A Comparison of Open-Source Linux Frameworks for an
Augmented Musical Instrument Implementation

Eduardo A. L. Meneses
Input Devices and Music
Interaction Lab/CIRMMT
McGill University, Canada

eduardo.meneses@mail.mcgill.ca

Sérgio Freire
School of Music
Universidade Federal de
Minas Gerais (UFMG), Brazil
sfreire@musica.ufmg.br

ABSTRACT

The increasing availability of accessible sensor technologies,
single board computers, and prototyping platforms have re-
sulted in a growing number of frameworks explicitly geared
towards the design and construction of Digital and Aug-
mented Musical Instruments. Developing such instruments
can be facilitated by choosing the most suitable framework
for each project. In the process of selecting a framework
for implementing an augmented guitar instrument, we have
tested three Linux-based open-source platforms that have
been designed for real-time sensor interfacing, audio pro-
cessing, and synthesis. Factors such as acquisition latency,
workload measurements, documentation, and software im-
plementation are compared and discussed to determine the
suitability of each environment for our particular project.

Author Keywords

Augmented Instruments, Sensor Interfaces, Latency

CCS Concepts

eHardware — Sensor devices and platforms; e Applied
computing — Sound and music computing; Performing
arts;

1. INTRODUCTION

The increasing availability of accessible sensor technolo-
gies, single board computers, and prototyping platforms
have resulted in a growing number of frameworks explic-
itly geared towards the design and construction of Digital
Musical Instruments (DMIs) and Augmented Musical In-
struments (AMIs).

New challenges arise from these new tools, such as the
limitations imposed even on the implementation of simple
sensing techniques [1], or the choice of the proper hardware
and data acquisition method.

Moreover, we need to consider that all available options
carry constraints, and no tool can be used blindly in every

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright

-. remains with the author(s).

NIME’19, June 3-6, 2019, Porto Alegre, Brazil

Johnty Wang
Input Devices and Music
Interaction Lab/CIRMMT
McGill University, Canada

johnty.wang@mail.mcgill.ca

Marcelo M. Wanderley
Input Devices and Music
Interaction Lab/CIRMMT
McGill University, Canada

marcelo.wanderley@mcgill.ca

222

project. This paper presents a number of existing platforms
that were considered when building a new prototype for our
specific AMI (The GuitarAMI), and the process of iden-
tifying and evaluating some key factors that were used to
influence our choice. First, we present the goals and require-
ments of our project, followed by the description and per-
formance comparisons of three selected frameworks: Bela,
Prynth and a custom Sound Processing Unit (SPU).

2. REQUIREMENTS OF THE GUITARAMI
PROJECT

The GuitarAMI is an Augmented Musical Instrument (AMI)
in development at the Input Devices and Interaction Lab-
oratory (IDMIL) at McGill University [2]. The next step
for GuitarAMI research is an evaluation of its use in perfor-
mance and composition. The current prototype uses Super-
Collider (SC) for mapping and sound synthesis and requires
audio input/output, wireless data input from a sensor inter-
face using Open Sound Control (OSC) through Wi-Fi, five
switches, and a small LCD for simple visual feedback.

Wi-Fi capability, specifically the ability to send and re-
ceive OSC messages wirelessly, is considered an essential
requirement for the GuitarAMI due to the modular design,
allowing multiple modules in different guitars or even other
instruments to interact among themselves using the Gui-
tarAMI as an access point®.

To provide visual feedback we chose to use a small embed-
ded display. The current communication interfaces available
for those devices are Serial Peripheral Interface (SPI), and
Inter-Integrated Circuit (I>C). Therefore, it is expected that
the framework provides us at least one of the mentioned
communication interfaces.

Even though the GuitarAMI provides visual feedback
through a small display, we expect the AMI to be used in
headless mode, i.e., without the need of a monitor or key-
board. The performer should be able to simply connect the
audio cable and turn on the instrument for operation.

