), for each session

we averaged separately the 100 trials with the largest MEP amplitude (high-MEP condition)

and the 100 trials with the smallest MEP amplitude (low-MEP condition).

In order to assess and compare the local TMS-evoked activity between stimulation sites and

between high-MEP and low-MEP conditions, we first calculated the Local Mean Field Power

(LMFP) computed as the square root of squared TEPs averaged across the four channels

located under the stimulation coil (similar to [46]) and pertaining to the area of the scalp over

each of the four cortical targets (F1-Fz-Fc1-Fcz for prefrontal cortex, Fc1-Fcz-C1-Cz for pre-

motor cortex, C5-C3-Cp5-Cp3 for motor cortex and Cp1-Cpz-P1-Pz for parietal cortex).

Then, we applied bootstrap statistics at the single subject level (number of permutations = 1000,

α< 0.01) on LMFP time-series obtained from all artifact free trials (see above), to estimate the

LMFP values significantly different from the baseline (-500 to -100 ms (as in [47]). Specifically,

the time samples of LMFP pre-stimulus (-500 to -100 ms) activity were shuffled at single trial

level obtaining 1000 surrogated pre-stimulus LMFP time-series. Then, from each random
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realization, the maximum value across all latencies was selected to obtain a maximum distribu-

tion (control for type I error) and significance level was set at p<0.01. Significant activations

were finally averaged between +8 and +350 ms and used for the group analysis of the local

TEPs amplitude.

Spectral features were evaluated by computing the event-related spectral perturbation

(ERSP) [45] between 8 and 45 Hz [6–8] after time-frequency decomposition using Wavelet

transform (Morlet, 3.5 cycles). Absolute spectra normalization was applied first at the single-

trial level performing a full-epoch length single-trial correction [48] and then by a pre-stimulus

baseline correction (-500 to -100 ms) on the resulting ERSP averaged across all artifact free tri-

als (see above), using the EEGLAB newtimef function [48]. This function also computes the

surrogate distribution at each frequency by permuting baseline values, across both time and

trials, and testing whether the original ERSP values point lie in the 0.5 or 99.5% tail of the sur-

rogate distribution at any given frequency. If so, the specific time–frequency point is consid-

ered significant at α<0.01 after correction for multiple comparisons using the FDR procedure

[48]. Finally, similar to LMFP, only significant ERSP values surviving this bootstrap-based sta-

tistics (α< 0.01, number of permutations = 1000) with respect to baseline were considered in

the group analysis. Specifically, for each of the stimulated cortical areas, we averaged the ERSP

in the 8–45 Hz frequency range and in the time window between +200 and +350 ms, across

the same four channels selected for LMFP calculation. This time range has been chosen based

on the timing of the observed average (209 ± 17 ms) event related desynchronization (ERD)

starting point (see Results).

Statistics

In experiment 1 significant differences among areas were assessed, for both LMFP and ERSP,

by means of Kruskal–Wallis test and pairwise post-hoc Wilcoxon signed rank test were used

(Bonferroni corrected). In experiment 2, statistical comparison between high-MEP and low-

MEP conditions was performed on the LMFP and ERSP by means of paired Wilcoxon signed

rank test.

Results

Experiment 1: M1 response to TMS is larger and characterized by

distinct spectral features compared to the prefrontal, premotor, and

parietal cortex responses

The local amplitude of TEPs, as measured by the significant LMFP values averaged between

+8 and +350 ms, was significantly different among areas (Kruskal–Wallis test, p = 0.0016).

Specifically, M1 stimulation elicited larger TEPs compared to the other stimulated sites (Wil-

coxon signed rank test, p<0.05, Fig 1C). The same results were obtained by contrasting the

TEPs global amplitude across all 60 channels elicited by each stimulation site by means of the

corresponding global mean field power (GMFP; Kruskal–Wallis test, p = 0.0033, see S1 Fig).

