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1 Executive summary

1.1 Challenge overview

The Antarctic is constantly evolving as the ecosystem recovers from past
exploitation (e.g. whaling, seal harvesting), adapts to climate change, and
responds to current anthropogenic impacts including fishing (krill and
Patagonian toothfish), shipping and tourism. Due to its vastness,
relatively little is known about the ecology of the region and its species,
and how best to mitigate and control anthropogenic impacts in this region.
Traditional field methods are costly and limited in geographical extent due
to areas of interest being difficult to access by ships. Remote sensing
provides a low-cost, non-invasive method that can be used for ecological
monitoring.

The overall aim of the challenge was to create an automated system for
classifying sea ice and mapping seals which can then be used to
transform the satellite raster images into images with vectorised features
of ice and seals. Using these two outputs (seal counts and ice
classification/environmental features) we can explore ecological
questions such as what habitat features do seal prefer and how is the
habitat changing over time. This report presents the outputs of a
week-long collaboration between the Alan Turing Institute and the British
Antarctic Survey (BAS), to scope an automated system to classify sea
ice, count seals, and explore the environmental factors influencing seal
density.

1.1.1 Why use remote sensing?

Fieldwork in the Antarctic is often very challenging due to the large size of
the region, inhospitable terrain, limited accessibility, high costs associated
with this work. Census data is often biased, as sampling locations are
focused around easy to access, existing research stations. In contrast,
remote sensing provides a low-cost, non-invasive alternative to field work
that is able to cover an immense terrain. Remote sensing is able to
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generate high-resolution images of large regions with no impact on
vegetation or disruption to the animals themselves.

1.1.2 Why automate?

Manual inspection of satellite imagery is time consuming, subjective and
requires trained experts. Automation will allow for faster processing of a
larger number of data files/images and the opportunity to produce
repeatable results with a standardised method. Studying broad areas, a
continental-wide scale becomes possible.

1.2 Data overview

The data consisted of 53 geoTIFF files covering two focal areas, the
Antarctic Penisula (Crystal Sound and Marguerite Bay) and Signy Island.
The geoTIFF files for Signy Island are colour images with a higher
resolution of 30cm per pixel, while other geoTIFF files are greyscale
images with a lower resolution of 50cm per pixel. Location data on 2023
manually-counted seals accompanied these images. This sample is a
subset of a much larger satellite dataset, covering millions of square
kilometres.

1.3 Main objectives

The sea ice provides an important dynamic seasonal habitat to a range of
species such as pinnipeds in the Antartic. Sea ice is likely to vary greatly in
the future due to climate change. Understanding the habitat features of the
sea ice important to pinnipeds is crucial to understanding how pinnipeds
and other species will respond to habitat changes in the future. The main
aims of the data study group were to:

1. Classify sea ice into three broad types (open-water, thin brash ice,
thick stable ice)
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2. Extract small-scale features in the ice of potential biological
importance to the seals (ice chunk size (area and perimeter), stable
ice edge, thin brash ice edge).

3. Test the applicability of the automatic seal detector convolutional
neural network (CNN), developed for the 30cm resolution images to
the 50cm resolution images.

4. Explore the environmental features influencing seal density using
data on the seal locations and the sea ice features (outputs of steps
1-3) identified to construct a spatial point process model.

1.4 Approach

Classifying sea ice and extracting the location of seals from images may
both be considered as image processing tasks. In the case of the sea ice,
pixels in the image were classified into 3 general categories (open-water,
thin brash ice, thick stable ice) using edge detection algorithms. To count
the seals, a CNN model developed for 30cm images was tested on 50cm
images. To identify the ecological features that might be important to
determining seal locations we constructed a spatial point process
model.

1.5 Main conclusions

We developed preliminary a pipeline for processing the satellite images,
classifying ice type (stable, thin brash ice, and open water) and extracting
several features from the data (distance to open water, distance to thin
brash ice, size and location of ice blocks (area and perimeter)). These
general methods can be used to process other satellite images in the
region.

