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Watchman: Monitoring Dependency Conflicts for Python
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ABSTRACT

PyPI is a major central repository for Python projects. It has in-
dexed millions of libraries to allow developers to automatically
download and install dependencies of their projects based on the
specified version constraints. Despite the convenience brought by
automation, version constraints in Python projects can easily con-
flict, resulting in build failures. We refer to such conflict issues as
dependency conflict (DC) issues. Although DC issues are common
in Python projects, developers lack tool support to gain a compre-
hensive knowledge of the version constraints specified by different
projects and diagnose the root causes of these issues. In this pa-
per, we conducted an empirical study on 235 real-world DC issues
collected from 124 popular Python projects. We studied the mani-
festation patterns and fixing strategies of these issues and found
several key factors leading to potential DC issues and their regres-
sions. Based on our findings, we designed and implementedWatch-
man, a technique to continuously monitor dependency conflicts
for the PyPI ecosystem. In our evaluation, Watchman analyzed
PyPI snapshots between 11 Jul 2019 and 16 Aug 2019, and found
117 potential DC issues. We reported these issues to the concerned
developers. So far, 63 issues have been confirmed, of which 38 have
been quickly fixed using our suggested patches.

1 INTRODUCTION

Python projects are commonly shared as third-party libraries in
a server-side central repository PyPI [35], and reused by other
projects with a client-side library installer pip [31, 39, 47]. By June
2019, the PyPI ecosystem (PyPI for short) has indexed over 1.43
million Python libraries together with their metadata (e.g., version
information, dependencies on other libraries, etc.).

To use a library on PyPI, developers need to specify the desired
version constraints [43] in a configuration script such as setup.py
and requirements.txt [37]. When a library is reused by another
project, this library and other libraries on which it depends will be
automatically installed at the project’s build time. The automation
smartly combines a server-side central repository and a client-side
library installer to manage library dependencies. It considerably
simplifies the build process of Python projects. Also, the version
constraint mechanism for a required library allows developers to
restrict the dependencies to a set of compatible versions and enables
automatic library evolution [3]. However, such automation comes
with the risk of potential dependency conflict (DC) issues, which
can cause build failures when the installed version of a library
violates certain version constraints on the library.

Figure 1 gives a real example: issue #1277 [6] in channels. As
shown in channels 2.1.7’s configuration script, it directly requires
libraries asgiref (version constraint: ⟨≥ 2.3 ∧ < 3.0 ⟩) and daphne
(version constraint: ⟨≥ 2.2 ∧ < 3.0 ⟩). Note that when downloading
a library, the pip installer always chooses the latest version on
PyPI that satisfies the library’s version constraint [32]. No DC

/*channels 2.1.7 */
asgiref ≥ 2.3, < 3.0
daphne ≥ 2.2, < 3.0

(installed 2.3.0)
(installed 2.2.5)
(installed 2.3.0)

Before 9 Apr, 2019
After 9 Apr, 2019

/*channels 2.2.0 */
asgiref ≥ 3.0, < 4.0
daphne ≥ 2.2, < 3.0

(installed 3.1.1)
(installed 2.3.0)

14 Apr, 2019, Fixed Version

/*daphne 2.2.5 */
It does not require asgiref

/*daphne 2.3.0 */
asgiref ≥ 3.0, < 4.0

Build Error : asgiref 2.3.0 is installed but asgiref ≥ 3.0, < 4.0 is required.

/*channels-redis 2.3.3 */
asgiref ≥ 2.1, < 3.0
channels ≥ 2.0, < 3.0

(installed 2.3.0)
(installed 2.1.7)
(installed 2.2.0)

Before 9 Apr, 2019
After 14 Apr, 2019

(a.2)
No conflict

(c.2)
Conflicting

(a)

(b)

(c)

(a.1)
Conflicting

(c.1)
No conflict

Figure 1: Illustrative examples of issues #1277 [6] and #152 [7]

issues occurred when channels 2.1.7 was built before 9 Apr 2019.
Both asgiref 2.3.0 and daphne 2.2.5 selected for the build satisfy
the concerned constraints. However, issue #1277 [6] arose after 9
Apr 2019 when channels 2.1.7 was built via selecting the newly
released library daphne 2.3.0, which additionally requires library
asgiref (version constraint: ⟨≥ 3.0 ∧ < 4.0⟩). The DC issue (the
red curve a.1) happened because pip selected asgiref 2.3.0 to
satisfy the direct dependency constraint ⟨≥ 2.3 ∧ < 3.0⟩, but this
version violated the constraint ⟨≥ 3.0 ∧ < 4.0⟩ specified in daphne
2.3.0. This issue caused a build error as shown in Figure 1(b).

To fix the issue, channels developers released version 2.2.0 on
14 Apr 2019, which updated the requirement on asgrief’s versions
to ⟨≥ 3.0 ∧ < 4.0⟩. This update led to the installation of asgrief
3.1.1 (the latest version under 4.0) when building channels 2.2.0,
thus resolving the DC issue (the green curve a.2). However, this
fix induced another DC issue in channels-redis, as Figure 1(c)
shows. After channels’s upgrade, to build channels-redis 2.3.3,
pip still selected asgiref 2.3.0 to satisfy the direct dependency
constraint ⟨≥ 2.1 ∧ < 3.0⟩. Unfortunately, this version is in con-
flict with the constraint ⟨≥ 3.0 ∧ < 4.0⟩ transitively introduced by
channel 2.2.0, leading to a build failure (red curve c.2).

To understand the scale of DC issues and their characteristics,
we conducted an empirical study on 235 real DC issues with fix-
ing solutions, reported on Github in the last five years, from 124
popular Python projects. We thoroughly studied these issues and
explored the following two research questions.
• RQ1 (Manifestation patterns): How are DC issues manifested
in Python projects? Are there common patterns that can be lever-
aged for automated diagnosis of these issues?
• RQ2 (Fixing strategies): How do developers fix DC issues in
Python projects? Are there common practices that can be lever-
aged for automated repair of these issues?
Through investigating the above questions, we observe that DC

issues mainly arise from conflicts caused by remote dependency
updates or local environment (see Section 3.2). We also found com-
mon strategies to fix DC issues and key factors leading to potential
DC issues and their regressions (see Section 3.3).

Diagnosing DC issues is challenging as echoed by developers in
their comments on issue report #3118 [16] such as “the dependency
resolution in the Python world is far from being easy.” The challenges
are mainly attributed to the complex dependencies across projects,
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which often specify the version constraints on their dependent
libraries without considering those specified by other projects. To
be specific, we summarize three major challenges as follows.

First, the version of a library installed for a Python project can
vary over time. For each required library, pip will install its lat-
est version satisfying the concerned constraint. Any updates of
libraries on PyPI can affect the version of the libraries installed
for the downstream projects (i.e., the projects that depend on the
libraries), causing potential build failures. We observe that on aver-
age there were around 800 library updates on PyPI every day, and
this number is increasing (see Section 2.3).

Second, when a library updates its version constraints on other
libraries, its downstream projects could be affected. An impact could
be wide-spreading since it can be propagated transitively to a wide
range of downstream projects. Manually identifying the affected
downstream projects is impractical for developers.

Third, it is difficult to obtain a full dependency graphwith version
constraints for projects on PyPI. The state-of-the-art tools like
pipenv and Poetry show only which libraries have been installed,
rather than their dependencies. Developers are looking for tools
that generate dependency graphs when diagnosing DC issues. For
instance, a developer left a comment “A tool that can dig and build
the full required (not installed) dependencies graph and report all the
union of all requirements is suggested” in a recent issue report [16].