With respect to the EEG responses in the time-frequency domain (ERSP) we observed that

all targeted cortical areas responded to TMS with a broadband increase of spectral power last-

ing up to ~200 ms (Fig 1E). After this first activation, spectral power returned to baseline in all

targeted cortical areas except for M1, which showed a statistically significant event related

desynchronization (ERD; blue color in top panel of Fig 1D). Across subjects, this ERD reached

maximum values at about 300 ms post-TMS (310 ± 3.5 ms), as shown by the grand-average

ERSP cumulated over the entire 8–45 Hz frequency range (Fig 1E). Indeed, statistical analysis

showed that the modulation of spectral power was significantly different among areas

The amplitude of motor evoked potentials influences the EEG response to TMS of the primary motor cortex
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Fig 1. Comparison of TMS-evoked EEG potentials recorded from different cortical areas employing

Local Mean Field Power (LMFP) and event-related spectral perturbation (ERSP). (A) For each

stimulated area, TMS-evoked EEG responses are shown from one representative subject. Butterfly plots of all

channels are displayed (top panels, grey traces), together with the corresponding LMFP (bottom panels, black

traces). The dashed vertical line indicates the timing of the TMS pulse. (B) Grand-average of LMFP for each
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(Kruskal–Wallis test, p = 0.0027) when averaged between +200 and +350 ms and that M1

modulation of power was significantly different from the average of the other stimulated sites

(Wilcoxon signed rank test, p<0.05; Fig 1F).

Both for LMFP and ERD, results at the group level are reproduced using the same number

of trials (see S2 Fig).

Experiment 2: M1 responses to TMS are influenced by MEP amplitude

First, we replicated the M1-related ERD observations found in experiment 1 using a longer ISI

(5000–5300 ms). Specifically, we observed that stimulating every 5000–5300 ms, M1 TEPs

were characterized by a statistically significant late ERD averaged across the four channels clos-

est to the stimulation site in the range of 8–45 Hz similar to that obtained using a shorter ISI

(3000–3300 ms; S3 Fig).

Most importantly, for each session, the high number of recorded trials (n = 500) allowed to

extract and analyze separately two subsets of 100 trials each, selected on the basis of the largest

(high-MEP) and the smallest (low-MEP) single-trial MEP amplitude respectively. Across sub-

jects, in the high-MEP condition the lowest MEP amplitude was on average 504 μV (±
174 μV), while in the low-MEP condition the highest amplitude was on average 165 μV

(±38 μV), therefore ensuring the absence of any overlap between high and low MEP conditions

(Fig 2A, left panel). The average MEP amplitude for the high-MEP and low-MEP conditions

were 1026 μV (range 223–1527 μV) and 29 μV (range 4–72 μV), respectively (Fig 2D, left

panel).

The overall amplitude of TEPs, as measured by the average of significant LMFP values

between +8 and +350 ms, was significantly reduced (21.6 ± 2.2%; Fig 2C) in low-MEP condi-

tion as compared to high-MEP condition (Wilcoxon signed rank test, p<0.05) at the group

level (Fig 2D, middle panel).

Regarding the effects of MEP amplitude on the spectral features of the local M1 EEG

response, we found that the amount of ERD was significantly reduced (83.9 ± 22.9; Fig 2D,

right panel) in the low-MEP condition as compared to the high-MEP condition (Wilcoxon

signed rank test, p<0.05). Notably, a topographic statistical analysis (Fig 3) indicated that the

significant ERD reduction was confined (Wilcoxon signed rank test, p<0.05) to the channels

overlying the motor area (C3, C5, Cz, FC2, FC3 and FC5).

stimulated area. Thick traces indicate the grand-average LMFP across subjects (±SE, color-coded shaded

regions). Responses recorded after the stimulation of different cortical areas are color coded as follows: motor

in black, prefrontal in yellow, premotor in red, parietal in green. (C) For each stimulated area, the LMFP values

averaged between 8 and 350 ms post-TMS are shown in the bar histogram (mean ± SE). Asterisks indicate

statistically significant differences (* p<0.05, Wilcoxon signed rank test). Bars are color coded as in Panel B.