Therefore, to fulfill the Guitar AMI’s current requirements,
the selected framework needs to provide the following ca-
pabilities: 1) Ability to run SuperCollider, and enough pro-
cessing power to run the GuitarAMI code in real time;
2) Wi-Fi connectivity; 3) Provide five analog/digital sen-
sor inputs (to implement five switches); 4) Provide SPI or
IC communication interfaces; 5) Ability to run in headless

!One example of multiple instruments interaction us-
ing the GuitarAMI can be seen at https://youtu.be/
n-r9-c2jAGO.

https://youtu.be/n-r9-c2jAG0
https://youtu.be/n-r9-c2jAG0

mode; and 6) Fulfil the audio/data latency requirements
discussed below.

Apart from the requirements above, another important
specification is the audio and data latency. As discussed
by McPherson, Jack, and Moro [3], latency perception de-
pends on the musical and visual context. The classical gui-
tar sound envelope, similarly to other plucked string in-
struments, consists of quick attack time and short sustain.
This prominent attack may suggest that the instrument’s
perceivable latency thresholds should be closer to the per-
cussion instruments.

However, qualitative latency perception tests for moni-
tor systems in live performances using stage monitors show
that latency under 6.5 ms is considered ideal, while latency
values up to 14.5 ms are considered fair [4]. For the classical
guitar case, we can then consider Wessel and Wright’s sug-
gestion of a maximum latency of 10 ms [5] as a reasonable
objective, due to its proximity to the average between the
maximum ideal and fair latency values presented by Lester
and Boley [4].

Finally, time variation (jitter) is another essential factor
to be considered in signal acquisition. In this particular
scenario, the absence of jitter is critical for the audio in-
put/output, while data acquisition may accept some varia-
tion regarding both “continuous” signals and switch sensors
used to change modes of operation. In the latter case, we
consider a higher tolerance, in the order of tens of millisec-
onds, similar to the sensitivity stated by Méki-Patola and
Hamaéldinen for theremin control [6].

The GuitarAMI’s SuperCollider code requires a minimum
block size of 128 samples to avoid X-runs? using any of the
tested frameworks. This block size is the smallest buffer
that allows computing the audio output within the real-
time constraints and, any block smaller than 128 samples
produces enough X-runs on both the BeagleBone Black and
the Raspberry Pi (the single-board computers used in the
tested frameworks) to compromise audio quality.

We expect to work with a minimal sample rate of 44.1kHz
for ADC/DAC to ensure proper audio quality, although our
approach will be to choose a sample rate that produces the
smallest latency for each framework. We also expect to
work with the smallest number of periods/buffer possible (2
periods/buffer), and highest analog sample rate for data ac-
quisition (non-audio ADC) for each tested framework, both
parameters are set to reduce overall latency.

Apart from the measurements presented in section 4, there
are also qualitative aspects to consider when choosing a
framework for a particular project. Those aspects may re-
late with particular needs or workflow and methodology,
i.e., the necessity to evaluate or modify the code in real-
time, or the easiness in working with a particular protocol
such as I?C or SPI. Out-of-the-box functionalities required
by the project are also desirable, i.e., providing high-quality
audio inputs or built-in wireless capabilities.

3. SELECTED PLATFORMS

Among the available microcontroller and single-board com-
puter platforms, there are frameworks explicitly created to
support artistic creation. We can highlight Bela and Prynth
as two platforms created as DMI oriented frameworks. Ad-
ditionally, we also tested a custom sound process unit.

3.1 Bela

2 An X-run is a large denomination for processing errors
caused either by buffer underruns or a buffer overruns. X-
runs happens when an audio application is not fast enough
to either send or process data to/from the ALSA audio
buffer, usually causing audible sound artifacts [7].

223

Bela is a framework for creating audio and interactive ap-
plications, developed and maintained by the Augmented In-
struments Laboratory at Queen Mary University of London
(QMUL) [8, 9]. The initial research evolved into an open
source platform that was launched by a successful crowd-
funding campaign and is currently maintained by the Aug-
mented Instruments Laboratory at Queen Mary University
of London (QMUL). More information about Bela can be
found on the official website®, and the code can be found
on Github?.