To address the challenges and help Python developers combat
DC issues, we designed a technique Watchman, which performs a
holistic analysis from the perspective of the entire PyPI ecosystem,
to continuously monitor dependency conflicts caused by library
updates. For each library version on PyPI, Watchman builds a full
dependency graph (FDG), a formal model that simulates the process
of installing dependencies for library versions. The FDGs can be
incrementally updated as the libraries evolve on PyPI. Watchman
then analyzes them to detect and proactively prevent DC issues.
Since FDGs record full dependencies with version constraints, they
can also provide useful diagnostic information to help developers
understand the root causes of detected DC issues to ease fixing.

To evaluate the effectiveness of Watchman, we played back the
evolution history of all libraries on PyPI, from 1 Jan 2017 to 30 Jun
2019 and deployed Watchman to detect DC issues. After analyzing
PyPI snapshots during this period, Watchman detected 515 DC
issues and 502 (97.5%) of them were indeed fixed by developers
during the evolution of the libraries. To evaluate the usefulness of
Watchman, we ran it to monitor dependency conflicts for the PyPI
ecosystem between 11 Jul 2019 and 16 Aug 2019. During the period,
it detected and reported 117 previously-unknown DC issues, 63
of which (53.8%) have already been confirmed by developers. 38
(60.3%) confirmed issues were readily fixed following our suggested
patches. Developers also expressed great interests in Watchman.
In summary, our work makes three major contributions:

• Originality: To the best of our knowledge, we conducted the
first empirical study on the DC issues in open-source Python
projects. Our findings help understand the characteristics of DC
issues and provide guidance to future studies related to this topic.
• Dataset: We publicize the empirical study dataset containing
235 DC issues collected from 124 real-world Python projects to
facilitate future research.

Python Project

Upstream Projects

Transitive
Dependency

Direct
Dependency

Downstream
Projects

Depend on Relationship

<C>

<C>

<C>

<C>

<C>

Remote DependencyLocal Dependency

GCC, Python, …

Developer

Local Environment

Build Failure Caused by
DC Issues

The PyPI Ecosystem 2019-0
3-21

2019-05-10

Released Library
Remote Dependency
Direct Dependency
Local Environment

Figure 2: Dependencies of a Python Project

• Technique:We propose a formal model to simulate the building
process of Python projects and developed a DC issue diagnos-
tic technique Watchman (http://www.watchman-pypi.com/).
Our evaluation shows that Watchman is scalable and useful. It
can analyze over one million library releases on PyPI and detect
DC issues with a high precision. It also helps understand the root
causes of detected DC issues to ease fixing.

2 BACKGROUND

2.1 Dependencies of Python Projects

Figure 2 illustrates the dependencies of Python projects. Code reuse
is pervasive in PyPI, where projects often reuse other libraries.
The configuration script of a project P explicitly constrains the
versions of direct dependencies that P may use. If these direct
dependencies further rely on other libraries, such libraries are the
transitive dependencies of P . In our paper, all direct and transitive
dependencies are collectively called the upstream projects of P .
We also call P a downstream project of its dependencies.

Python projects are mostly developed in a self-contained envi-
ronment, which can be created by tools such as virtualenv [36],
conda [2], and pipenv [33]. When building a Python project, the
client-side library installer pip downloads most of the required
libraries on PyPI. We refer to such libraries that need to be down-
loaded as remote dependencies. For each required remote depen-
dency, pip downloads the library from PyPI according to its name
and version constraint. If pip finds multiple releases of a library
on PyPI satisfying the version constraint, it downloads and installs
the latest version of the library [31].

Besides remote dependencies, the development of a Python
project can be affected by its local environment, including the
local development tool chains (e.g., the Python interpreter and
GCC) and potential local dependencies. Local dependencies are
libraries installed in the local environment. They exist when the
development environment is not clean (e.g., the project is not devel-
oped in an isolated virtual environment) and contains preinstalled
libraries. If any version of a required dependency has been installed
locally, pip will not download the dependency from PyPI.

PyPI allows Python developers to release their projects as li-
braries. However, when a project has a build failure, the failure
can affect the build of all its downstream projects. As such, the
consequences of project build failures in PyPI are serious. This
paper aims to study the build failures caused by DC issues in PyPI.

2.2 Library Version Constraints

To use a library, a project needs to specify a constraint on desired
library versions as shown in Figure 2 (i.e., the C annotations on
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Figure 3: Statistics of library evolution history

some edges). To facilitate subsequent discussion, we formally define
version constraint using the grammar below:

CF ϵ | range ∧ extra | = versionid
rangeF range ∧ op versionid | op versionid
extraF ϵ | , versionid | extra ∧ , versionid
op F > | ≥ | < | ≤

(1)

where versionid refers to a specific version of a library (e.g., 1.24.1).
A constraint C could be empty, in which case pip will choose

to download the latest version of the library from PyPI if there is
no version installed locally. Developers may also specify a specific
version that is desired (e.g., = 1.24.1) or undesired (e.g., , 1.24.1).
In practice, developers mostly specify a range of versions in a con-
straint (e.g., ≤ 1.24.1 ∧ > 1.11.0). Specifically, we investigated
the top 1,000 popular Python projects on PyPI based on the num-
ber of their corresponding downstream projects, and found that
92.2% of their direct dependencies are set to a range of versions in
the configuration scripts (in comparison, this ratio is only 0.03%
for Java projects managed by Maven using the same investigating
method). Such heavy usage of ranges in the version constraints
for dependencies in the Python world, makes the diagnosis of DC
issues complicated and challenging (see Section 3).

2.3 Frequent Updates of Python Libraries

Many libraries hosted on PyPI are updated frequently. These up-
dates can have serious impacts because they might affect their
downstream projects. To understand the scale and impacts of li-
brary updates on PyPI, we reviewed its library evolution history
from Jan 2017 to Jul 2019. Through mining the release information
updates daily, we obtained the distribution of the number of library
updates in PyPI during this period as shown in Figure 3(a). On
average, there were 801 updates of different libraries daily, and the
number of updates is increasing over time. These library updates
affected a large number of downstream projects directly. Figure 3(b)
shows the distribution of the number of downstream projects that
were directly affected. On average, 2,509 direct downstream projects
are potentially affected by these updates. Note that such impacts
can be propagated to other Python projects via transitive dependen-
cies. Such frequent updates of libraries in PyPI induce imminent
risks of DC issues.

3 EMPIRICAL STUDY

3.1 Data Collection

Following the data collection process adopted by existing stud-
ies [41, 50], we prepared our dataset in two steps.

Step 1: selecting subjects. To understand the issue manifes-
tation patterns and fixing strategies, we need to study the issue

Number of projects in each category

Utilities
Administration
Installation/Setup
Testing
Libraries
Build Tools
Development
Security
Engineering
Office/Business
OthersStars Forks Issues Revistions Downstream

Projects

Category

KLOC

KLOC
0K-1K
1K-5K
5K-10K 
10K-50K
50K-100K
100K-500K

111810204671371810

17 33 19 28 17 10

Figure 4: Statistics of the projects used in our empirical study

reports (with discussions if any), dependency configuration scripts,
issue-fixing patches, and related code revisions. To achieve this
goal, we searched Github for Python projects that satisfy three
conditions: (1) popular: having more than 50 stars or forks, (2) being
used as libraries: containing more than three direct downstream
projects, and (3) well-maintained: having over 500 code revisions
or over 50 issue reports. As such, we obtained 1,596 open-source
Python projects.

