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ABSTRACT

An expression is derived for the error variance of transfer
function of a Two Dimcusional svstem due to FWL er-
rors. The optimal realization problem is then formulated
by minimizing this variance with respect to all possible
realizations of the svstem. This problem is shown to be
equivalent to the minimization of a pure L, norm based
sensitivity measure My, aud can be sloved using any
standard ininimization algorithm with guaranteed con-

vergenee.

1 INTRODUCTION

The finite word length (FWL) offects have been consid-
cred as one of the most serious problems in the actual
implementation of a digital svstewn. Due to the FWL or-
rors on the paramcters. the actually implemented trans-
fer function may be very different from the desired one.
This leads to a class of sensitivity studies for different
sensitivity measures such as transfer function sensitivity
(see, e.g., [1-2]). Many classical and recent developments
on this issue for onc-dimensional (1-D) svstems can be
found in [3]. Traditionally, the transfor function scusitiv-
1ty measure was defined with a mixture of Li/Ls norm.
The corresponding results were extended to 2-D case by
many researchers (see, c.g., [4-6]). Recently, a pure Lo
based transfer function sensitivity measure was studied
and some properties of this measure were revealed in [3.
7). The main objective of this paper is to extend the Lo
sensitivity minimization problew from 1-D to 2-D.

It should be pointed out that iu the traditionally used

Ly/Ly sensitivity approach. the seusitivity measure is
replaced by an upper bound. For 1-D case. the optimal
realizations that minimize this upper bound are exactly
the same as those minimizing the L1 /Lo sensitivity mea-
sure itself. This is not true for 2-D case. where these
two optimal realizations can be very different and hence
the upper bound optimal realizations may not vield the
performance as expected as in 1-D case. It is true that
the solution to the pure Lo minimization problem does
not have a closed form and requires more computation.
This is the main drawback of using this pure Lo sensitiv-
ity measure. The computational complexity is. however,

not of concern here since this is in the design stage.

2 PROBLEM FORMULATION

In this paper. we consider a 2-D discrete linear time-
mvariant Single Input Single Output svstem (SISO)
H{(zy.z,) of order (ny.n,). This svstems can be repre-
sented with the following Roesser state-space equations

[8]:
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where 27 € R™ %1 and v € R™ %! are called Lorizon-

tallv and vertically propagating local state vector, re-



spectively. and A, € R™ ™ A, € R XMy Bm,CZ €
R for r,y=h.v. and d € R.

(AL B.CUd) ds called a realization of the 2-D system
Hizy. zy). satisfving H(zp, z,) = d + Clznly, ® 2yl —
A7 B where 2 denotes the direct sum of matrices. De-
note Sy as the set of all the realizations of H(zp, z,).
It is well known that Sy is an infinite set and that if

(Ao. Bo. Cy.d) € Sy. Sy can be characterized by
A=T 4T B=T"'By C=0C,T (2)

with T = T, = T,.. where T, € R™ %™ and T, € RMvxny
are any nou-singular (transformation) matrix.

Lot {p;} aud {pr} be the set of the ideal parameters
and those actually nnplemented with FWL of the same
realization i, respectively, and assume that this real-
. . . JAN
fzation has .\ paramcters. Denote {Ap; = p; — pr} as
the corresponding parammeter perturbations. With a first
order approximation. one has
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We adopt a statistical approach where the perturba-
tions of the parameters are considered as independent
random variables nuiformly distributed within the range
(=527 5 312781 for a fixed-point implementation of B,
bits (see. e 197 We now define the transfer function

CITOr measure as follows:
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where E(.) denores thie ensemble average operation.

AH ()P, (3

Keeping the asswnption in mind that {Ap;} is an in-
dependent and nniforly distribnted random variable set

. ) ‘- _9
with 07 = E/Ap, %] = 52728 one can show that
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where Syizy,. 2,0 = (—((9;—1 called the sensitivity func-

tion of H(zj,. 2, with respect to matrix X = {ri}, is a
matrix of the sane dimension as X with its (k, 1)th cle-

OH

ment given by Tt and My, is called the Lo-sensitivity

measure:

e

Ay, > lISx(zn )l

X={A4.B.C.d)}

m(Qa+ Qs +Qc)+ Qq (6)
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for X = 4,B,C7 ,d, where T denotes the transpose op-

|

eration.

It is easy to show that Sa(zn, 2) = 1 and

SA(Zh,ZU) = G(Zha:v)FT(zln":u)
SB(Zhazv) = G(zhszv)~ SC(ZI)‘;L') = FT(V:IP:U)"(S)

where
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Qx defined by (7) arc usnally called eramian. Now.
let see how to compute Qy for X = A. 8.7, First of
all, it follows from (7) that

@p = L%c;(;”;;%;id;,,d:l. "

(2m7)% Jr

Qc = ﬁ % FFH»:h_lsv_lf/:;,d:v E K. (10)
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where K and W are called the 2-D controllability and
observability gramian. In the sequel. it is assumed that
the realization (A, B.C.d) is locally reachable and ob-
servable. Therefore, the gramians A and 117 are always
positive-definite.

It can be shown (see the full version of the paper) that
Q4 can be computed as a gramian of a 2-D svstem of
higher order.

As far as we know, there are two commonly used algo-
rithins to compute 2-D gramians. The first oue was given
by Premaratne et al in [10]. and the second method was
proposed by Lu et al in [11] where based on the Astrom-
Jury-Agniel algorithm, an method was developed. which
can accurately cvaluate the 2-D gramians.