(D) Black traces represent TMS-evoked EEG responses of a representative subject (same as in panel A) for

one of the four channels closest to the stimulation site, with the corresponding ERSP shown below. A Wavelet

Transform (Morlet, 3.5 cycles) has been applied at the single trial level. Significance threshold for bootstrap

statistics is set at α < 0.01. Non-significant activity is set to zero (green), red colors indicate a significant

increase with respect to the baseline, while blue colors indicate a significant reduction compared to the

baseline. As in Panel A, the dashed vertical line indicates the time of the TMS pulse. (E) The averaged ERSP

of the four channels located under the stimulation coil (between 8 and 45 Hz) is presented for each stimulated

area (color coding as in panel B and C). Each thick line indicates the grand-average across subjects (± SE,

color-coded shaded regions). The same traces are enlarged in the inset (time scale from 150 to 350 ms;

power scale from -2 to 2 dB). The dashed vertical line indicates the average time in which the ERD occurs. (F)

Using the same color coding as in panel B, C and E, bars indicate, for each stimulated area, the grand-

average (±SE) of the averaged ERD (ERSP between 200 and 350 ms post-TMS). Asterisks indicate

statistically significant differences (* p<0.05, Wilcoxon signed rank test).

https://doi.org/10.1371/journal.pone.0184910.g001

The amplitude of motor evoked potentials influences the EEG response to TMS of the primary motor cortex

PLOS ONE | https://doi.org/10.1371/journal.pone.0184910 September 14, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0184910.g001
https://doi.org/10.1371/journal.pone.0184910


Fig 2. TMS-evoked EEG responses over left M1: Comparison between high-MEP and low-MEP

conditions. (A) Left panel shows the distribution of the peak-to-peak MEPs amplitude of the all artifact-free

trials for one representative subject. Blue bars correspond to 100 trials in which TMS elicited the smallest APB

motor responses (low-MEP) and red bars corresponds to 100 trials in which TMS generated the largest APB

motor responses (high-MEP). Then, from left to right, the EEG single trials (thin lines) and the average

response (thick line) of the channel closest to the stimulation site (C3 scalp derivation) and the corresponding

ERSP are shown. (B) For the same representative subject of Panel A, low-MEP (top panel) and high-MEP

conditions (bottom panel) are compared. From left to right, the average MEP, the EEG single trials (thin lines)

and average TEPs (thick line) recorded from the electrode closest to the stimulation site (C3 scalp derivation)

and the corresponding ERSPs are shown. (C) MEP, LMFP and averaged ERSP derived from low-MEP (blue)

and high-MEP (red) trials are compared. Each thick line indicates the grand-average across subjects (±SE,

color-coded shaded regions). The averaged ERSP traces are enlarged in the inset (time scale from 150 to

350 ms; power scale from -1 to 1 dB). (D) From left to right: average (±SE) across subjects of the MEP peak-

to-peak amplitude, individual averaged LMFP between 8 and 350 ms and the individual averaged ERSP

between 200 and 350 ms are presented. Small circles and grey lines indicate single subject values, while

large circles and black lines indicate grand-average values across subjects. Statistical analysis by means of

Wilcoxon signed rank test resulted in significant differences for MEP (p<0.05), LMFP (p<0.05) and ERSP

(p<0.05).

https://doi.org/10.1371/journal.pone.0184910.g002
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Finally, splitting the average ERD over these six channels into four frequency bands (8–15

Hz, 15–20 Hz, 20–30 Hz, 30–45 Hz) we found significant differences between high-MEP and

low-MEP conditions across all frequencies (Wilcoxon signed rank test, p<0.05).

Discussion

In the present study, we investigated the peculiar features of the EEG responses of M1 to TMS

and we asked whether those features are related to the amplitude of MEPs. To this aim we per-

formed two series of experiments: in experiment 1 we compared TEPs of M1 with those of

other cortical areas (premotor, prefrontal and parietal) in the time-frequency domain. Here

stimulations were performed at an intensity of 120 V/m, which is largely above the threshold

to reliably elicit a MEP. In experiment 2, we stimulated M1 at RMT and compared TEPs

acquired within the same session and classified as low-MEP and high-MEP based on MEP

amplitude. We found that: (i) according to previous studies [49] M1 TEP amplitude is larger

as compared to any of the other stimulated areas, (ii) only the M1 response is associated with a

late ERD (~300 ms), which is clearly modulated by the amplitude of MEPs. Although limited

by the small sample size, these results are reproducible at the single subject level and are in line

with previous similar studies.