After testing, we found that the pre-trained CNN developed to count seals
from the 30cm resolution images does not perform well when applied to
the 50cm resolution satellite images, detecting less than 5% of seals.
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We constructed a spatial point process model which incorporates seal
locations, spatial covariates (which can be determined from the ice
classification sub-project) and spatial effects. We analysed a variety of
models including Generalised Linear models, Poisson and Strauss
processes and Bayesian Hierarchical models, and found that while ice
type was an important determinant of seal presence in our analysis, it
only partly explained the clustering observed in the seal locations.

It is important to note that the pipeline and analysis performed is
preliminary, and as stated below, faced several limitations. We
recommend that the robustness of our findings and their generalizability
to further datasets be tested as part of any future work.

1.6 Limitations

1.6.1 Limitations in the data

As we do not have image scenes of locations in which counting has been
attempted but zero seals have been observed, we cannot generalise our
results to other regions of ice. However, these analyses can identify
environmental features that may be important to seal colonies in Crystal
Sound. It is also likely that seal location depends on covariates
unavailable to us, such as memory of nursing locations and marine food
availability.

1.6.2 Limitations of the results

The spatial point process models considered do not include the more
detailed features constructed in this project, relying only on local pixel
values as a feature. Furthermore, the utility of the spatial point process
models explored here are not for prediction but validation/simulation. If
we assume that Crystal Sound represents a typical seal community and
compare seal count estimates from a new region outside, we can check if
the estimates are accurate or reliable, adjusting for spatial covariates in
the new region.
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1.7 Recommendations and future work

For feature construction, some parameter tuning is still required to
optimise the result. Further investigation into image smoothing methods,
edge detection, and non-Euclidean distance calculations (which for
example include penalties dues to local terrain) could also improve the
accuracy of the feature classification.

By using fine-tuning methods, we may be able to extend the pre-trained
CNN to work effectively on lower-resolution images.

The statistical models constructed can be improved by using the more
intricate features of the ice, for example the local brash intensity. A further,
more detailed statistical analysis will also help improve the model.

2 Data overview

2.1 Dataset description

The data consisted of 37 panchromatic (greyscale) geoTIFFs covering 2
survey regions at 50cm resolution (taken using the WorldView-2 satellite),
and 15 geoTIFFs in both colour and panchromatic at 30cm resolution
(from the WorldView-3 satellite), covering one additional survey region.
The colour imagery contains 8 spectral bands. 2023 manually annotated
seal locations were also provided as a point shape-file with coordinates
for each seal.

Due to the constraints of the project we chose to focus on the data from
Crystal Sound, one of the two locations sampled from the Antarctic
Peninsula. This region covers 193.9km2, and has 708 manually annotated
seals. An example image from the satellite data is given in fig. 1.
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2.2 Data quality issues

One of the challenges is the variation in resolution and colour content of
images taken by different satellites. WorldView-2 provides black and
white images from 2011-2016 with a resolution of 50cm per pixel, whilst
WorldView-3 data are multispectral images from 2017-2019 with a
resolution of 30cm per pixel.

More detailed image information is available within 30cm resolution
images, but BAS have more 50cm resolution data available that spans a
longer time span. The differences in resolution and colour mean that any
analysis on the multi-spectral images has to be adjusted before being
applied to monochromatic images.

3 Experiment - Ice Classification

Several environmental features may influence a seal’s location on the ice,
including the distance to open water or brash (i.e. where the ice is broken
up into small pieces), the size of pieces of ice in the local area to a seal,
and features on patches of ice, for example ridges which can be used for
shelter.

3.1 Overview

In this section we discuss how we have converted the qualitative features
above into quantitative properties on the image. We provide examples
using the image in fig. 1, one of the geoTIFF files from the Crystal Sound
area.

We have built a preliminary python tool ice/pipeline that can be used to
batch process a given geoTIFF into our engineered feature layers. The
tool works by reading a given file, applying the developed methods and
then writing the features back to disk as geoTIFF with spatial meta data
adjusted accordingly. In future we hope that the tool will be used to batch
process satellite data into features, either for use in other software or as
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Figure 1: An example of one of the geoTIFF tiles considered in the feature
detection.

part of a ML pipeline. Additionally the pipeline is designed to be modular
so that additional methods can be added as required.