Step 2: identifying DC issues. To locate DC issues in the 1,596
subjects, we searched for the issue reports that contain keywords
“dependency conflict” or “dependency hell” (case insensitive), filed
between Jul 2014 and Jul 2019 (i.e., in the past five years). 2,593
issue reports were returned by searching “dependency conflict”,
and that number is 334 by searching “dependency hell”. Be noted
that the returned search results may overlap. We further removed
noises from the returned issue reports in two steps:
• We excluded the reports that are not concerning valid DC issues.
For instance, issue #3900 of project conan dealt with the message
conflict warnings, whose comments accidentally contained our
searching keywords.
• For the remaining issue reports, we examined their issue descrip-
tions and fixing solutions. An issue report was included to our
dataset if it contains description of root causes, and either: (1)
there is a corresponding revision if its status is “closed” or (2)
there is an explicit consensus on fixing solutions or patches found
in the project’s code repository if its status is “open”.
Three authors were involved in the process of data collection,

analysis, and cross-checking. Eventually, we obtained 235 DC issues
from 124 projects, 201 of which have been fixed. Figure 4 shows
the statistics of the 124 subjects. They are: (1) large in size (around
38 KLOC on average), (2) well-maintained (containing 78 revisions
and 92 issues on average), (3) popular (83% of them have over
100 stars), (4) impactful (86% of them have more than 5 direct
downstream projects), and (5) diverse (covering over 10 categories).
In the following, we study the 235 collected issues to answer RQ1–2.

3.2 RQ1: Manifestation Patterns

DC issues manifest themselves on PyPI due to different causes.
RQ1 aims at characterizing these manifestation patterns. For this
purpose, we performed an in-depth analysis of the 235 collected
DC issues. Based on the analysis, we divided these issues into two
patterns A and B, according to whether the issues are caused by
remote dependencies or local environment. For each pattern, the
issues can be further categorized based on how the dependency
conflicts arise. In the following, we discuss these manifestation
patterns in detail with illustrative examples.
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3.2.1 Pattern A: conflicts caused by remote dependency updates.

Finding 1: 211 out of the 235 (89.8%) DC issues that involve the
violation of library version constraints are introduced by the updates
of remote dependencies on PyPI.

The root cause of the 211 issues is that the updates of some
remote dependency might change the version of the concerned
library to be installed by pip, which is hardly perceptible to project
developers. Suppose that a Python project P requires a library β
with a constraint C . If C does not specify an upper bound on β ’s
version (e.g., C = ⟨≥ 3.0⟩), or the specified upper bound is greater
than the latest version of β on PyPI (e.g., C = ⟨2.0 ≤ ∧ ≤ 4.0⟩,
while the latest version of β is 3.0), the version of β used to build P
can be uncontrollable (in developers’ perspective), meaning that
β can be upgraded when there are new versions on PyPI. Such
upgrading can easily induce DC issues: β ’s new version may not
satisfy the constraints specified by other dependencies of P ; the ver-
sion constraints specified by β for its own libraries may also change
in new versions, causing potential conflicts with the constraints for
the same libraries introduced by P ’s other dependencies.

The 211 issues can be further categorized based on where the de-
pendency conflicts come from. Theoretically, conflicts could happen
in three different cases: (1) among direct dependencies themselves,
(2) between direct dependencies and transitive dependencies, and
(3) among transitive dependencies themselves. However, develop-
ers usually will not introduce conflicts among direct dependencies
by themselves (i.e., mistakenly specifying two conflicting libraries
in the configuration script). Indeed, we did not observe any such
conflicts. In the following, we discuss the latter two cases.

• a. Conflicts between direct and transitive dependencies (139/211).
Suppose that a Python project P directly depends on two libraries
α withCP→α and β withCP→β , and β further depends on α with
Cβ→α , whereCP→α ,CP→β andCβ→α are version constraints of
the corresponding libraries. In other words, α is not only a direct
dependency of P , but also required by other direct dependencies
of P (i.e.,α can also be seen as a transitive dependency of P ).When
building P , pip will always install the latest version v of library
α that satisfies CP→α , as α is at the top level of P ’s dependency
tree [31]. If v falls into the version range specified by Cβ→α , the
project P will be built successfully. However, once α has been up-
dated on PyPI, the update may lead to the installation of another
versionv ′ of α . Ifv ′ falls out of the range specified byCβ→α , the
project P will not be built successfully. For instance, in issue #229,
gallery-dl directly requires libraries requests ⟨≥ 2.11.0⟩ and
urllib3 ⟨≥ 1.16 ∧ , 1.24.1⟩, and the installed version 2.13.0
of requests depends on urllib3 ⟨< 1.25.0 ∧ ≥ 1.21.1⟩. The
project gallery-dl worked well when it was released on PyPI,
as the latest version of urllib3 at that time was 1.24.2. This ver-
sion of urllib3, which would be installed by pip, satisfies both
⟨≥ 1.16∧ , 1.24.1⟩ and ⟨< 1.25.0∧ ≥ 1.21.1⟩. However, when
urllib3 was updated to 1.25.0 on 18th Apr, 2019, gallery-dl
began to suffer from build failures caused by DC issues. This is be-
cause when building gallery-dl, pip will install the latest ver-
sion, which is 1.25.0 to satisfy the direct dependency urllib3 (for
simplicity, let us suppose that there is no preinstalled urllib3).
However, this violates the constraint ⟨< 1.25.0∧ ≥ 1.21.1⟩ speci-
fied in requests, thus leading to a DC issue.

• b. Conflicts between transitive dependencies (72 out of 211 issues).
Suppose that a Python project P directly depends on two libraries
α and β , both of which depend on another library θ but with two
different version constraints Cα→θ and Cβ→θ , respectively. If
the version v downloaded by pip referring to Cα→θ (suppose
it has a higher priority) also satisfies Cβ→θ , the project P can
be built successfully. However, since α and β are two separate
projects, their dependency relationship on θ may change over
time. There can be cases where the updates of α or β would
result in conflicting version constraints of θ , consequently caus-
ing DC issues when building P . We observed 72 such issues in
our study. For example, issue #3826 of rasa complained the in-
cident that a project was forced to introduce multiple version
constraints of the library request by its direct dependencies
rasa and sagemaker. The reason is that rasa released a new
version 1.0.4 and added a constraint ⟨=2.22.0⟩ on request. How-
ever, this constraint is conflicting with another constraint on
request ⟨≥ 2.20.0∧ < 2.21.0⟩ introduced by sagemaker.

3.2.2 Pattern B: conflicts affected by local environment.

Finding 2: 24 out of the 235 (10.2%) DC issues arose due to the conflicts
between remote dependencies and the tools/libraries installed in the
local environment.

Such issues can happen when the required development tool
of a remote dependency is incompatible with the local installed
one (e.g., requires Python 3.7.* but installed Python 3.6.*). They can
also happen when the version of a dependency, which is already
installed in the local environment, does not satisfy the constraint
specified by a remote dependency. Take issue #25316 as an example.
Project gradient failed to be built because there was already one
version (1.13.3) of the library numpy installed in the locally before
the build, and this version is in conflict with the constraint ⟨≥1.15⟩
specified by pandas v0.24.1, a direct dependency of gradient.

3.2.3 Dependency Smells.

By further analyzing developers’ discussions in the issue reports
and the dependency configuration scripts of the project versions
that were benign (i.e., not affected by the reported DC issues of
Pattern A). We observed several types of “dependency smells”.
These smells are interesting in that they do not immediately cause
DC issues but are likely to induce DC issues as the projects evolve.
Finding 3: Restricting dependencies to specific versions for common
libraries could easily induce DC issues to downstream projects.

Build failures can easily happen if library version constraints are
too restrictive (e.g., only accepting specific versions), especially for
those common libraries. 59 of our studied 235 issues belong to this
case. For instance, the project docker-py depends on a specific
version of request 2.2.1, a common library that is used by many
other projects. This makes docker-py’s downstream projects that
also depend on request particularly sensitive to the updates of
request. We observe that whenever there was a new version of
request released on PyPI, docker-py’s developers would receive
requests from downstream projects to upgrade its version constraint
on request (e.g., issues #3404 [18], #4431 [22]). As there were too
many such requests, docker-py developers finally chose to loosen
the version constraint on request to a range, thus allowing more
downstream projects to work well with it.
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Finding 4: DC issues can easily occur when the installed version of a
library satisfying one constraint is close to the upper bound specified
in another version constraint.

