A MIDI Controller Mapper for the Built-in Audio Mixer in
the Unity Game Engine

Pedro Lucas
Independent Researcher
Guayaquil, Ecuador
pedro.lucas.bravo@gmail.com

ABSTRACT

Unity is one of the most widely used engines in the game
industry, several extensions have been implemented to in-
crease its features in order to create multimedia products
in a more effective and efficient way. From the audio de-
velopment point of view, Unity has included in later ver-
sions an Audio Mixer, which facilitates the organization of
sounds, effects and the mixing process in general; however,
this module can be manipulated only through its graphical
interface (GUI). This work describes the design and imple-
mentation of an extension tool to map parameters from the
Audio Mixer to MIDI external devices, like controllers with
sliders and knobs, to allow the developer to easily mix a
game with the feeling of a physical interface.

Author Keywords
Audio Mixer, MIDI Controller, Unity3D, Game Develop-

ment

CCS Concepts

e Applied computing — Sound and music computing;
Computer games;

1. INTRODUCTION

In recent years the complexity of audio environments in
video games has increased, mainly because there are more
elements to be considered inside a virtual world, as well
as the dynamic behaviours that demand sounds to improve
feedback [6]. In this scenario, mixing all this audio becomes
an important challenge for audio developers in the involved
areas [7].

With the arrival of fast-prototyping game engines, there
have been a significant increase in the production of games,
leading developers to constantly look for ways to obtain the
best results in terms of productivity and quality [4] [7].

Particularly, game audio development focuses on dynamic
mixing to enrich the sound landscape according to the sit-
uations a player faces in a virtual environment [7]. In some
cases, audio is intended to be used as the main resource
for specific experiences as in [5], which focuses on an aug-
mented reality approach based on sound for advance mixing
in virtual acoustic environments.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright

l BY remains with the author(s).

NIME’19, June 3-6, 2019, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil.

401

Sound designers, who have none o little experience in pro-
gramming, use tools, such as FMOD and Wuwise, for build-
ing the dynamic sound environment [7]. In this process,
they require to mix the sound elements according to the
situations or performing pre-mixing operations that are fa-
cilitated by external devices, like MIDI controllers, such as
keyboards o sets of knobs, sliders, and pads [8]. These tools
are middlewares that have been used to implement audio
features in game engines; however, all their capabilities are
not fully integrated [8].

Thus, the improvement of game audio development is
taken into account in this work by providing the details
of the design and implementation of a tool for accelerat-
ing the mixing process directly into Unity, one of the most
commonly used game engines in the game industry [13],
and more suitable for beginners, who do not require a high-
performance hardware to achieve the mixing results, and
offers a straightforward process for developing mobile ap-
plications [1].

The tool proposed in this paper is a MIDI mapper for the
Unity Audio Mizer, which helps link audio parameters from
sounds and effects to knobs, sliders, or any other control
from MIDI devices.

MIDI have been used in games as a medium to control
objects and characters in real-time as in [3]. However, this
proposal considers a tool for controlling the mixing pro-
cess efficiently from the development point of view; that is,
the inclusion of this tool as part of the Unity Editor. The
mapper takes the advantages of mixing by bus structures
(groups) in the Unity Audio Mixer; these structures can be
composed of abstract designs as described in [14].

A discussion regarding this MIDI mapper is presented,
together with future directions regarding the improvement
of the tool and its impact in the game development com-
munity.

2. BACKGROUND
2.1 Unity Audio Engine

Unity is a real-time platform intended mainly for video
game development. Around half of the world’s games has
been created through this platform, making it a leader in
the game industry [13].

This work is focused in the Unity Audio System which
supports most standard audio file formats, plays sounds in
3D space, applies filter effects to those sounds, records audio
from a microphone, and more specific features for creating
an immersive experience [12].

The audio system works as follows: Sound files are repre-
sented by Unity as Audio Sources, that can be placed in the
game scene to reproduce audio. These sounds are received
by an Audio Listener, which is a reference point of hearing;
that is, audio will be played in 3D according to the position
of Audio Sources in regard to the Audio Listener. Audio

Filters; such as echo, reverb, distortion, and others, can be
used along with the sources, or a set of them, to modify the
environment.

2.1.1 Built-in Audio Mixer

Unity implemented an Audio Mizer for mixing, applying
effects, and perform mastering [11].