The Bela hardware consists of a BeagleBone Black and a
custom “cape” (add-on board) that provides audio, and ana-
log/digital input/output functionalities. The software envi-
ronment is a Linux distribution “running audio at higher
priority than the Linux kernel” [8]. Bela can run code com-
piled from C++, Csound, and SuperCollider as well as Pure-
data patches. The framework is highly customized to pro-
vide the DMI designer a plug-and-play experience, and the
Bela Integrated Development Environment (IDE) exposes
parameters commonly modified during instrument design.

3.2 Prynth

Prynth is designed as a programmable sound synthesizer
running on single-board computers. Franco and Wanderley
first published this development in [10]. Similarly to Bela,
Prynth evolved into an open source platform, and informa-
tion about the framework can be found on the official web-
site®. Hardware and software specifications can be found on
GitHub®. The project is currently maintained by IDMIL,
at McGill University.

The Prynth hardware consists of a Raspberry Pi, and a
custom “hat” (add-on board) hosting a Teensy microcon-
troller for analog and digital I/O functionalities. Prynth’s
framework does not provide any audio functionality out-
of-the-box. Instead, the platform presents a pre-configured
JACK API that allows the use of any audio interface in the
system. Prynth’s software is a custom headless Linux dis-
tribution that provides an IDE capable of running SC code.
However, Prynth software aims to not only to execute SC
code but also serve as a coding environment similar to the
standard SC IDE, allowing the user to evaluate portions of
the code and send commands to the SC language. Since the
Prynth framework does not provide an audio interface by
default, in our tests we employed a Fe-Pi Audio board”.

3.3 Custom Sound Process Unit (SPU)

Another viable alternative to Bela and Prynth is to use the
frameworks’ building blocks to create a custom solution.
This approach provides a customization level similar to the
Satellite CCRMA [11] and can be attractive if the desired
design requires a specific software or hardware initially un-
supported by those frameworks. Thus we built a Sound
Processing Unit (SPU) suited to our needs using a Rasp-
berry Pi 3 B+ and a Fe-Pi Audio board. Building a custom
system allowed us to run SuperCollider and a plugin host
simultaneously, controlling the system remotely through a
VNC connection. Even though this approach provides more
flexibility, the drawback is that this solution will not take
advantage of the optimization found in the aforementioned
frameworks.

Shttp://bela.io/.
‘https://github.com/BelaPlatform/Bela.
"https://prynth.github.io/.
Shttps://github.com/prynth/prynth.
"Https://fe-pi.com/products/fe-pi-audio-z-v2.

http://bela.io/
https://github.com/BelaPlatform/Bela
https://prynth.github.io/
https://github.com/prynth/prynth
Https://fe-pi.com/products/fe-pi-audio-z-v2

Bela, AnalogIN, BS=128, P/B=2, data-SR=44.1kHz, adc-SR=44.1kHz
Bela, MIDI, BS=128, P/B=2, adc-SR=44.1kHz

Bela, audioADC, BS=128, P/B=2, adc-SR=44.1kHz

Prynth, UART, BR=115200, BS=128, P/B=2, adc-SR=48kHz

SPU, UART, BR=115200, BS=128, P/B=2, adc-SR=48kHz

Bela, Wi-Fi(OSC), BS=128, P/B=2, adc-SR=44.1kHz

Prynth, OnboardUART, BR=115200, BS=128, P/B=2, adc-SR=44.1kHz
Prynth, MIDI, BS=128, P/B=2, adc-SR=48kHz

SPU, audioADC, BS=128, P/B=2, adc-SR=48kHz

Prynth, audioADC, BS=128, P/B=2, adc-SR=48kHz

SPU, MIDI, BS=128, P/B=2, adc-SR=48kHz

Prynth, Wi-Fi(OSC), BS=128, P/B=2, adc-SR=48kHz

SPU, Wi-Fi(OSC), BS=128, P/B=2, adc-SR=48kHz

Prynth, AnalogIN*, BS=128, P/B=2, data-SR=200, adc-SR=48kHz
Bela, USB-UART, BR=115200, BS=128, P/B=2, adc-SR=44.1kHz
Prynth, USB-UART, BR=115200, BS=128, P/B=2, adc-SR=44.1kHz
Prynth, USB-UART, BR=115200, BS=128, P/B=2, adc-SR=48kHz
SPU, USB-UART, BR=115200, BS=128, P/B=2, adc-SR=48kHz