We have chosen to engineer highly interpretable spatial features so that
further statistical modelling is explainable. Our features also have
potentially broad application as they are, for example for automated
classification of ice in an area or querying distance to open water.

3.2 Preprocessing

Before analysing the data, we first convert the geoTIFF files to a raster, i.e.
an array of numbers.

Before considering the features of the image, we need to remove artificially
constructed areas of the image; the satellite data is fitted into square image
files, where areas which are not part of the original photograph are given
by pixels with zero value. We identify these areas by thresholding [13] the
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image; any pixels with an intensity below 1 are classed as ‘void’ pixels, all
others are part of the original satellite image, as in fig. 2.

Figure 2: The image shows the mask used to remove pixels that are not
from the original satellite image. Invalid pixels here are coloured white,
pixels which are from the original satellite image are coloured black.

Furthermore, to use some of image classification methods available in
numpy we require that pixel values are converted to uint8 (values 0 to
255), from uint16 (values 0 to 2047). After a direct comparison of results
before and after converting to uint8, we verified that minimal detail is lost
in the pixel intensity. We produced histograms of pixel intensities before
and after image conversion, shown in fig. 3.

The histograms have the same qualitative features, which shows that there
is a minimial loss of detail due to image conversion. As these satellite
images are large, it is more convenient to use uint8 pixel intensities to
reduce computational cost.

3.3 Methodology and Results

Most of the methods rely on thresholding pixel values, to distinguish ice,
water and brash quantitavely. To identify the correct values to threshold
the data, we use the histogram of pixel intensities in fig. 3. Two spikes are
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(a) (b)

Figure 3: Histograms of pixel intensities for different resolution images,
each using 50 bins. Left: original raster. Right: pixel intensities after the
image has been converted to uint8 format.

present in both histograms, representing open water (pixel values between
0 and 100 in fig. 3a) and thick ice (pixel values between 1500 to 2000 in
fig. 3a), and there is a slight bump for brash ice in the region of pixel values
600 to 1500 in fig. 3a. We use this information in thresholding to segment
the image in an appropriate way.

Furthermore, to segment the image we also rely on image smoothing
methods [4, 3]; we apply a smoothing convolution to the image, which
removes noise from the image and allows for more accurate edge
detection.

Distance to open water To determine the distance to open water, we
first need to determine where the open water is. We use a median blur on
the image to ensure that small areas of water in areas of brash are not
identified as open water. Following this, using the histogram information
we choose the appropriate threshold value which identifies the open
water area. We then measure the Euclidean distance from each ‘ice’ pixel
to the nearest ‘water’ pixel, using the scipy function
scipy.ndimage.distance transform edt [15]. This then produces a heat
map of distances to open water, shown in fig. 4. The computation time for
one raster is approximately 19 seconds, showing that the method can be
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efficiently applied to the full set of images.

(a) (b)

Figure 4: Distance to open water. Left: smoothing and thresholding is
applied to distinguish between open water and ice or brash. Right: The
calculated distance to open water from ice or brash.

Distance to brash By choosing a higher threshold value, we can apply
the same methodology to identify the Euclidean distance to brash, as in
fig. 5.

How ice is broken up locally We introduce the notion of brash intensity
as a measure of how broken up the ice is locally. To quantify this, we
identify the edges using the Laplacian [18] of the image. We then use a
convolution with 64×64 averaging filter kernel to determine the intensity of
the texture in the local area, given in fig. 6.

The size the piece of ice the seal is on The result of the Laplacian in
fig. 4a is also used to calculate the area of each piece of ice. We apply a
convolution with a 16 × 16 kernel matrix of ones to the result. The output
of the processed images (with edge detection filter) was used as an input
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(a) (b)

Figure 5: Distance to brash. Left: smoothing and thresholding is applied
to distinguish between open water or ice and brash. Right: The distance
from ice or open water to brash.

to a polygon generation method [21]. The method uses a mask filter to
pick out black areas (i.e. where the pixel value is 0) in the image and
creates a polygon for region with same pixel value clusters. The pixel (x, y)
coordinates are then transformed into CRS spatial (x, y) coordinate (added
as meta data). 50 random points are sampled from within the polygon, and
the (x, y) pixel position value is extracted from the original TIFF file. The
mode of the 50 points pixel values are then used to classify polygon as
ice block or water block. The classification is based on a threshold rule.
We discard any polygons that are too small to support seals. The result is
shown in fig. 7.
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(a) (b)

Figure 6: A measure of ice texture in the example image; constructed by
using the Laplacian (left), followed by median smoothing (right), to produce
a brash intensity value.