The layout for this tool is shown in (Figure 1). The mixer
consists of Groups, Snapshots, and Views. A Group is a mix
of sounds that controls Audio Sources as long as they are
linked to that group. Volume attenuation, pitch correction,
and effects insertion can be manage from a group. A Snap-
shot saves the state of the values of groups and it is useful
when a whole mixing changes according to a location. A
View is a graphical arrangement of the groups; that is, one
or more groups can be hidden and that presentation can
be saved as a view, which is useful for avoiding being over-
whelmed when there are lots of groups.

Figure 1: The Unity Audio Mixer.

In the top-right corner in (Figure 1) there is a drop-down
list called Faxposed Parameters. They are mixer parameters
like volume, pitch, echo delay, and any other parameter at-
tached to one or more groups. Unity is able to control these
parameters by exposing them to script control for in-game-
mode [10]. Thus, the value of the exposed parameters can
be changed in real-time inside the application; also, they can
be manipulated in the audio mixer directly using the edi-
tor GUI, and then be saved as an snapshot in editor-mode;
however, an editor-script control is not possible, unless it is
in the in-game-mode.

3. SYSTEM DESIGN
3.1 Mapper Overview

The proposed main goal is to map the parameters of the
Unity Audio Mixer to a physical MIDI interface in order to
control them in an easier way.

Unity does not support some features that are necessary
to implement the mixer mapper, such as MIDI communica-
tion and modification of exposed parameters through script-
ing in editor-mode.

To include MIDI communication, the library NAudio [2]
was integrated to Unity as a plugin in order to support
MIDI features in Windows. NAwudio is an open source .NET
audio library, which is compatible with the Unity scripting
language C#.

To modify mixer parameters through scripting, in editor-
mode for real-time mixing, it was necessary to expose them;
however, the modification of values for exposed parameters
only works in the in-game-mode and are not saved when the
application stops. To solve this problem, the mixer mapper
modifies the values directly in the audio mixer file, hence the
modifications are not lost. This strategy needs to parse the
audio mixer file whose format is YAML, a data serialization
language that is used by all Unity files.

402

The system overview is shown in (Figure 2). The devel-
oper uses the Editor Mapper GUI to assign MIDI controls
to exposed parameters in the audio mixer; then, the MIDI
controller can be manipulated to change the values of the
parameters. The core of this process is the Audio Mizer
Mapper in which all the logic resides. The mapper allows
the user to match the parameters with the physical controls
and save them permanently, by modifying the audio mixer
YAML file through a YAML Parser module. In this way,
the exposed parameters have a direct influence in the Audio
Sources from the application according to the audio mixer
management.

[UNITY 3D

: : L >
Developer

MIDI Message
Manager T
YAML Parser
.

Save File

Editor Mapper
Gul

[5

AUDIO MIXER
MAPPER

Built-in

P Audio Mixer
Exposed Paramsters

Volume
Pitch
Cutoff Freq LPF

fudls Growps |
P AG1 _.) Audiosources.

b AG2
b AGs
-
>

MIDI Controller

Figure 2: System overview.

3.2 Editor GUI Design

(Figure 3) shows the graphical user interface (GUI) for the
mixer mapper. This custom interface was implemented fol-
lowing the standard layout of Unity editor windows. This
image presents the main sections for the mapper: the target
mizer, which is the audio mixer that contains the exposed
parameters to be mapped; MIDI devices that shows the con-
trollers connected to the computer where Unity is running;
the start snapshot, which is the configuration that is go-
ing to be mixed; and, the exposed parameters, represented
by sections with relevant values for the parameters to be
mapped.

Figure 3: Mixer Mapper with some exposed param-
eters.

Depending on the state of the mapping process, an ex-
posed parameter section can have one of the views presented
in (Figure 4) described as follows:

e Unmapped: There is no MIDI control associated
with the parameter until the user press “Learn” to as-
sign a control.

e Learning: The tool is waiting for the input from a
MIDI device; that is, if any knob, slider or other kind
of control is moved in the device, it will be detected
and you will see the green bar moving while you move

the control. By pressing the button “Learning...” the
user exits from this state.

Mapped and inactive in mixer: The parameter
is now mapped to a MIDI control and it can be con-
firmed when the control is being moved and the cyan
bar is changing. However, this will not affect the Au-
dio Mixer yet because you need to run the application
in the in-game-mode.