67 of the 235 issues belong to this category. A library version in-
stalled by pip in the concerned project is close to the upper bound
of the its another version constraint. Therefore, updates of these
libraries will likely induce build failures. For instance, the projects
that directly require both request and urllib3 have often en-
countered DC issues (e.g., [19, 23–25]). The reason is that these
projects will always install the latest version of urllib3 since the
direct dependency constraints on urllib3 do not set an upper
bound. Besides, request also depends on urllib3 with a version
constraint ⟨≥ 1.21.1∧ < 1.23⟩. These projects were built success-
fully when urllib3’s latest version was 1.22.4, which satisfies
⟨≥ 1.21.1∧ < 1.23⟩. However, the installed latest version was close
to the upper bound, and thus DC issues will arise once urllib3
updated a newer version (e.g., 1.23.1) that exceeds the upper bound
1.23.0 set by request.

These findings are useful. We will show that identifying the two
types of smells can help perform predictive analysis to proactively
prevent DC issues before they cause real build failures.

3.3 RQ2: Fixing Strategies

To answer RQ2, we further studied: (1) the patches of the 201 closed
issue reports, (2) solution descriptions of the 34 open issue reports,
and (3) the comments in issue reports. We observed seven fixing
strategies, which altogether resolved 93.6% of our collected issues.

3.3.1 Common fixing strategies with illustrative examples.

Strategy 1: Adjusting the version constraints of direct dependen-
cies (98/235). The conflicts between direct and transitive dependen-
cies were commonly fixed by adjusting the version constraint of
direct dependencies to be compatible with those of transitive depen-
dencies. For example, in issue #32 [17], project valinor contained
two conflicting version constraints on the library pyyaml. One con-
straint ⟨≥ 3 ∧ < 5⟩ was directly specified by valinor. The other
constraint ⟨< 6.0 ∧ ≥ 5.1⟩ was transitively introduced by pyOCD, a
dependency of valinor. For such case, pip will always install the
latest version satisfying the direct dependency’s constraint (i.e., ⟨≥
3 ∧ < 5⟩), thus conflicting with the transitive dependency. To fix the
problem, developers of valinor revised their version constraint
on pyyaml to ⟨< 6.0 ∧ ≥ 5.1⟩.

Strategy 2: Upgrading or downgrading the direct dependencies
that require conflicting libraries (27/235). DC issues caused between
transitive dependencies can be solved by upgrading or downgrad-
ing the direct dependencies that introduce the transitive depen-
dency. Take issue #66 [26] of zhmcclient as an example. The
two conflicting version constraints, i.e., ⟨= 4.0.3⟩ and ⟨≥ 4.4⟩, on
coverage were transitively introduced by zhmcclient’s direct
dependencies python-coveralls ⟨= 2.9.1⟩ and pytest-cov ⟨≥
2.4.0⟩, respectively. Since the installed version pytest-cov 2.6.0
added coverage ⟨≥4.4⟩ as its direct dependency, which caused the
conflict, zhmcclient’s developers downgraded pytest-cov by
changing its version constraint to ⟨≥ 2.4.0 ∧ < 2.6.0⟩. After revising
the constraint, pytest-cov 2.5.1, an older version of pytest-cov
that requires coverage ⟨≥ 3.71⟩, was installed. This constraint is
not conflicting with ⟨= 4.0.3⟩ and thus the DC issue was resolved.

Table 1: The relations between manifestation and fixing strategies

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7
Pattern A.a 94 9 19 8
Pattern A.b 18 32 16
Pattern B 4 12 8

Strategy 3: Coordinating with upstream projects to adjust con-
flicting version constraints (51/235). DC issues can also be fixed via
coordinating with the upstream projects. Take issue #740 [28] of
the project yotta as an example. Although the conflict can be re-
solved by adjusting the direct dependency’s version constraint (i.e.,
following Strategy 1), the developers chose to coordinate with the
upstream projects to solve the problem. This avoids changing the
version of the directly required library.

Strategy 4: Removing conflicting direct dependencies and keeping
the transitive ones (8/235). When it is difficult to make a project’s
direct dependencies in line with the transitive ones, developers may
choose to remove the conflicting direct dependencies. For example,
as described in issue #407 [20] of the project wandb, conflicts oc-
curred when its upstream project updated its version constraint on
a direct dependency PyYAML, and this happened several times. As
the developers had no direct control on the upstream projects, they
removed the conflicting direct dependency from the configuration
script, and used the transitively introduced one instead.

Strategy 5: Adding direct dependencies (16/235). There are cases
when the version constraints Cα→θ and Cβ→θ of two conflicting
transitive dependencies overlap, meaning that one can find some
versions of the concerned library θ to satisfy both constraints. The
DC issue in such a case can be resolved by adding θ as a direct de-
pendency with a constraint that entails bothCα→θ andCβ→θ . This
will instruct pip to install the version specified by the direct depen-
dency that satisfies both the transitive dependencies. For instance,
in issue #1586 [8] of crossbar, there exist two conflicting transi-
tive dependencies: urllib3 ⟨< 1.25∧ ≥ 1.21.1⟩ and urllib3 ⟨≥
1.24.2⟩. To resolve the conflict, developers added urllib3 ⟨≥ 1.24.2
∧ < 1.25⟩ as a direct dependency to override the two conflicting
ones to avoid build failures.

Strategy 6:Upgrading/downgrading the development tool (12/235).
The dependency conflicts between the local environment and the
remote dependencies are often solved by upgrading or downgrading
the development tools (e.g., issue #409 [21] of bandit).

Strategy 7: Creating an isolated environment (8/235). This is con-
sidered as a viable solution for the dependency conflicts between
remote and local installed dependencies. As recommended by de-
velopers in issue #9090 of spyder and issue #25487 [13] of pandas,
there are several tools such as virtualenv [36], conda [2], and
pipenv [33], which can create virtual environments to isolate the
impacts of local installed dependencies to avoid such DC issues.

There are nine issues that were fixed by restricting the conflicting
library to a specific version. However, this is not a good practice
for managing dependencies and can induce new issues (e.g., issues
#2483 [12], issues #1824 [9], and #2195 [11], etc.) as discussed in
Finding 3. Therefore, we do not present it as a fixing strategy. The
remaining six issues were fixed by specific workarounds. We do
not further discuss the details in this paper.

Table 1 summarizes how each pattern of issues were fixed. We
can make the following observations based on the table. There
can be multiple fixes feasible for a DC issue. In particular, Pat-
tern A.a issues can be fixed by adopting four different strategies,
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among which Strategy 1 is the most adopted one. This is because
the project developers have full control of the direct version con-
straints. If adopting such strategy will cause side effects such as
security loopholes, developers may solve the conflicts by upgrading
or downgrading the direct dependencies of their projects (Strategy
2) or coordinating with upstream projects to adjust conflicting
version constraints (Strategy 3). For Pattern A.b, developers often
adopt Strategies 2, 3 and 5 to resolve adjust the version constraints
of the conflicting libraries. Issues of Pattern B are mainly resolved
via dealing with the local environments. Based on these results, we
distill the following findings:
Finding 5: There can be multiple fixes for a DC issue. The solutions
can be affected by the issue’s manifestation pattern, the topological
structure of the project’s dependency graph, pip’s installation rules,
and the interference between the version constraints of upstream
projects and those of downstream projects.

4 DEPENDENCY CONFLICT DIAGNOSIS

4.1 Overview

Our empirical findings suggest the limitation of diagnosing DC
issues based on a single project is due to complex dependencies
among upstream and downstream projects. This motivates us to
propose a technique, Watchman, to continuously monitor depen-
dency conflicts from the perspective of the entire ecosystem.