(a) (b)

Figure 7: An example of ice shapes calculated from an image. Left: the
original image considered. Right: polygons identified in the image, where
different colours depict different size polygons.

4 Experiment - Seal Counter

4.1 Overview

This part builds on a pre-trained (CNN) [14], available in a public GitHub
repository github.com/iceberg-project/Seals, which was trained on
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30cm resolution satellite images. As part of this task, we have studied
whether the parameters learned for the CNN are suitable when applied to
50cm resolution images, and whether simple transformations to the
low-resolution images aids the performance of the CNN.

We used the branch paper/SealNet code from iceberg-project/Seals

in the GitHub repository. The code include scripts for generating tiles,
training a model, including different options for the model architecture,
and different outputs. Outputs include heatmaps, counts of seals for a
given tile, and locations of the seals. There is a notebook with instructions
to generate the training dataset. Shape files are used, but we note that it
is unclear however how the CSV file for mapping tiles to shape files with
ground truth is built. We found the libraries rasterio

(https://rasterio.readthedocs.io), which allows rasters to be read in
python, and provides transforms between pixel locations and geographic
coordinate systems and fiona (https://pypi.org/project/Fiona), for
reading shape files, to be very useful.

4.2 Methodology

The code from the repository provides trained models, trained on 30cm
resolution images (or rasters). We attempted to run the pre-trained models
on the 50cm resolution rasters off-the-shelf. For this, we separated the
satellite images into 224 × 224 pixel sub-images, to match the size of the
30cm inputs. All images are monochromatic, and are normalised across
the channels with hard-coded means and standard deviations.

4.3 Results

The expected performance of the CNN on high-resolution images is
around 90%. The table in fig. 8 compares the accuracy of the model for
the different resolution images.

Unfortunately, the results show that the model was ill-fitted to be deployed
on the 50cm resolution images. We believe this is because each
individual seal is identified by a larger number of pixels in the higher
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Resolution 30cm 50cm
Performance 90% 2.8%

Figure 8: Performance of the CNN for different resolution images. The
results show that the CNN performs poorly on the lower resolution images.

resolution images. In general, the camera specifications for the satellite
images for the area of Crystal Sound differ from those that were used to
obtain the images that the model has been trained on. While satellite
images from different sources look similar to the human eye, they differ
significantly enough to confuse the machine learning model.

5 Experiment - Ecological Analysis

5.1 Overview

Based on the results in sections 3 and 4 on ice classification and seal
counting, we want to identify which environmental features influence the
density of seals on the ice. Furthermore, we want to test if the clustering
pattern of the seals locations is caused by the geography or by individual
preferences of seals.

We propose several methods based on spatial point processes [10] (which
look at the GPS locations of seals) and provide some preliminary results,
using the count of seals and images taken of the Crystal Sound. For this
analysis, we produced code using R.

Firstly, we look at the distribution of seals on the ice. In this analysis, we
fixed the observation window spatstat::owin() to the convex hull around
the seal locations, rather than the default rectangular bounding box, as
this will affect estimates and goodness of fit. Our goal is to understand
the process in regions where seals are observed to support the seal count
methods from earlier sections by providing precision estimates.

Using this information we fit a statistical model to the set which accounts
for any clustering that may occur between seals, to include any features
constructed in section 3.
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Figure 9: (Left) the location of seals identified by human visualisers. It
doesn’t show the teardrop convex hull around the seals but it was there for
the analyses. This shows there is a degree of spatial clustering. There are
also areas where there are no seals. (Right) This figure shows the spatial
structure of the seal’s locations far better than the simple point plot. There
are three main clusters identified. The range shown in the graph ranges
from 2− 5km2. Note the bandwidth obtained is 13m.