Mapped and active in mixer: In this state, the
words “Active in Mizer” appears on the top of the sec-
tion, which means that the exposed parameter is re-
acting to the MIDI control. It can be observed when
the control is being moved and both, the exposed pa-
rameter and the mapping cyan bar, are changing. This
state only happens when the application is playing.

Learning Mapped and inactive in mixer Mapped and active in mixer

Learning..,

Figure 4: States for exposed parameters.

e Min Value and Max Value: These values can be
modified and must have the limits of the parameters
that are exposed. By default, the values are -80 and
20; it assumes that a volume parameter is going to be
controlled.

e Current Value: The parameter that will be re-
flected in the Audio Mixer. It can be changed manu-
ally in order to give more precision if required. To its
right side, there is a small red led that twinkles when
the parameter is being manipulated by a MIDI device.

e Parameter Bar: This bar is a graphical feedback
exclusive for the MIDI device; that is, it reacts to
the movement of the MIDI control that is mapped to
the parameter. Its color is green when it is learning
and cyan when is already mapped. Also, it can be
manipulated with the mouse pointer.

e Learn Button: When this button is pressed, the
parameter enters to a learning state to catch a MIDI
control and hides the rest of parameters.

e Forget Button: This button only appears when
the parameter is mapped, and allows the mapping to
be released and the controlling stopped.

An ezposed parameters section, as shown in (Figure 4)
four parameters are depicted, composed of the following at-
tributes:

Name: The given name to the parameter when it
was defined in the Audio Mixer. (volume_master is an
example).

Mapping Type: The type of mapping regarding the
MIDI control that depends on a curve. This attribute
dictates the behavior of the control and how it be-
haves when it is manipulated. When a type is selected,
the curve can be seen in the field below. The types
are: Linear, Logarithmic, Hyperbolic, Quadratic, Ex-
ponential, and Custom.. For the implementation of
the curves, the derivative of the functions correspond-
ing to each curve was used in order to create the points
and tangent lines that compose the curve.

Curve: The curve that results from the selection
of the mapping type. The custom curve enables this
Curve field where the user is able to provide any curve,
as shown in (Figure 5) by adding points and modifying
tangent lines manually. This is a very flexible feature
that allows to test unusual behaviours for mapping.

Device No.: This attribute is the number of the
device that is mapped with the parameter. If there is
no mapping, it will be 0 (zero), otherwise it will be
the number that you can see in the device panel to
the left of the main window in (Figure 3).

Channel: The MIDI channel that was learned in
the mapping.

CC: The MIDI control code that was learned in the
mapping.

403

Figure 5: Custom curve for exposed parameter.

The following steps describe the use of the mapper:

1. Create the exposed parameters to be controlled via
MIDI devices.

2. Open the tool using the menu MidiControllerMapping
-> Open, which is a custom menu.

3. Assign your Audio Mixer to the Target Mizer field.

4. Connect a MIDI controller to the computer. The
MIDI Dewvices panel will show information about the
controller.

5. Map any parameter by pressing the Learn button and
moving a control in the MIDI device.

6. The Audio Mixer only reacts to the mapping if the ap-
plication is playing; also, the Edit in Playmode feature
of Unity must not be used since the tool is responsi-
ble to save the Audio Mixer when the application is
stopped, or by pressing the Save Now button.

A simple demo was developed as an example for the user.
An screenshot of the demo is depicted in (Figure 6), which
contains three main categories: music, ambiances, and sound
effects, where audio sources are linked to the corresponding
category, and the mixer mapper is set with exposed param-
eters ready to be used.

MIDI Controller Mapping Demo

Figure 6: Demo of sounds to be mixed.

4. DISCUSSION

This tool is a useful add-on feature for the Unity editor,
mainly for audio developers that are not familiar with pro-
gramming. However, it requires previous knowledge about
the built-in audio components from Unity since the audio
mixer have to be assigned to the audio sources in the Unity
game scene; that is, the developer needs to assign audio
groups to each source in order to be included into the mix-
ing.

Currently, the tool supports only the Windows operating
system since NAudio library was built for this OS; mainly
because of the dependency of MIDI features regarding the
OS specific architecture.