Figure 5 gives an overview of our technique. A major challenge
is to perform a holistic analysis of the huge number of projects
on PyPI, the dependency relationships among which cannot be
easily modeled and are subject to change. To address the challenge,
Watchman first collects the metadata for each library version, in-
cluding its direct dependencies with version constraints and their
declaration order. Second, it constructs a metadata repository for
all the libraries hosted on PyPI to enable the analysis of the in-
terference between the version constraints across upstream and
downstream projects. Then, by continuously monitoring library
release information on PyPI, Watchman synchronously updates
the metadata repository to precisely model the dependency re-
lationships. For the captured library updates, Watchman uses a
depth-first searching strategy to identify the affected downstream
projects. It also performs a breadth-first search on the metadata
repository to construct a full dependency graph for each poten-
tially affected downstream project, according to library installation
rules of pip. Finally, it performs automatic DC issue diagnosis. The
following subsections introduce the details of Watchman.

4.2 Constructing Metadata Repository

Tomodel the dependency relationships among libraries,Watchman
uses the metadata structure defined below to capture the version
constraints of the direct dependencies of each library version and
the declaration order of these direct dependencies. For ease of un-
derstanding, in the subsequent discussions, we shall use lowercase
Greek letters to denote libraries and superscripts to denote versions.

Definition 1. Metadata Structure: For a library version ζv ,
i.e., the version v of library ζ , Watchman captures a collection of
information G(ζv ) = (D,R, P) , where

• D = {α , β ,γ · · · } is a set of direct dependencies of ζv .

Algorithm 1: Identifying Affected Downstream Projects
Input: Lup and G
Output: Laf

1 Laf ← {};
2 foreach ζ v ∈ Lup do

3 identifyAffectedLibrary(ζ v , Laf , G);
4 Function identifyAffectedLibrary(ζ v , Laf , G)
5 foreach G(δu ) = (D, R, P ) ∈ G do

6 if ζ ∈ D && v satisfies the constraint Cδu→ζ then

7 Laf ← Laf ∪ {δu };
8 identifyAffectedLibrary(δu, Laf , G);

• R = {Cζ v→δ | δ ∈ D}, where Cζ v→δ denotes the version
constraint on the dependency δ specified by ζv .
• P is a function that maps each dependency δ ∈ D to its
declaration order.

In our experiment to detect unknown DC issues, Watchman
first extracted 1,423,291 versions of 191,787 distinct libraries from
a snapshot of PyPI on 15th Jun, 2019. For each library version
ζv ∈ L, where L represents all library versions, it obtained the
structured metadataG(ζv ) via analyzing the dependency configu-
ration script of ζv . Such metadata of all extracted library versions
then formed an initial metadata repository G, which can be defined
as G = {G(ζv )|ζv ∈ L}. This process took around 8.5 days. The
constructed metadata repository enables the queries of dependency
relationships among upstream and downstream projects on PyPI.

4.3 Analyzing the Impacts of Library Updates

Analyzing the impacts of library updates mainly involves two steps:
Step 1: Monitoring library updates. Library updates on PyPI

often cause DC issues (cf. Finding 1 in Section 3.2). There are two
types of library updates on PyPI: new versions of an existing library
being released and new libraries being released. As discussed in
Section 2.3, the library updates on PyPI each day may potentially
affect thousands of their downstream projects. To reduce such
adverse effects, Watchman computes Lup by monitoring the two
types of library updates on a daily basis. For each library version
ζv ∈ Lup , it collects the metadataG(ζv ) and adds it to the metadata
repository G. In this manner, the metadata repository G can be
updated synchronously with the evolution of the libraries on PyPI.
On average, the repository update takes about 2.5 hours each day.

Step 2: Identifying affected downstream projects. Watch-
man performs backward search for identifying the set of library
versions of downstream projects affected by Lup , denoted Laf , fol-
lowing the process as described in Algorithm 1. The algorithm
works as follows. First, it initializes Laf to an empty set (Line 1).
For each library ζv ∈ Lup , Watchman analyzes which library in
the ecosystem may be directly affected by the update, with the aid
of function IdentifyAffectedLibrary (Lines 2–4), which takes ζv ,
Laf , and G as input and updates Laf when needed. For each piece
of metadata G(δu ) = (D,R, P) in G, if ζ is directly referenced by
δu (i.e., ζ ∈ D) and the version number v satisfies the version con-
straint on ζ set by δu (i.e.,v satisfiesCδu→ζ ), then δu is considered
to be possibly affected by ζv and added to Laf . Then, Watchman
performs a depth-first search to recursively find more downstream
projects affected by δu and updates Laf accordingly (Lines 4-8).

The time cost of this step may vary. During our study period, we
observed the largest number (17,597) of direct downstream projects



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem ICSE 2020, May 23-May 29, 2020, Seoul, South Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Updated?
Keep Monitoring

Identify Affected
Downstream Projects

Construct Full
Dependency Graphs

Detecting DC Issues

Predicting DC Issues
YesNo

Figure 5: The overall architecture of Watchman

affected by library updates on 20 Apr 2019. On that day, Watchc-
man was able to finish the search process within 38 minutes.

4.4 Detecting DC Issues

As discussed in Section 3.2, the topological structure of a Python
project’s dependency tree determines the installed library versions.
In order to diagnose DC issues, for each potentially affected library
version ζv ∈ Laf , we need to analyze the relationships among
all library versions that would be installed by pip to build ζv . To
capture such relationships, we propose a formal model named full
dependency graph, which is defined below.

Definition 2. (Full Dependency Graph). The full dependency
graph of a library version ζv , denoted FDG(ζv ), is a three-tuple,
(N ,E, FR), where

• N = N ′ ∪ {ζv } is the set of nodes in the graph, and N ′

denotes a set of library versions that would be installed by
pip to build ζv . The libraries here include both direct and
transitive dependencies.
• E = {⟨αx , βy ⟩|αx , βy ∈ N } is a set of directed edges, where
the edge from αx to βy represents that the version x of
library α directly depends on library β .
• FR is a function. It maps each edges e = ⟨αx , βy ⟩ ∈ E to the
version constraint that the library version αx sets on the
library β , i.e., Cαx→β .

Note that the full dependency graph (FDG for short) of a library
version is subject to change when its upstream projects are updated
on PyPI. Algorithm 2 describes the process of constructing the full
dependency graph of the library version ζv . Watchman constructs
FDG(ζv ) following pip’s breadth-first installation strategy: pip
first installs direct dependencies for a project, and then install de-
pendencies at the next level according to the project’s dependency
tree and the process continues until all dependencies are installed.
In the algorithm, we use a queue named Queue to record the order
of traversing and installing dependencies, and ζv is initially added
to the queue. When visiting each dependency αx inQueue , Watch-
man first retrieves its metadataG(αx ) ≡ (D,R, P). Watchman then
tries to add each dependency β in D to the full dependency graph.
If β has not been loaded (or installed), Watchman first determines
the version to be loaded based on constraint Cαx→β (recorded in
R) following pip’s installation rules (Line 8). N andQueue are then
updated accordingly (Line 9). If β has already been added to the
FDG, Watchman will retrieve the loaded version (Line 11). A new
edge ⟨αx , βy ⟩ is then added to E. The algorithm uses another queue
VisitedEdдes to record the order in which the edges are traversed
(Line 13). Watchman also sets the version constraint of this edge
(Line 14), which can be retrieved from R. After traversing all the
dependencies in Queue , the full dependency graph of a library is
completely constructed.