5.2 Methodology and Results

Seal intensity We can produce a non-parametric Kernel-smoothed
estimate [16] to allow visual assessment of the spatial structure, given in
fig. 9b. The bandwidth of the kernel is objectively selected assuming the
seal process is an inhomogeneous Poisson process using Berman &
Diggle’s method via spatstat::bw.diggle() [5].

By constructing a histogram of pairwise distances we can assess the
number of clusters of seals (fig. 10). Furthermore, construct Ripley’s K
function [11] to test for clustering (fig. 11).

We can use a quadrat test [9] to test the homogeneity of the location of
seals. A quadrat test shows extremely strong evidence against the null
hypothesis of homogeneity (p < 2.2 × 10−16) so inhomogeneous point
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Figure 10: (Left) This distance histogram shows up to possibly five major
clusters. The biggest peak is close to distance=0. (Right) This distance
histogram is zoomed into the first ten metres from a seal and is probably
picking up parent(s?) and their young since this is birthing season.

process models would provide a better fit.

It is also of interest to consider the seals location distribution as a function
of pixel colour, which will be related to the type of sea ice the seal is located
around (stable ice, thin-brash ice, and open water). We use the kernel
intensity estimate to include the location of seals. We display the pixel
intensity near each seal versus the pixel intensity of the image in fig. 12,
which can be used as a spatial covariate in the point process model.

5.2.1 Spatial point process model

If seals determine their location on the ice independent of environmental
features we would expect their locations to be randomly distributed
across the study space. We can identify environmental features that may
influence the seal’s location using a generalised linear model.

Generalised linear model. For some intensity of seals µ at any location
(x, y) in the study region:

log µ(x, y) ∼ S(x, y) +Xi(x, y) + Yj(d)
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Figure 11: This graph shows a black solid line as the estimate of the
inhomogeneous Ripley’s K function and another line with grey banding
as the theoretical inhomogeneous Ripley’s K function (i.e. no clustering).
There is clustering between 0 − 3km and then inhibition from 3 − 7km.
Presumably the major clusters seen in previous plots are dominating the
signal as their radius would be similar to 3km in radius. The inhibition
process may be linked to the maximum food availability available for a
typical seal cluster.

(a) (b)

Figure 12: Left: Red points indicate the location of seals. Right: the
density of colours for all pixels surroundings vs. the colours of the pixels
around a seal location.

where S is the spatial process solely governing the seals interactions,
Xi(x, y) are spatial covariate(s) at the point (x, y), or spatial covariates(s)
Yi(d) for point, line or polygon features that were a distance d away from
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the location (x, y) [12]. This model structure allows us to compare the
relative contributions between seal-seal interactions (e.g. spatial
clustering or inhibition), and seal-environment interactions.

5.2.2 Models without spatial covariates

An initial simple model included only the seal process S, and ignored the
spatial covariate terms X, Y . S was changed to minimise the Akaike
information criterion (AIC) [1] to obtain the best fit. Inhomogeneous is
defined as a linear trend in a direction in (x, y) space. We considered 4
different models for S:

1. Homogeneous Poisson process

2. Inhomogeneous Poisson process

3. Homogeneous Strauss process, with r = 3000m

4. Inhomogeneous Strauss process, with r = 3000m

where r was obtained from the clustering scales observed in the earlier
descriptive analysis. The results are given in fig. 13

Model AIC
Homogeneous
Poisson

19146.91

Inhomogeneous
Poisson

19146.61

Homogeneous
Strauss

130.353

Inhomogeneous
Strauss

134.557

Figure 13: The AIC for different models. The results show that the
homogeneous Strauss model provides the best fit for the data.

Plotting the fitted model’s intensities on a map and comparing with the
kernel-smoothed map from the descriptive analysis visually shows how
well the model could predict the observed intensities, for example we
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consider the Strauss model in fig. 14. These results show that a simple
model is not sufficient to simulate seal locations.
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Figure 14: The plotted fitted values show a poor fit of the homogeneous
Strauss model to the kernel estimated intensity.