BS = Block Size
BR = Baud Rate
P/B = Periods/Buffer |
data-SR = data (non-audio) Sample Rate
adc-SR = Analog to Digital (audio) Sample Rate -
* Using optimized comunication Serial-OSC bridge _|

o
n

Time (ms)

Figure 1: Overall results for latency tests using different frameworks, inputs and configurations. The pre-
sented values are average results of 1000 tests, and the input triggering the Latency Jig could be audio
(audioADC) or non-audio: AnalogIN, USB-UART, UART, OnboardUART (using a secondary microcon-

troller), MIDI over USB, and OSC though Wi-Fi.

4. PERFORMANCE COMPARISONS
4.1 Latency Measurement Setup

We used the latency measurement system from a previously
published study [3]. In this system, a microcontroller based
testing device is used to measure the time interval between
the output of a trigger (toggling a pin in the microcontroller
from low to high) and the detection (by the same microcon-
troller) of an audio signal sparked by this trigger in an exter-
nal device. The measurement device continuously outputs
measured latency values via a serial console so that the re-
sults can be stored and analyzed later. We constructed our
version of the measurement hardware, henceforth referred
to as the “Latency Jig”, according to the original specifica-
tions described in the prior work.

The device under test, in this case, consists of a combi-
nation of the sensor input hardware, input drivers, synthe-
sis software as well as the audio output hardware. There-
fore, the resultant latency value reflects the combined per-
formance of all parts used to implement a particular system
for a specific platform under consideration.

According to the requirements and restrictions presented
in section 2, we performed framework latency measurements
using different input methods and sample rates for audio
and data. Along with the use of audio input (AudioADC) to
measure end to end latency, the following methods were ap-
plied to test latency using non-audio triggers: 1) framework
analog pins—AnalogIN, 2) serial communication through
USB—USB-UART?®, 3) serial communication using built-
in analog pins—UART, 4) serial communication using the
framework’s additional microcontroller—OnboardUART, 5)
MIDI over USB—MIDI, and 6) OSC over UDP protocol
through Wi-Fi—Wi-Fi(OSC).

We executed 1000 measurements for each configuration,
and the average results can be seen in Figure 1. Those mea-

8Universal Asynchronous Receiver/Transmitter (UART) is
the hardware responsible for transmitting and receiving se-
rial data.

224

surements are described in more details in the next sessions.

4.2 Audio Configuration

Initial latency measurements using Bela’s non-audio ADC
reproduced similar results in comparison with the previ-
ously published data found in [3]. We then proceeded to
test Bela, Prynth, and SPU in three distinct end-to-end
tests: 1) Using analog input to trigger an audio response;
2) Triggering an ESP32 microcontroller to send an OSC
message using UDP protocol and consequently triggering
an audio response; and 3) Using the analog trigger as audio
input and send the received signal as an audio response.

It is important to state that all three platforms have ex-
posed parameters for audio and data configuration. The
Bela IDE allows the user to choose the block size (vector
size), the sample rate for audio and non-audio ADC/DAC,
the number of analog/digital channels, and the gain for au-
dio ADC/DAC. Prynth software allows the user to choose
the OSC message receiver in SuperCollider (sclang or sc-
synth), the block size, the sample rate for audio and non-
audio ADC/DAC, each sensor status, the number of periods
for the JACK Audio Connection Kit, filters for each sensor,
and Wi-fi SSID/password. Since the SPU uses a standard
Linux distribution, it is possible to change any parameter
for the JACK Audio Connection Kit and sensor acquisition,
although it is necessary to change parameters individually
in each system component, while Bela and Prynth provide
a simplified interface for real-time configuration.

According to the requirements and considerations stated
in section 2, the frameworks were configured as follows:

e Bela: BlockSize=128, Periods/Buffer=2, Analog Sam-
ple Rate=22.05kHz, Audio Sample Rate=44.1kHz;

e Prynth: BlockSize=128, Periods/Buffer=2, Analog Sam-
ple Rate=200Hz, Audio Sample Rate=48kHz; and

e SPU: BlockSize=128, Periods/Buffer=2, Serial(UART)
BaudRate=115200, Audio Sample Rate=48kHz.