It has been noted that the algorithin by Lu et al is
very cfficient only for 2-D gramians of relatively low di-
mension. In this algorithm, polvnomial convolutions and
factorizations are involved. The order of the polynomi-
als increases greatly with the order of svstenn. Therefore.
its cfficiency degrades and undesired numerical problemns
may occur for high order svstems. Combining the two
algorithms, we propose a new alporith for cfficiently
computing 2-D gramians. For details. we refer to the

full version of the paper.



Let R be a realization in Sy and R be obtained by
transforming Ry with T, and Fy(z),. Zv) and Go(zp, z,)
be given by (9) for the realization Ry, then one has the

following for IR

F(zp, z) = T_IF()(Zh.Sh)
Glzn,2) = T7Golz. 2,) (11)

from which one can see that different realizations have
different L seusitivity measure. Therefore, it Is interest-
ing to find out those realizations that minimize a3 over

Su, which is cquivalent to

1in My, (12)
(AB.CdESy 2

We note that Qg = 1. Therefore. its value does not af-
fect the optimal realization problem defined above., In
the sequel. we consider Qq = 0 {even it should not be).

that is My, = tr(Qa + Qp ~ Q).

3 OPTIMAL REALIZATIONS

The main ohjective of this scetion is to solve the optimal

realization problent. that is to find out the solutions to

(12).
Denote
r .
PéTTT=<T” ())(T,, 0) =<T,,T[ 0
0 T, 0 T, 0 T,77

(13)
one can see that Ay, is a function of P. that is Mp, =
f(P). Therefore. (12) is equivalent to

min MMy (14)
P>0:subject to(13) - ’

Our main result in this section is sumnarized as below:

Theorem 1 : For a stable 2-D system H(zp.zy). the
manamum. of f(P) with P defined in (13) exists and can
be achieved ouly by the unique stationary point P > () of

f(P). |

Since f(P) is unimodal. any focal mininmumn is a global
minimum. We, therfore, argue that (14) can cfficiently
be solved using any standard minimization algorithm
sich as golden section search and Gauss-Newton methi-

ods with guaranteed convergence to the global minimum.

The proof of the above theorem is very long and is
omitted. For details. we refere to the long version of the

paper.

In the next section. we will illustrate the optimal real-
ization procedure with an example. The unique solution
¢ o . . .
to (14) Pope = P72 PPt is computed with the following

classical gradient based algorithm:

df(P) 0
Poov=P =y | 9P iy | lp=p.  (15)
0 dp,
where L) o1 7 = hovoand gy is a small tiime-variant
P, /

positive step size.  Clearly, this algoritlin alwavs con-

VOrges to Py

4 NUMERICAL EXAMPLE

We now illustrate our optimal design procedures with a
stable digital filter of order (np.ny) = (2.2). which was
used i [6]. This filter is given by the following realization

Roi

1.888990 —0.912190 -1 0
1 0 00
A =
0.027710 —0.025800  1.888990 1
—0.025800  0.024310 —0.912190 0
0.219089 (.288890)
0 —0.0912
B — o7 _ | —0001219
~0.028889 —0.219089
0.091219 0,

The 2-D balanced realization 1%y can be obtained with
the initial realization Ry.  This Ry was shown to he

My, /1, optimal in 5] and is given below:

0.9664 0.1279 —0.4909 —(.1945
—0.1611 0.9226 —0.1823 —0.0723

Ay =
0.0463 0.0088  0.9778 —0.1747
0.0105 0.0187  0.1215  (.9112
0.2678 0.4881

B, = 0.0995 -C;)T _ —0.6778
0.2252 —().0880
—(1.7498 —0.0349

A .
Denote n(P) = ”’("-7"3“(:1“7‘)‘%%’ for v = h.v. We

now take R, as the initial realization. Starting with



Fy = T as the mitial condition. we run algorithm (15)
with gy = 107371 (Py). Computation shows n(FPo) =
L9657 % 10% and AlL,(Ry) = 9.9349 x 103, It is found
NPs10) = 1.6614 and M, (R310) = 2.9517 x 103. From
k=310, iy = 1074~ (Py). Tt is noted that (Psq0) =
5.5047 x 1073 and My, (R540) = 2.9515 x 103, We con-
sider Popy = Psy0 and then Topt = P;I{,?V, where V is an
arbitrary orthogonal matrix. The corresponding optimal
realization R, cau be obtained with Topt and Ry. The
following optimal realization correspouds to the choice
V=I

0.9658 0.1423 —0.1576  0.0560
Lo | 01446 0.9232 ~0.0385 00137
et T 0.1445 0.0617  0.9449 —(.1848
C—0.0567 0.0445  0.1089  (.9441
0.1562 0.7517
0.0382 | ~1.4187
Bo = .(,'VT =
rt —0.6400 ort —0.0484
—1.4340 0.0172

We have computed Aj[Ll/Lz and Afp, for Ry, Ry and
Rope, respectively. The results are given in the following

table:

Realiz. Ro Ry Ropt
My, L9497 x 107 | 9.9349 x 103 | 2.9515 x 103
2.3097 x 10° | 5.0162 x 10?2 | 1.7229 x 103

Mp /L. |

One cau sce that Rg has a much higher Lo-sensitivity
measure than the two others. The balanced realization
Ry has a relative smaller sensitivity measure, which is
about 3.5 times of that for Ropi. The difference between

ROP'(M1,) and H{)Pf(AYLl/LZ) depends on the svstem.
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