5.2.3 Bayesian hierarchical models

We propose a point process to relate the seal counts and any feature of
the geography. The model is constructed as a hierarchical model [2],
where the risk of observing seals in a given location is the main
parameter to be estimated. The latent field should capture the features of
the ice, thickness, and any measure taken by the ice classifier, as
covariates. A spatial term should capture any spatial effect not explained
by the covariates, giving us insights about the nature of the seals
distribution (e.g. agglomerative trend, random behaviour).
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Spatial effects can also be incorporated using, for example, a Besag
model, a Besag-York-Mollie model [6] or a Gaussian Markov Random
Field [19]. Here we implement a Besag model. The output of the model
includes the posterior distribution of all the parameters included. Other
outputs include a map of the probability of finding a seal given the
geography of the region studied, and a map of the spatial effect.

A Bayesian hierarchical model was implemented using INLA. The area
was divided in 60000 × 60000 squares. The logarithm of the counts on
each lattice was modelled as the combination of one covariate and a
spatial effect. An ice/sea classification was included as a covariate while
an spatial effect was designed using a Besag model on a lattice.

We refer back to fig. 9 for the input of the model. The mean and the
standard deviation of the posterior of each spatial effect is shown in
fig. 15. The prior and posterior of the covariate (ice/sea class) is shown in
fig. 16.

(a) (b)

Figure 15: Mean (left) and standard deviation (right) of the posterior of
each spatial effect.
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Figure 16: Prior and posterior of the ice/sea class.

6 Future work and research avenues

6.1 Ice classification

By using smoothing and thresholding in a similar as in this report, one
could also detect features in the ice such as ridges or gradients. There
are many different available methods for edge detection and image
segmentation (e.g. the constrained graph Laplacian [8] and Canny edge
detection [7]), a detailed investigation into alternative methods for this
application would be beneficial.

Improvements in the distance calculations are also necessary to make
them more robust. Using the methods constructed in this report, features
are only constructed for each tile of the geoTIFF file. This may mean
inaccuracies arise, where the smallest distance to, for example, open
water, covers two tiles, or when the smallest distance is given by the
distance to the edge of the satellite image. By considering the entire
image we can resolve distances between adjacent tiles, however this
would greatly increase the computational cost. This problem requires
more investigation.

The way distance is measured could also be improved. In this project,
due to time constraints we considered Euclidean distances to open water
and brash. However, movement of seals is expected to depend on local
terrain. For example, the Euclidean distance doesn’t take into account
ridges in the ice which can’t be traversed by seals. Investigation into
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weighted distances [22] and particle approximation models may be
beneficial to improve distance calculations.

6.2 Seal counter

One may learn a model that gives more precise information, such as where
seals are located. This requires modifications to the labels on the data, as
well as some modifications to the output layer of the CNN.

To go forward, we suggest to train the model on the 50cm resolution
images. The pre-trained parameters of the model are likely a good
initialisation for this, and we therefore suggest a fine-tuning [17] of the
parameters (which are downloadable from the Github repository), using
the lower-resolution imagery. Fine-tuning should require substantially less
labelled seals than were required in training the machine learning model
from scratch.

6.3 Ecological analysis

The more detailed features constructed in this report should be
implemented as additional spatial covariates in the point process model.
Following this, a detailed statistical analysis of the results would provide
feedback for the features and help improve the model. The model should
then be applied to more satellite images, using seal counting methods
from the CNN results, to verify the model.
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revolved around behaviour modelling and computer vision research. His
contribution in this project was to extract ice features from given satellite
images. He also helped to re-engineer CNN model for seal detection on
different resolution images.
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Anna Laws is a PhD student in Astrophysics at the University of Exeter,
where she takes, processes, and analyses observations of planets
forming around other stars. Her main role in this data study group was as
the facilitator. She also contributed to the ice classification methods
sub-project.

Christopher Tegho studied machine learning at the University of
Cambridge and is currently working as a machine learning engineer at
Calipsa, focusing on research for video classification. Chris investigated
previous work for automatically counting seals from high resolution
imagery, and evaluated the performance of the models trained on the
30cm resolution imagery and tested on the 50cm resolution imagery.