W audio input
Mwired sensor input
Mwireless sensor input

Bela
Prynth b
SPU 1]
0 2 4 6 8 10 12

Time (ms)

Figure 2: Average results of 1000 framework latency
measurements using the best configuration for each
platform.

4.3 Audio-Audio Latency

We measured end-to-end audio latency using the Latency
Jig trigger output as an audio signal, and the Device Under
Test (DUT) audio output as a return signal. For all three
platforms, we measured good latency results (under 10ms),
and virtually no jitter. For the configuration above, Bela
presented an average audio end-to-end latency of 6.74 ms,
while Prynth and the SPU obtained 8.48 ms and 8.47 ms,
respectively.

4.4 Wired Sensor Input

For the wired sensor acquisition, we tested the serial (UART)
interface sending raw bits, and USB sending both raw bits
or MIDI. Even though MIDI over USB yielded good la-
tency values and virtually no jitter, the best results for Bela
and Prynth were achieved using each framework’s preset
analog inputs configurable through Bela’s IDE or Prynth
Software. Since the Raspberry Pi does not have analog in-
puts, some alternatives for analog data acquisition for the
SPU includes using analog to digital converters such as the
MCP3008, or use USB-based microcontrollers such as Teeny
or Arduino. The best results were achieved using the serial
(UART) interface sending raw bits directly to SuperCol-
lider. Bela obtained a data to audio end-to-end average
latency of 6.33ms, SPU’s latency had an average of 7.1ms,
and Prynth, 10.79ms. While Bela exhibited virtually no jit-
ter in data to audio tests and SPU had a small variation of
At = 2.9ms, Prynth showed a jitter value of A &~ 16ms.

4.5 Wireless Sensor Input

As discussed in section 2, we used Wi-fi for wireless com-
munication. While the Raspberry Pi was configured as an
access point in the Prynth and SPU implementations, the
BeagleBone Black does not have a built-in wireless LAN
adapter®. To provide Wi-Fi functionality for Bela, we added
a wireless USB network adapter (Linksys WUSBG60ON ver.2).
For end-to-end data to audio latency using OSC over Wi-fi,
Bela presented an average measurement of 8.14 ms, Prynth’s
latency has an average of 9.63 ms, and SPU presented 10.18
ms latency. Even though the average latency is accept-
able, all three frameworks exhibited considerable jitter. The
measured jitter values were Aj,x ~ 16.31ms for Bela, and
Ajqt =~ 18.7ms for Prynth / SPU.

While the BeagleBone Wireless exists, it does not fully
work with Bela due to conflicts with the analog inputs.

225

The best results for each framework can be seen in Fig-
ure 2. These results are presented as an average of 1000
measurements performed for each setup.

4.6 Latency Analysis

Even though the measured average latency and the full vari-
ability (Ajq:) can be useful information to predict if the
system performance is acceptable, it can also lead to false
expectations regarding performance. Therefore, we look at
two additional metrics: the Standard Deviation (SD) and
Empirical Cumulative Distribution Function (ECDF) of the
latency values.

4.6.1 Standard Deviation

Table 1: Average latency and standard deviation
for each framework.

Acquisition Average Standard Coefficient of
mode latency (ms) deviation (ms) variation (%)
Bela
audio 6.74 0.021 0.31
wired 6.34 0.015 0.24
wireless 8.14 1.165 14.31
Prynth
audio 8.48 0.004 0.05
wired 10.79 3.122 28.93
wireless 9.63 2.005 20.82
SPU
audio 8.47 0.002 0.02
wired 7.10 0.304 4.28
wireless 10.18 1.835 18.02

Table 1 presents the Standard Deviation (SD) alongside
the average latency values, as well as a coefficient of vari-
ation which computes the ratio of the SD and the average
latency. Empirically, a lower coefficient of variation (less
than 1%) suggests that there is negligible variability (jit-
ter). The audio acquisition modes, as expected due to the
strict demands of real-time processing, exhibits as expected,
minimal jitter in all frameworks. We can also see that the
wired input methods generally perform considerably better
than the wireless counterparts, except in the case of Prynth.