DC Issue Detection. Watchman detects DC issues by analyz-
ing the full dependency graph FDG(ζv ) for each project ζv ∈ Laf
in the following steps. First, Watchman traverses FDG(ζv ) and

Algorithm 2: Constructing FDG via Breath-First Search
Input: ζ v and G
Output: FDG(lv ) = (N , E, FR)

1 N ← {ζ v }; E ← {}; FR ← {};
2 Queue .add (ζ v ); Loaded ← {ζ };V isitedEdдes ← {};
3 while !Queue .isEmpty() do
4 αx ← Queue .pop(); Loaded ← Loaded ∪ {α } ;
5 G(αx ) ≡ (D, R, P ) ← getMetadata(αx , G) ;
6 foreach β ∈ D do

7 if β < Loaded then

8 βy ← getToLoadVersion(β, Cαx→β ) ;
9 N ← N ∪ {βy };Queue .add (βy );

10 else

11 βy ← getLoadedVersion(β, N ) ;
12 E ← E ∪ {⟨αx , βy ⟩ };
13 V isitedEdдes .add (⟨αx , βy ⟩);
14 FR(⟨αx , βy ⟩) ← Cαx→β ;

locates those nodes with multiple incoming edges. A node has mul-
tiple incoming edges when there are multiple projects that directly
depend on the library represented by the node. Next, for each such
node αx , Watchman analyzes the set of its incoming edges, de-
noted Eα . Note that there is one edge e in Eα that is traversed first
when constructing FDG(ζv ) and x is the latest version number of
the library α that satisfies the constraint FR(e). To detect DC issues,
Watchman checks x against the set of constraints associated with
other edges, i.e., {FR(e ′) | e ′ ∈ Eα \{e}}. If x violates any such
constraints, Watchman will report a DC issue to the project ζ .

4.5 Predictive Analysis for DC Issues

The constructed FDGs by Watchman can further enable us to
perform predictive analysis for proactive prevention of DC issues
via detecting the two types of smells discussed in Findings 3–4.

Type 1. Restricting a dependency to a specific version. If a project
restricts a dependency to a specific version, its downstream projects
may suffer from DC issues. Specifically, DC issues may arise if the
following conditions hold:

(1) There is a version v of project ζ , denoted ζv , that restricts
its direct dependency α to a specific version x .

(2) There is a version y of a downstream project β that depends
on both ζ and α , and ζv and αx are the installed library versions
for βy at the time of analysis.

Let DP be the set of downstream projects (e.g., β) such found.
The larger |DP | is, the more likely that DC issues can arise. This
is because each project in DP independently sets its own version
constraints onα . If ζv only accepts the version x ofα , the possibility
that the constraint ⟨= x⟩ conflicts with other constraints on α set
by the projects in DP is high, especially when DP is a large set. In
our experiments, we will warn the project ζ developers, if |DP | is
larger than a threshold value, which is set empirically.

Figure 6(a) gives an illustrative example. In project C2.0, the
constraint for library A is restricted to ⟨= 2.0⟩. In addition, C’s
downstream project B5.0 depends on both C2.0 and A2.0. In such
a case, it is very likely that the restrictive constraint C sets on A
would cause conflicts for B (e.g., when A gets updated on PyPI).
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Figure 6: Illustrative examples of potential DC issues

The risk of conflicts gets higher if we find more such downstream
projects. Watchman will find such cases and suggest project C’s
developers to relax its constraint on A, to avoid potential DC issues.

Type 2. The installed version of a library is close to the upper
bound specified in the version constraint. If the installed version of a
library satisfies the concerned version constraint but is close to the
upper bound specified in the constraint, build failures can easily
occur when the library evolves. Watchman considers the project
ζv has a potential DC issue, if the following conditions hold:

(1) In FDG(ζv ) = (N ,E, FR), there exists a nodeαu withmultiple
incoming edges, whereα is a dependency of ζv andu is the installed
version of α . Let Eα be the set of incoming edges to αu .

(2) The version constraint of the first traversed edge e in Eα does
not specify an upper bound on α (e.g., ⟨≥ y⟩) or the specified upper
bound is greater than α ’ latest version z on PyPI. In this case, any
updates of α on PyPI will affect the version of α to be installed.

(3) There exists another edge e ′ in Eα (e ′ , e), of which the
associated constraint FR(e ′) specifies an upper bound on the version
of α (e.g., ⟨≤ x⟩) and the upper bound is greater than or equal to
the latest version of α , i.e., z.

Figure 6(b) gives an illustrative example. In the FDG of project
Q5.0, there are two incoming edges to project T4.0, one from project
X2.0 and the other from project P4.0. Suppose that the former edge
is traversed before the latter. Since the constraint that X2.0 sets on
T has no upper bound, the latest version 4.0 of T will be installed.
There is no dependency conflict at the time of analysis. However,
since the constraint associated with latter edge, i.e., ⟨> 2.0 ∧ ≤ 4.0⟩,
restricts T to a version range, build failures may occur if developers
release a newer version (e.g., 4.1) of T on PyPI.

5 EVALUATION

In this section, we study the following two research questions:

• RQ3 (Effectiveness): How effective is Watchman in detecting
real DC issues and predicting potential ones?
• RQ4 (Usefulness): Can Watchman monitor DC issues in PyPI
and provide useful diagnostic information?

For RQ3, we replayed the evolution history of all libraries on
PyPI from 1 Jan 2017 to 30 Jun 2019.We first constructed ametadata
repository for PyPI’s snapshot on 1 Jan, 2017, and then conducted
incremental analysis to extract daily updates of all libraries until 30
Jun 2019. For each library update, we applied Watchman to detect
DC issues and predict potential ones via identifying dependency
smells. Sincewe have thewhole evolution history, we could evaluate
Watchman’s effectiveness by checking whether the detected DC
issues have been resolved and whether the predicted ones have
indeed evolved into real issues subsequently.

For RQ4, we deployed Watchman to monitor PyPI since 1 Jul
2019, and configured it to detect new DC issues of Patterns A.a
and A.b, as well as potential ones that could be induced by smells

Table 2: Basic information of experimental subjects

Period 1 Period 2 Period 3 Period 4 Period 5
Project# 1,454 1,535 2,279 2,398 2,673
Release# 11,759 13,202 18,418 18,984 19,746
Commits# 530 646 338 740 694

of Type 1 and Type 2. Note that issues of Pattern B can hardly be
detected since they are affected by developers’ local environments,
on which we have no knowledge.

We then consolidated the detected DC issues and filed reports
to the concerned projects’ issue tracking systems if (1) the detected
issues have not been reported or fixed in the unreleased master
branches of the concerned projects and (2) the concerned projects
have maintenance records in the last two years (still active). The
two criteria allow us to obtain developers’ feedback (e.g., whether
they will confirm our reported issues or merge our pull requests)
to evaluate the usefulness of Watchman. In each issue report,
we will point out the conflicts and explain how they arise. Such
diagnostic information can be easily provided by Watchman since
it simulates the build process of each analyzed project. The report
also includes a list of fixing suggestions, which are generated by
Watchman based on our summarized relationships between issue
manifestation patterns and common fixing strategies.

5.1 RQ3: Effectiveness

Data collection. A project’s evolution history provides useful in-
formation about how DC issues were manifested (and fixed). To
ease experiments, we divided the whole period from 1 Jan, 2017 to
30 Jun, 2019 into five sub-periods, including: (1) Period 1: 1 Jan 2017
- 30 Jun 2017, (2) Period 2: 1 Jul 2017 - 31 Dec 2017, (3) Period 3: 1
Jan 2018 - 30 Jun 2018, (4) Period 4: 1 Jul 2018 - 31 Dec 2018, and (5)
Period 5: 1 Jan 2019 - 30 Jun 2019. For each sub-period, we collected
open-source Python projects satisfying the following two criteria
as our experimental subjects: (1) having more than five release
versions during this sub-period (active), and (2) having more than
300 commits during this sub-period (well-maintained). Table 2 lists
the basic information of these subjects, which involves on average
16,421 releases of 2,067 projects for each sub-period.