It is important to note that this tool depends on the audio
mixer file from Unity. By default, files in Unity are binary,
but it can be changed in order to be more readable by hu-
mans. In this case, the files can be saved with the YAML
format; however, it makes the Unity project to consume
more disk space, which can be a considerable problem for
big projects. The tool can avoid the dependency of this file
when, in future releases, Unity enables the script control for
exposed parameter in editor-mode.

In terms of functionality, the tool can be seen as a meta-
interface which allows the development of audio and musical
interfaces with specific purposes, such as sound synthesiz-
ers, interactive instruments based on touch-screens, even in
instruments that rely on MIDI devices. All of them can
take the advantage of the features provided by a game en-
gine that supports graphics, physics, audio capabilities and
more.

The mapper has been uploaded to the Unity Asset Store
[9] and it is available to Unity developers.

5. CONCLUSIONS

This work presents a Unity audio extension for its audio
mixer to map parameters to a MIDI controller. The pro-
posed design considers the inclusion of a MIDI message
manager to connect external devices with the computer that
runs the Unity editor, which allows the use of physical con-
trols through a graphical user interface (GUI) implemented
under the Unity standards.

The tool enables audio developers to mix a video game
in real-time with the feeling of physical controls, which is
an easier and productive way to enhance the audio environ-
ment in a virtual world. This MIDI extension is intended
to be part of the development work-flow of a video game or
any other application implemented in Unity, enabling com-
posers and sound designers to work with familiar hardware
interfaces.

The Unity engine needs to update some features regard-
ing its audio mixer in order to improve the mapper for
large projects; however, the tool can be used for small and

404

medium projects, offering an optimal work for audio devel-
opment.

For future work, the mapper will be extended to Mac and
Linux operating systems supported by Unity. Also, produc-
tivity tests will be performed to explore the improvements
in the video game development process regarding dynamic
audio scenes, as well as the conduction of tests to assess
whether a developer prefers the use of the classical GUI or
the physical control provided by the mapper.

6. ACKNOWLEDGMENTS

The author would like to thank Dr. Enrique Peléez, profes-
sor at ESPOL University, for his constructive criticism of
the manuscript.

7. REFERENCES

[1] E. Christopoulou and S. Xinogalos. Overview and
Comparative Analysis of Game Engines for Desktop
and Mobile Devices. International Journal of Serious
Games, 4(4):21-36, 2018.

M. Heath. NAudio Library. Retrieved from:
https://github.com/naudio/NAudio, 2014.

J. Holm, J. Arrasvuori, and K. Havukainen. Using
MIDI to Modify Video Game Content. Proceedings of
the 2006 International Conference on New Interfaces
for Musical Ezpression (NIME-06), pages 65-70, 2006.
H. A. Mitre-Herndndez, C. Lara-Alvarez,

M. Gonzélez-Salazar, and D. Martin. Decreasing
Rework in Video Games Development from a
Software Engineering Perspective. In Advances in
Intelligent Systems and Computing, volume 405, pages
295-304. Springer International Publishing, 2016.

N. Moustakas, A. Floros, E. Rovithis, and K. Vogklis.
Augmented Audio-Only Games: A New Generation of
Immersive Acoustic Environments through Advanced
Mixing. In Audio Engineering Society Convention
146, mar 2019.

B. Schmidt. Interactive Mixing of Game Audio. In
Audio Engineering Society Convention 115, oct 2003.
A. E. Society. Audio for Games - Conference Report.
AES 49th International Conference, 61(6), 2013.

G. Somberg. Game Audio Programming. A K
Peters/CRC Press, sep 2018.

Unity. Unity - MIDI Controller Mapping for Audio
Mixer. Retrieved from:
https://assetstore.unity.com/packages/tools/audio/midi-
controller-mapping-for-audio-mixer-69554,

2015.

Unity. Unity - Exposed AudioMixer Parameters.
Retrieved from:

2l
B8l

4]

(5]

https://unity3d.com/es/learn/tutorials/topics/audio/exposed-

audiomixer-parameters,

2018.

Unity. Unity - Manual: Audio Mixer. Retrieved from:
https://docs.unity3d.com/Manual / AudioMixer.html,
2018.

Unity. Unity - Manual: Audio Overview. Retrieved
from: https://unity3d.com/unity, 2018.

Unity. Unity Game Engine - Features. Retrieved from:
https://unity3d.com/unity, 2018.

D. Zlobin. Audio Design in Mid-Core Mobile Games.
PhD thesis, Aalto University, 2018.