4.6.2 Empirical Cumulative Distribution Function

Compared to box and whisker plots or histograms, the Em-
pirical Cumulative Distribution Function (ECDF) is an in-
teresting way to present latency values, since the horizontal
(time) locations of large vertical (probability) steps show
where discrete groupings of similar latency values lie. Plot-
ting the latency values as an ECDF in Figures 3 and 4 for
the wired and wireless cases respectively reveals a distinc-
tive staircase-like characteristic, which clearly shows that,
for all configurations, about 90% of values fell under the
10ms threshold. The location of the horizontal axis “steps”
also reveal the relatively discrete distribution of the latency
values, which are likely a result of the underlying processor
scheduler in a multi-threaded environment or, in the case of
Wi-Fi, transmission intervals. Further analysis with tools
such as Wireshark may help confirm this behavior.

Specific to the wired tests (Figure 3), we can observe
a high probability of experiencing latencies slightly lower
than, although very close to the average. Even though
the number of measurements found above the higher con-
centration marks cannot be interpreted as outliers—they
do not constitute single occurrences but values periodically
present— they are dispersed enough not to cause a notice-
able effect on performance.

For the wireless acquisition latency tests (Figure 4), we
find a more diffuse measurement distribution, with at least

two major convergence points and several small steps evenly
distributed along the time axis. It is interesting to note that
this equidistant distribution appears in all frameworks, and
the performance is similar regardless of the platform. The
most prominent steps found in Figure 4 occur at =~ 6.75ms,

=~ 9.5ms, and ~ 12ms.

1

0.9
0.8
0.7

0.6

x
g05r

0.4
0.3

0.2 ==Prynth ||

= Bela
SPU

0.1

Il Il Il
10 15 20
Time (ms)

0 Il
0 5

2t

Figure 3: Empirical cumulative distribution func-
tion of Prynth, Bela, and SPU using wired sensor
acquisition. Vertical line projections in the X axis
represent the value around we found higher concen-
tration of measurements.

= Prynth
= Bela

08 1 SPU

0.8 -

T
I
1
1
1]
[}
H]
0.7 - I i
H|
!
0.6]
1]
1
H

X05F i
o =7
03F
02h

0.1

Y \ \ \ \

15 20
Time (ms)

IS}
o |

30

Figure 4: Empirical cumulative distribution func-
tion of Prynth, Bela, and SPU using wireless sensor
acquisition. Similarly to Figure 3, vertical line pro-
jections in the X axis represent the value around we
found higher concentration of measurements.

4.7 CPU Load

One last metric is related to the CPU load and, more impor-
tantly, the load averages on each platform. We monitored
the platforms during the latency measurement tests for at
least 15 minutes to obtain load averages.

The CPU usage value is a just-in-time value of how busy
is the CPU, while the load averages measure the CPU “traf-
fic”?, i.e., the number of tasks waiting to be processed. It is
interesting to note the difference between the two metrics
since the load average is not only affected by CPU usage,
but also by tasks with an uninterruptible state (leading to

226

disk access) [12]. That may lead to apparently strange sit-
uations where, despite low CPU usage, the load average
indicates high CPU waiting time.

The table 2 presents the CPU usage (%) and the load av-
erages for each platform. For comparison, the CPU usage
is normalized between 0 and 100%, while the load averages
were normalized using the number of cores of each system.
These normalizations imply that 100% CPU usage is equiv-
alent to full use of all available cores in the system. Load
averages lower than 1 imply that there is no process waiting
in line and all incoming requests are being processed imme-
diately, while values higher than 1 suggest that some CPU
requests have to wait for processing.

Table 2: CPU usage (normalized between 0 and
100%) and load average (normalized by the number
of cores) for each framework.