Metrics. Watchman detects DC issues of Patterns A.a and
A.b, and predicts potential ones that could be induced by smells of
Type 1 (Type 1 issues) and Type 2 (Type 2 issues), during each sub-
period on a daily basis. To evaluate Watchman’s effectiveness, we
define two metrics, resolving ratio and lasting time, as follows:
• For each detected issue of Patterns A.a and A.b, we checked
whether it had been resolved (fixed) in the latest version of the
project released on PyPI, up to the validation date (20 Jul, 2019).
The resolving ratio measures the proportion of resolved ones in
Watchman’s detected DC issues. Higher resolving ratios indicate
better effectiveness of Watchman.
• The lasting time measures the gap between the detection time
of a DC issue and the fixing time of this DC issue. A longer lasting
time indicates wider side effects caused by a DC issue on the
concerned downstream projects.
For the predicted issues, we checked whether they had turned

into real ones. There are two cases: (1) the predicted issue indeed
arose (reported) in history due to library updates, and was fixed
by developers in subsequent releases; (2) the predicted issue was
not reported in history but developers still had fixed it for avoiding
certain undesirable consequences. Accordingly, the resolving ratio
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Table 3: Results of DC issues reported by Watchman from 1 Jan

2017 to 30 Jun 2019

Period 1 Period 2 Period 3 Period 4 Period 5 Summary

Pattern A 56 42 84 72 115 369⋆

Fixed 56 42 84 72 115 369⋆

resolving ratio 100% 100% 100% 100% 100% 100%♮

lasting time 25.2 27.3 25.0 20.8 31.6 26.0♮

Type 1 10 13 12 11 15 61⋆

Type 2 16 18 19 21 21 95⋆

Case (1) 2 2 3 4 2 13⋆

Case (2) 22 25 26 26 31 130⋆

resolving ratio 92.3% 87.1% 93.5% 93.8% 91.7% 91.7%♮

lasting time 101.6 77.1 100.8 51.0 63.9 78.9♮
♮ denotes the average value while ⋆ denotes the sum.

measures the proportion of predicted DC issues that belong to either
cases. The lasting time measures the gap between an issue was
predicted and it was reported for those issues that belong to Case
(1), and the gap between an issue was predicted and it was resolved
by developers for those issues that belong to Case (2).

Results. Table 3 presents the statistics of Watchman’s detected
DC issues for the five sub-periods, as well as Resolving ratio and
Lasting time measurement results.

For all five sub-periods, Watchman detected a total of 369 DC
issues of Patterns A.a and A.b (merged in table), and all of them
had been fixed by developers (i.e., resolving ratio = 100%). This
result strongly suggests that Watchman can precisely detect DC
issues. Watchman also predicted a total of 156 Type 1 and Type 2
issues, and 143 of them had been resolved by developers, resulting
in a satisfactory average resolving ratio of 91.7% (i.e., = (13 + 130)
/ (61 + 95)). The resolving ratio for different periods ranges from
87.1% to 93.8%, which are generally satisfactory. This result suggests
that Watchman is also effective in predicting potential DC issues.
Besides, we observe that all detected 369 DC issues were resolved
by developers within a month (on average, 26 days). Watchman
can potentially help reduce this delay since it can detect DC issues
timely (it performs analysis on a daily basis) and report them to
developers along with fixing suggestions. If developers fix the issues
in due course, the side effect of these issues on downstream projects
will be largely diminished.

As at 20 Jul 2019, 13 (8.7%) of the 156 DC issues predicted by
Watchman had not evolved into real ones. By further analyzing the
concerned projects, we found that the dependencies introducing
Watchman’s predicted issues were no longer active. For instance,
in project finance-dl [5], there exist multiple version constraints
for library idna. The version idna 2.8 installed is equal to the
upper bound of the constraint ⟨≥ 2.5∧ ≤ 2.8⟩ introduced by the
latest version of library selenium-requests. However, this po-
tential DC issue (Type 2) did not evolve into a real one, since
selenium-requests has stopped its update on PyPI (so far).

5.2 RQ4: Usefulness

Watchman detected and predicted a total of 189 DC issues since
we started our online-monitoring on 1 Jul 2019. We filtered out
23 issues that had been reported in the corresponding projects’
issue tracking systems and 49 issues whose associated projects had
no maintenance record in the last two years. After filtering, we
reported the remaining 117 DC issues to developers. As shown
in Table 4, 63 issues (53.8%) were confirmed by developers as real
DC issues within a few days. 38 out of the 63 confirmed issues
(60.3%) were quickly fixed, and 25 confirmed issues (38.7%) are in

the process of being fixed. The remaining 54 issues are still pending,
mainly due to the inactive maintenance of the associated projects.
We provided a detailed analysis in the following.

5.2.1 Feedback on reported issues.

For 64 detected issues of Pattern A caused by library updates,
Watchman got a higher confirmation rate (60.9% = 39/64), which
is within our expectation. For these 39 confirmed DC issues, devel-
opers agreed that the detected conflicts would lead to build failures,
and invited us to submit patches to help resolve them. In partic-
ular, in issue #70 [27] of project Osmedeus, its developer indeed
encountered our reported DC issue when deploying the project to
a new environment, and left a comment “I also get that error when
installing the project but my server works fine. Just submit a PR and I
will review the patch” on our issue report.

For 21 predicted DC issues of Type 1, 11 of them have already
been spotted by developers and resolved in the master branches of
the projects (but not released on PyPI) before we reported them. For
instance, project MycroftAI adapt voluntarily relaxed its version
constraint on library six from ⟨= 1.10.0⟩ to ⟨≥ 1.10.0⟩ via commit
7eeadeb [1] with a log “to avoid incompatibility with downstream
projects adapt-parser and jsonschema ”. Therefore, we reported
only the remaining 10 issues of Type 1, and 4 of them were con-
firmed by developers. Encouragingly, in the issue #182 of project
dynamic-prefer -ences, we got the following comment from
developers after they resolved the issue: “It is a hazzle to keep track
of all the frozen versions of some dependencies, especially for larger
projects. I think it would be good to get an automatic notification as
maintainer somehow, if one of your dependencies has locked its own
libraries on a specific version.”

For 43 predicted DC issues of Type 2, 20 of them have been con-
firmed by developers although these issues may not cause build fail-
ures immediately. We observed that in issues #295 [15] of sherlock
and #2729 of plaso [14], Watchman’s warnings quickly caught
developers’ attention, and they added labels “bug” and “deployment
problem” to these two issue reports.

Among the 63 confirmed DC issues (including both detected and
predicted ones), developers resolved 54 (85.7%) of them following
our suggested solutions. For example, in issue #9 [29], a build failure
was introduced into project webinfo, due to an issue of Pattern
A.a. We provided four solutions, and developer finally chose the one
Watchman generated based on Strategy 2 to resolve this conflict.
An encouraging comment “thanks for recommending, the solution
really meaningful, that’s awesome!” has been left by the developers.
For the remaining 9 confirmed issues, for which our fixing solutions
have not been adopted by developers, we found that these projects
can be sensitive to certain library upgrades or downgrades and
our suggested changes may introduce other side effects, such as
vulnerability or compatibility issues into their projects (e.g., issue
#16 in project kindred). In the future, we plan to further improve
the quality of the fixing solutions generated by Watchman.

5.2.2 Feedback on Watchman.

Besides confirming and fixing our reported DC issues, some
developers expressed interest in our tool Watchman.