Behavioral and electrophysiological measurements suggested that M1 is more excitable

than other cortical areas [49–51]. For instance, previous works showed that TMS delivered

above RMT over M1 and prefrontal cortex resulted in larger global response (GMFP) for the

stimulation of M1 [49,51,52]. Here we confirmed and extended these results (experiment 1) by

comparing TEPs of M1 to those generated by stimulating the premotor and posterior parietal

cortices, which are usual targets in TMS/EEG experiments [6–8,53]. We observed that the M1

LMFP and GMFP to supra-threshold TMS (120 V/m as estimated by the neuronavigation sys-

tem) are significantly larger than those measured after the stimulation of premotor and parietal

cortices (Fig 1A–1C and S1 Fig).

Most important, the analysis of TEPs in the time-frequency domain showed that only the

stimulation of M1 is associated to a statistically significant late (~300ms) broadband ERD (Fig

1D–1F), whose scalp topography is confined to the EEG electrodes overlying the stimulated

sensory-motor areas (Fig 3). In terms of spectral and topographical features, the ERD we

observed closely resemble the localized desynchronization of the ongoing EEG oscillations in

Fig 3. Comparison between low-MEP and high-MEP conditions across channels and frequency

bands. (A) The broadband (8–45 Hz) ERD topography (ERSP averaged between 200 and 350 ms) of the

grand-average across subjects derived from both low-MEP (left) and high-MEP conditions (right) is shown.

(B) Topographic distribution of the z-values from a Wilcoxon signed rank test (p<0.05) together with the

statistical differences between the broadband ERD in the two conditions. The statistically significant

electrodes (white dots) indicate that this broadband reduction was confined over the motor area (C3, C5, Cz,

FC2, FC3 and FC5 scalp derivations). (C) For the significant channels of Panel B, the ERSP averaged

between 200 and 350 ms across channels in the low-MEP (blue) and high-MEP (red) conditions over four

EEG frequency bands (8-15Hz, 15-20Hz, 20-30Hz, 30–45 Hz) are shown in the bar histogram (±SE).

Asterisks indicate statistically significant differences (* p<0.05, Wilcoxon signed rank test).

https://doi.org/10.1371/journal.pone.0184910.g003
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the low and high μ-bands induced by somatosensory stimulation [54] and by the execution of

a voluntary movement [55]. Along the same lines, other studies showed that ERD in the β-

band (15–30 Hz) recorded from sensory-motor cortices is associated with electrical nerve

stimulation [56] and mechanical finger stimulation [57], as well as with movement and

motor imagery [58,59]. At odds with these frequency-specific spectral profiles brought about

by peripheral activations, the broadband ERD (Fig 3C) found in our study possibly reflects

the direct cortical activation induced by TMS. Here, the ERD that hallmarks the electrical

M1 response we recorded after supra-threshold TMS may be strongly contributed by the

activation of specific cortico-spinal circuits [60] as well as by the sensory feedback from the

activated muscle [54,57,61]. In order to further test this hypothesis, we performed a second

set of measurements (experiment 2) in which TEPs following the stimulation of M1, at an

intensity corresponding to RMT, were ranked based on the occurrence of high amplitude

and low amplitude MEPs. Results clearly showed that in the high-MEP condition (i.e. when

the cortico-spinal tract is more activated and the proprioceptive sensory feedback is stron-

ger) the EEG response to TMS was significantly larger with respect to the low-MEP condi-

tion (i.e. when cortico-spinal tract is less activated and the proprioceptive sensory feedback

is weaker), both in the early (as in [14]) and in the late TEP components (Fig 2C). Notably,

also M1 ERD was influenced by the amplitude of MEPs, thus confirming a relationship

between M1 EEG response to TMS and the effect of the stimulation at the peripheral level

(Fig 2). Interestingly, when the stimulation of M1 did not trigger any muscular activation (as

in [7]), the ERD was absent, confirming that the occurrence of ERD is only present when the

stimulation actively involves the cortico-spinal tract (regardless the specific targeted muscle)

and is associated with the proprioceptive sensory feedback, and absent otherwise (S4 Fig—

see S1 Text).