Load Averages

Framework Cores CPU 1min 5 min 15 min
Prynth 4 17.2% 0.03 0.05 0.33
Bela 1 23.4% 191 1.84 1.88
SPU 4 35.5% 0.51 0.43 0.31

It is important to state that, even though it is possible
to get the specific CPU % for the SuperCollider applica-
tion (sclang and scsynth), we present the load averages that
reflect all active tasks. We choose this value since it bet-
ter estimates the amount of additional processing headroom
available when the entire system is running. Fach frame-
work was set using the latest available SD card images (for
Bela and Prynth) at the time of the experiment, and the
only modification was Wi-Fi configuration for both systems.
The SPU use Raspbian 8 (Jessie), and during the latency
tests the only active software were SuperCollider (sclang,
scsynth, and scide), and Claudia'®.

S. DISCUSSION

All tested frameworks are suitable for the given application.
However, none of them poses as a perfect solution in this
particular scenario.

Bela presents the best average latency and jitter results,
as well as high-quality audio inputs and outputs out-of-the-
box. However, it cannot evaluate partial SC code (even
though it can be used to write the code).

Prynth presents acceptable average latency results, built-
in configurable filters for analog sensors, and the ability to
evaluate partial SC codes. However, it requires an exter-
nal audio interface and presents higher jitter results. Even
though Prynth’s wired sensor average latency is above the
established limit, the connected switches are used in Gui-
tarAMI only to set operation modes, and for this task the
measured latency is acceptable.

The SPU also presents acceptable average latency results,
flexibility to run several audio applications patched trough
JACK, and the ability to evaluate partial SC codes. How-
ever, the SPU requires manual adjust for all configurations
and connections.

5.1 Framework design decisions

All tested frameworks required a fair amount of customiza-
tion to fulfill all the Guitar AMI requirements, which cannot

10Claudia is a LADISH frontend, responsible for load-
ing/saving audio connections and launching audio soft-
ware automatically (https://kx.studio/Applications:
Claudia).

https://kx.studio/Applications:Claudia
https://kx.studio/Applications:Claudia

be considered a drawback per se. Since the frameworks are
intended to be flexible and employable in several scenar-
ios, customizations are expected in any project. Decisions
taken by the creators and maintainers of the frameworks
have an enormous impact on the strengths and trade-offs
of each platform. For instance, when Bela creators chose
the BeagleBone Black as their single-board computer, they
also imposed Wi-Fi restrictions due to BeagleBone’s lack of
a built-in Wi-Fi adapter. Similarly, Prynth’s creators opted
not to embed any audio interface in their board, requiring
the user to include an audio board. It is evident that both
platform creators deliberately made choices to strengthen
their systems while choosing acceptable trade-offs. The de-
sign choices of Bela and Prynth resulted in some similar
functionalities such as the browser-based IDE, but also in
very distinct features, e.g., Prynth’s use of the Teensy and
multiplexers to receive and process analog sensor signals. It
is the responsibility of the user to check all the strengths and
drawbacks of each system according to a specific project.

5.2 Documentation

As stated previously, the chosen framework will probably
require adaptation for each project, in which case users may
benefit from proper documentation. Documentation poses
a particular challenge in any development project, but it is
particularly challenging for open-source projects.

Indeed, most of the customization made in both platforms
required specific knowledge of their software architectures
and, in most cases, the best location to obtain information
was the framework’s users forum. Both Prynth and Bela
have active forums that allow users and platform design-
ers to interact, which provides the required support and
allows users to search for their particular problems in older
posts. We can assume that for Prynth and Bela the docu-
mentation is composed not only of the main documentation
website (Wiki) and discussion forums, but also the docu-
mentation of the framework components (e.g., BeagleBone
Black documentation for Bela, or Raspberry Pi / Teensy
documentation for Prynth and SPU).

Ideally, a quick search should reveal the strengths and
weaknesses of each framework, allowing the user to choose
the most suitable system, i.e., the framework that will re-
quire the least amount of customization to achieve a par-
ticular project objective. However, in practice, designers
often find themselves in a situation where it is necessary
to acquire a certain level of expertise in several frameworks
to take a more informed decision about the ideal platform
for each particular situation. Hence, the availability of doc-
umentation, for both platform usage/implementation and
performance metrics, then becomes just as important as
the actual implementation itself, They work in tandem to
avoid “reinventing the wheel”. More information will of-
ten engage more users, thereby increasing community size
and support, and also generating a positive feedback loop.
From our experience, both the Bela and Prynth communi-
ties could benefit immensely in this regard.