For example, a developer left the following comment in the PR
#71 [34] for issue #70 of project arxiv-submission-core:

“A better mechanism of maintaining the dependency constraints
among projects on PyPI like what you did, is much-needed!”
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Table 4: Results of 117 DC issues reported by Watchman from July 11, 2019 to August 16, 2019

Manifestation Issue reports

Pattern A.a

Issue#1, aucome; Issue#110, crypto; Issue#1, OrcaSong; Issue#2, pypmml-spark; Issue#138, toolium; Issue#26, GatewayFramework; Issue#56, Airbnb-data Issue#2, Runcible;
Issue#95, identification; Issue#96, identification; Issue#1813, tasking-manager; Issue#356,Archery; Issue#325, bocadillo; Issue#21, crema; Issue#4, what-digit-you-write;
Issue#9, webinfo-crawler; Issue#35, zarp; Issue#4, open-helpdesk; Issue#5, languagecrunch; Issue#103, account-creator; Issue#9, jawfish; Issue#212, openpose-plus;
Issue#16, kindred; Issue#13, Generator-GUI; Issue#3, tabular; Issue#5, whats-bot; Issue#65, armory-bot; Issue#39, derrick; Issue#16, Historical-Prices; Issue#688, dxr;
Issue#18526, erpnext ; Issue#1, scrapy-qtwebkit; Issue#4778, InstaPy; Issue#2, api-indotel; Issue#145, cert-issuer; Issue#146, django; Issue#4, pymacaron; Issue#1, mgz-db;
Issue#1, twitterbots; Issue#2, gremlin; Issue#17, AWSBucketDump; Issue#198, fabric-cli; Issue#1, BlockCluster; Issue#3, gateway; Issue#2, beauty_image;
Issue#1389, Indy-node; Issue#130, swapi; Issue#279, explorer; Issue#34 footmark; Issue#3, driver-acs; Issue#56, driver-napi; Issue#11, simulator; Issue#9, Friends-Finder;
Issue#1, chatbot-template; Issue#545, djangopackages; Issue#2048, cadasta-platform; Issue#122, adminset; Issue#45, Wallpaper; Issue#21, ltiauthenticator;
Issue#28, cryptography;

Pattern A.b Issue#243, bakerydemo; Issue#4, pytools; Issue#70, Osmedeus; Issue#101, aldryn-search;

Type 1

Issue#182, dynamic-preferences; Issue#20, ldapdomaindump; Issue#326, py-cluster; Issue#986, faker; Issue#717, newspaper; Issue#120, mixer; Issue#3, client-python;
Issue#75, PyInquirer; Issue#953, compressor; Issue#26, certstream;

Type 2

Issue#8, AutoCrawler; Issue#31, BBScan; Issue#492, pywb; Issue#8, ct-exposer; Issue#71, EagleEye; Issue#1179, mythril; Issue#1, frida-util; Issue#34, python-urwid;
Issue#4, SecurityManageFramwork; Issue#295, sherlock; Issue#2077, freqtrade; Issue#36, trains; Issue#298, glastopf; Issue#5, Machine-Learning-with-Python;
Issue#569, kalliope; Issue#98, bless; Issue#70, arxiv-submission-core; Issue#2729, plaso; Issue#17, oauth-dropins; Issue#303, ripping-machine; Issue#27, ChannelBreakoutBot;
Issue#167, tldextract; Issue#183, messytables; Issue#9, kuberdock-platform; Issue#42, python-weixin; Issue#25, NoDB; Issue#146, Photon; Issue#911, pyspider; Issue#7, fan;
Issue#126, historical; Issue#49, stephanie-va; Issue#979, subliminal; Issue#56, WPSeku; Issue#3, zhihu-crawler; Issue#38, network-topology; Issue#647, marathon-lb;
Issue#9, Konan; Issue#181, JBOPS; Issue#962, hangoutsbot; Issue#41, GyoiThon; Issue#120, automation-tools; Issue#4, start-vm; Issue#10, ahmia-index;

Status 1 : The issues had already been fixed using our suggested solutions; Status 2 : The issues had already been fixed using other solutions; Status 3 : The issue was confirmed and being fixed
using our suggested solutions in progress. Status 4 : The issue was confirmed as DC issues and being fixed using other solutions in progress. Status 5 : The issues were pending.
We do not present the link of these issues due to page limit. The detailed information of them can be found on Watchman’s homepage (http://www.watchman-pypi.com/buglist).

In issue #492 of project pywb, we received an encouraging feed-
back from an experienced lead developer who is also the founder
of webrecorder community [4]:

“Are you an ’automation’ written by Github community to help
resolve dependency conflict issues for Python projects? If so, a piece
of nice work! I’d say this is a good approach, a nice friendly bot to
inform of potential dependency issues.”

We also received other positive comments. Such feedback in-
dicates that monitoring library updates and detecting/predicting
dependency conflicts is indeed important to, and welcomed by, real-
world Python developers. The information provided by Watchman
is also useful to help developers diagnose DC issues in practice.

6 DISCUSSIONS

Threats to validity. Keyword search can introduce irrelevant is-
sues into our dataset. Such noises pose a threat to the validity of
our study results. Another threat is the errors in our manual anal-
ysis of the DC issues. To reduce these threats, three co-authors
independently investigated all our collected DC issues and crossed-
validated their analysis results.
Limitations. Our work has three limitations. First, we focus on
DC issues that cause build failures. However, in some cases, the
conflicts may lead to semantic inconsistencies, runtime errors or
other consequences in Python projects. Second, the rules adopted
in the predictive analysis can only help find a subset of all possible
DC issues that may be induced by the two types of dependency
smells. They are designed based on our observed real cases in the
empirical study. Third, Watchman currently is not able to detect
all patterns of DC issues observed in our empirical study. We will
address these limitations in future work.

7 RELATEDWORK

Dependency conflict. Pradel et al. [44] studied the dependency
conflicts among JavaScript libraries and proposed a detection strat-
egy. Suzaki et al. [38] conducted an extensive case study of conflict
defects, including conflicts on resource access, conflicts on config-
uration data, and interactions between uncommon combinations
of packages. Soto-Valero et al. [46] studied the problem of multi-
ple versions of the same library co-existing in Maven Central,

and presented empirical evidence about how the immutability of
artifacts in Maven Central supports the emergence of natural
software diversity. Wang et al. [48] conducted an empirical study
to characterize dependency conflicts in Java projects and developed
Riddle to generate tests to collect crashing stack traces to facilitate
DC issue diagnosis [49]. To the best of our knowledge, there is no
previous work focusing on characterizing and detecting DC issues
in the Python world.
Studies of software ecosystem. Software ecosystem research has
been rapidly growing in recent years. Serebrenik et al. [45] perform
a meta-analysis of the difficult tasks in software ecosystem research
and identified six types of challenges, e.g., how to scale the analysis
to the massive amount of data. Mens [42] further studied software
ecosystem from the socio-technical view on software maintenance
and evolution. Zimmermann et al. [51] studied the security risks in
the npm ecosystem by analyzing data such as dependencies between
packages and publicly reported security issues. Another study by
Lertwittayatrai et al. [40] used network analysis techniques to study
the topology of the JavaScript package ecosystem and extracted
insights about dependencies and their relations. Our work studies
software ecosystem from a novel perspective by taking into account
the interference between the version constraints of upstream and
downstream projects. We also propose a technique to continuously
monitor dependency conflicts for Python projects.

8 CONCLUSION AND FUTUREWORK

DC issues are common in Python projects. In this work, we first
conducted an empirical study on 235 real DC issues to under-
stand the manifestation patterns and fixing strategies of DC is-
sues. Motivated by our empirical findings, we then designed a
technique,Watchman, to continuously monitor the dependency
conflicts for the PyPI ecosystem. Evaluation results show that
Watchman can effectively detect DC issues with a high precision
and provide useful diagnostic information to help developers fix
its detected issues. In the future, we plan to further improve the
detection capability of Watchman and generalize our technique
to other Python library ecosystems such as Anaconda to make it
accessible to more developer communities.
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