Eleanor Miller is a final year PhD Student at the University of Cambridge
where she is studying population genetics, primarily focusing on changes
to population size in Northern Hemisphere bird species since the Last
Glacial Maximum. She primarily worked with the ice-classification team
as well as contributing to group discussions and report writing.

Fred Shone is a Research Data Scientist at Arup London, primarily
working on massive simulations using Agent Based Models and new
algorithms to build real-time transport networks. His past research has
been focused on pedestrian analytics using computer vision. Fred
contributed to the image classification sub-project, in particular in data
Engineering and pipe-lining raster processing and ‘polygonizing’.

Laura Marcela Guzman Rincon is a PhD student in Mathematics of Real-
World Systems at the University of Warwick. Her work is aimed to detect
outbreaks of Campylobacter infections using epidemiological and genetic
data. Laura worked with Timothy Pollington on the ecological model, in
particular designing and coding a Bayesian hierarchical model to relate
the seal locations and any geographical features.

Laurie Baker is an MRC Transition Fellow at the University of Glasgow
where she is studying wildlife epidemiology using Bayesian spatial
modelling techniques. Her past research focused on grey seals on the
Scotian Shelf in Canada. She contributed to the problem formulation for
ice-classification and the environmental modelling and report
writing.

Lucas Deecke is a PhD student in machine learning at the University of
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Edinburgh; his research broadly focuses on deep learning, continual
learning, and computer vision. Lucas contributed an evaluation of
convolutional neural networks for different resolutions of satellite
imagery.

Prem Gill is a polar conservationist and PhD student with British
Antarctic Survey (BAS), Scott Polar Research Institute (SPRI) - University
of Cambridge and the World Wildlife Fund (WWF). His main research
focus is the study of ice seals via state-of-the-art remote sensing
techniques. Outside of this, Prem is heavily interested in providing
opportunities in conservation and polar science for under-represented
groups. As the DSG Challenge Owner, Prem set the challenge and
supported participants by providing background domain expertise /
insights into seal ecology, sea ice dynamics, the dataset and application
of previous techniques. He also used this opportunity to showcase
potential careers for Data Scientists within polar research to the
participants.

Tim Hurst is a final year PhD student in applied mathematics at the
University of Edinburgh and Heriot Watt University. He works on
constructing mathematical models for various problems with multiple
scales, and including information from real world or synthetic data. In the
data study group, Tim focused on image classification methods and
feature engineering, including edge detection methods and texture
identification to help classify ice in satellite images.

Timothy Pollington is a University of Warwick PhD student based at the
Big Data Institute, Oxford, focusing on the spatial analysis of infectious
diseases. Timothy worked with Laura on the ecological model, focusing
on descriptive analysis (including distance histograms, kernel-smoothed
intensity estimation, and analysis using Ripley’s K function) to better
understand how observed seal colonies are distributed spatially, to
provide a measure of precision when future seal counts are made in
similar settings. Timothy also produced code for a statistical point
process model to fit as a generalised linear model to the seal location
data and spatial covariates.

Victor Sanchez-Silva is the challenge PI, and is an associate professor
with the Department of Computer Science, University of Warwick, U.K.
His main research interests are in signal and information processing with
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applications to multimedia analysis, security, image and video coding,
and communications. He has published several technical papers in these
areas and coauthored a book [20].
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Discrete Laplace-Beltrami operators for shape analysis and
segmentation. Computers & Graphics, 33(3):381 – 390, 2009.

27



[19] H. Rue and L. Held. Gaussian Markov random fields: theory and
applications. Chapman and Hall/CRC, 2005.

[20] B. Sobolev, V. Sanchez, and L. Kuramoto. Health care evaluation
using computer simulation. Springer Science & Business Media,
2012.

[21] S. Wu and M. R. G. Marquez. A non-self-intersection Douglas-
Peucker algorithm). In 16th Brazilian Symposium on Computer
Graphics and Image Processing (SIBGRAPI 2003), pages 60–66, Oct
2003.

[22] Z. Xu. Hybrid weighted distance measures and their application to
pattern recognition. In International Conference on Intelligent Data
Engineering and Automated Learning, pages 17–23. Springer, 2008.

28



turing.ac.uk 
@turinginst