More in general, the peculiar spectral properties of M1 response to TMS could be related to

specific anatomo-functional features of the motor cortex, such as its high level of connected-

ness previously demonstrated by studies combining TMS with functional MRI [60,62]. In this

case, the larger M1 EEG responses may be influenced by the activation of specific cortico-cor-

tical pathways which involves areas directly connected to M1 such as the primary somatosen-

sory cortex [63], the M1 contralateral to the stimulation, the supplementary motor and

premotor areas [13,60,64]. With respect to the timing of the late ERD found in previous studies

[56–58] and confirmed in the present work, its latency (~300ms) is consistent with the time

interval required for the elaboration of the subjective awareness of somatosensory stimuli [65]

further implying the role of sensory feedback on the specific M1 response to TMS. Altogether,

these findings confirmed that the M1 EEG responses to TMS show peculiar features strongly

related to the concurrent activation of a peripheral output.

In addition to these macro-anatomical aspects, also the peculiar M1 cytoarchitectonics

may play a role. Indeed, magnetic stimulation seems to be more effective in exciting longitu-

dinally oriented pyramidal cells which have a large-diameter myelinated axon and a wider

dendritic tree [2,66]. Thus, the direct activation of giant Betz cells of layer Vb, whose strong

presence is a unique feature of M1 [28,29], may contribute to the distinct features of M1

TEPs. Along these lines, future works should investigate whether both early and late M1-spe-

cific TEP-/ERSP-components may reflect peculiar M1 cytoarchitectonics and/or M1 cir-

cuitry properties unaffected by sensory feedback. Other studies could also explore the

contributions of cytoarchitectonics and structural connectivity of other cortical areas, such

as the occipital cortex [6], to the specificity of TEPs, towards the development of a non-inva-

sive perturbational atlas.
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Supporting information

S1 Text. Additional results.

(PDF)

S1 Fig. (A) Grand-average of GMFP for each stimulated area. Thick traces indicate the grand-

average GMFP across subjects (±SE, color-coded shaded regions). Responses recorded after

the stimulation of different cortical areas are color coded as follows: motor in black, prefrontal

in yellow, premotor in red, parietal in green. (B) For each stimulated area, the GMFP values

averaged between 8 and 350 ms post-TMS are shown in the bar histogram (mean ± SE). Aster-

isks indicate statistically significant differences (� p<0.05, Wilcoxon signed rank test). Bars are

color coded as in Panel A.

(TIF)

S2 Fig. For each stimulated area, the LMFP values, calculated using all artifact free trials

(panel A) and the same number of trials across stimulation site (panel B), and then aver-

aged between 8 and 350 ms post-TMS are shown in the bar histogram (mean ± SE). Aster-

isks indicate statistically significant differences (� p<0.05, Wilcoxon signed rank test). Bars are

color coded as in Fig 1. Using the same color coding for each stimulated area, the grand-aver-

age (±SE) of the averaged ERD, calculated using all artifact free trials (panel C) and the same

number of trials across stimulation site (panel D). Asterisks indicate statistically significant dif-

ferences (� p<0.05, Wilcoxon signed rank test).

(TIF)

S3 Fig. Comparison of 5 second (top panels) and 3 second ISI (bottom panels) in one repre-

sentative subject. For both ISIs, the distribution of peak-to-peak MEP amplitude of all artifact

free trials (left top) and the corresponding average MEP (left bottom), the butterfly plots of all

channels (right top, grey traces), the TEPs recorded at the channel closest to the stimulation site

(right top, black traces) and the corresponding ERSPs (right bottom) are shown. Wavelet Trans-

form (Morlet, 3.5 cycles) was applied at the single trial level. Significance threshold for bootstrap

statistics is set at α< 0.01. Non-significant activity was set to zero (green), red colors indicate a

significant increase with respect to the baseline, while blue colors indicate a significant reduc-

tion with respect to the baseline. The dashed vertical line indicates the timing of the TMS pulse.

(TIF)

S4 Fig. Top and bottom panels show, for one representative subject, the average MEPs of

the quadriceps and APB muscles, the butterfly plot of all channels (grey lines), the TEP of

the channel closest to the stimulation site (black line) and the corresponding ERSP

obtained by stimulating the medial M1 (leg motor cortex) respectively at 100% RMTAPB

and 100% RMTQuadriceps.

(TIF)
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