6. CONCLUSION

The selection of an embedded environment for the imple-
mentation of an augmented guitar instrument required a
comparison of different available platforms. In this paper,
we presented the results of our latency and workload tests
on Bela, Prynth, and the custom-built SPU, three Linux-
based open-source platforms that have been designed for
real-time sensor interfacing, audio processing, and synthe-
sis.

Using audio and data acquisition methods, as required for
building the augmented instrument, the test data could be

227

analyzed and we can conclude that, even though all systems
can be employed in our project, each of them carry advan-
tages and drawbacks related to the software access and ex-
posed settings, documentation, compatibility, and amount
of customization required.

The Guitar AMI prototypes built using Bela, Prynth, and
the SPU will be further evaluated in future performances
and composition projects that will yield further insight on
the use of these frameworks.

7.
(1]

REFERENCES

Carolina B. Medeiros. Advanced Instrumentation and
Sensor Fusion Methods in Input Devices for Musical
Ezpression. PhD thesis, McGill University, Montreal,
Canada, 2015.

Eduardo A. L. Meneses, Sérgio Freire, and

Marcelo M. Wanderley. GuitarAMI and GuiaRT: two
independent yet complementary augmented nylon
guitar projects. In Proc. International Conference on
New Interfaces for Musical Expression (NIME), pages
222-227, Blacksburg, USA, 2018.

Andrew McPherson, Robert Jack, and Giulio Moro.
Action-sound latency: Are our tools fast enough? In
Proc. International Conference on New Interfaces for
Musical Ezpression (NIME), pages 2025, Brisbane,
Australia, 2016.

Michael Lester and Jon Boley. The effects of latency
on live sound monitoring. In Proc. Audio Engineering
Society (AES) 125th Convention, New York, USA,
2007.

David Wessel and Matthew Wright. Problems and
prospects for intimate musical control of computers.
Computer Music Journal, 26(3):11-22, 2002.

Teemu Maki-Patola and Perttu Haméldinen. Latency
tolerance for gesture controlled continuous sound
instrument without tactile feedback. In Proc.
International Computer Music Conference (ICMC),
Coral Gables, USA, 2004.

Mark Constable. The unofficial ALSA wiki:
Independent ALSA and Linux audio support site.
https://alsa.opensrc.org/. Accessed: 2018-12-06.
Andrew P. McPherson and Victor Zappi. An
environment for submillisecond-latency audio and
sensor processing on BeagleBone Black. In Proc.
Audio Engineering Society (AES) 138th Convention,
Warsaw, Poland, 2015.

Liam Donovan, S. M. Astrid Bin, Jack Armitage, and
Andrew P. McPherson. Building an ide for an
embedded system using web technologies. In Web
Audio Conference, London, UK, 2017.

Ivan Franco and Marcelo M. Wanderley. Prynth: A
framework for self-contained digital music
instruments. In Proc. 12th International Symposium
on Computer Music Multidisciplinary Research
(CMMR), pages 357-370, Sao Paulo, Brazil, 2016.
Edgar Berdahl, Spencer Salazar, and Myles Borins.
Embedded networking and hardware-accelerated
graphics with Satellite CCRMA. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 325-330, Daejeon, Republic
of Korea, May 2013. Graduate School of Culture
Technology, KAIST.

Brendan Gregg. Linux load averages: Solving the
mystery. http://www.brendangregg.com/blog/
2017-08-08/1inux-load-averages.html, 2017.
Accessed: 2018-12-11.

2l

(4]

(5]

(6]

(7]

(8]

[10]

(1]

(12]

https://alsa.opensrc.org/
http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html

	Introduction
	Requirements of the GuitarAMI project
	Selected Platforms
	Bela
	Prynth
	Custom Sound Process Unit (SPU)

	Performance Comparisons
	Latency Measurement Setup
	Audio Configuration
	Audio-Audio Latency
	Wired Sensor Input
	Wireless Sensor Input
	Latency Analysis
	Standard Deviation
	Empirical Cumulative Distribution Function

	CPU Load

	Discussion
	Framework design decisions
	Documentation

	Conclusion
	References

