
-1-

Replication Report of Watchman

Xiaoning Chang

State Key Lab of Computer Science

Institute of Software, Chinese Academy of Sciences

University of the Chinese Academy of Sciences

changxiaoning17@otcaix.iscas.ac.cn

Introduction PyPI [1] has indexed millions of libraries to allow developers to automatically

download and install dependencies of their projects based on the specified version constraints.

The automation combines a server-side central repository and a client-side library installer to

manage library dependencies [2]. The version constraint mechanism for a required library allows

developers to restrict the dependencies to a set of compatible versions and enables automatic

library evolution. Despite the convenience brought by the automation, such version constraints

can easily cause dependency conflicts, resulting in build failures [3]. The root cause is that the

installed version of a library violates certain version constraints on the library.
When a library updates its version constraints on other libraries, all of it downstream pro-

jects could be affected [4]. With the complex dependencies across Python projects and the fre-

quent updates of the libraries on PyPI, the dependency resolution in the world of Python is far

from being easy. The ICSE 2020 paper entitled “Watchman: Monitoring Dependency Conflicts

for Python Library Ecosystem” presented an effective technique to address this problem. It per-

forms a holistic analysis from the perspective of the entire PyPI ecosystem and continuously

monitors dependency conflict issues (DC issues) caused by library updates. In this report, we

aim to replicate the experiment results of the paper using the artifact provided by the authors.

The report is organized as follows:

1. Verifying the empirical study dataset

2. Verifying the functional correctness of Watchman

3. Verifying the experiment results reported in Section 5.1

4. Verifying the experiment results reported in Section 5.2

5. Conclusion

1. Verifying the empirical study dataset

The 235 DC issues collected in the empirical study (Section 3) are the basis of the work and

any noises in the dataset could pose a threat to the validity of the study results. To verify the

dataset, we read and analyzed the issues in the provided file empirical_study_dataset.xlsx. The

process involved three postgraduates with software engineering background. We labeled the

issues as validated if their category and corresponding fixing strategies were consistent with our

understanding. We performed the labeling independently and discussed to resolve differences.

After cross-validating the 235 DC issues, we confirm that the categorization by Watchman’s

authors is reasonable and the fixing strategies are also correctly summarized.

mailto:changxiaoning17@otcaix.iscas.ac.cn

-2-

2. Verifying the functional correctness of Watchman

Watchman is built based on the Browser/Server mode. To check whether it is correctly im-

plemented, we visited its website http://www.watchman-pypi.com/ to interact with the tool. The

authors also provided a video demo at https://youtu.be/3EOz9g3Bw70, which is helpful.

As requested by Watchman’s authors, for each given Python project released on PyPI, we

checked the FDG built by Watchman, which simulates the process of installing dependencies

and detecting DC issues for the project. Specifically, for each project, we entered its name and

version number in the “DIAGNOSIS” page of Watchman’s website. Then, we pressed “Graph”,

“Save”, and “Start” buttons to display the project’s FDG, save the FDG in a text file, and detect

its DC issues (if any). We used the following subjects in this experiment.

(1) First, we tried three example projects with three types of (potential) DC issues, whose

name and version number are provided by Watchman’s authors in README.md :

a. Pattern A : moto 1.3.14

b. Type1: ldapdomaindump 0.9.1

c. Type2: bcdata 0.3.5

(2) Second, we also randomly selected 20 Python projects with the known (potential) DC

issues reported by Watchman, which have been confirmed by developers (see Section

5.2 of the paper). Table 1 lists these projects.

Table 1. Information of the 20 randomly selected Python projects

Project Version Issue Type Project Version Issue Type

toolium 1.2.5 Pattern_A
scrapy-redis-bloomfilter

-block-cluster
1.0.1 Pattern_A

InstaPy 0.6.7 Pattern_A indy-node 1.12.2.dev1183 Pattern_A

pshtt 0.6.6 Pattern_A runcible 0.0.5 Pattern_A

cert-issuer 0.0.11 Pattern_A polyaxon-client 0.5.6 Pattern_A

manuscripts 0.2.20 Pattern_A polyaxon-cli 0.5.6 Pattern_A

PyInquirer 1.0.3 Type1 certstream- 1.10 Type1

fiona 1.8.13 Type1 redis-py-cluster 1.3.6 Type1

blizzpy 1.0.3 Type2 angr 8.19.7.25 Type1

aws-infrastructure-sdk 2.1.0 Type2 azkaban 0.9.9 Type2

mythril 0.9.2 Type2 arxiv-submission-core 0.7.2rc9 Type2

We confirm that the FDGs and diagnosis information generated by Watchman are con-

sistent with the issue reports confirmed by developers on GitHub.

http://www.watchman-pypi.com/
https://youtu.be/3EOz9g3Bw70

-3-

3. Verifying the experiment results reported in Section 5.1

We also tried to replicate the experiment results reported in the Section 5.1 of the paper.

We performed the replication based on the artifact Replaying evolution history.zip, which is

released by the authors at http://www.watchman-pypi.com/history. With the help of the scripts

and dataset, we could play back the evolution history of the 16,421 releases of the 2,067 projects.

3.1 Experiment setup

The experiment was conducted on a Windows Server (2019 Standard) machine with two

Intel Xeon E5 2640v2 @2.00GHz CPUs, 32GB RAM, and 1TB SSD. As recommended by the au-

thors of Watchman, we installed python-3.7.4-amd64.

3.2 Replication steps

(1) Dataset validation. We first checked the metadata repository of all the library versions

on PyPI from 6 November, 2002 to 31 December, 2020, which is available in the archive

file pypi_validity_evaluationSQL.zip.

(2) Replaying the library evolution history. Then, we ran the scripts provided in Watch-

man_Artifacts.zip and checked the results.

3.2.1 Dataset validation

Verifying the metadata repository is the first and most important step in this replication

experiment. To validate the data, we manually checked the following files, which record the

dependency relationships between different libraries and the detailed information of all libraries

released on PyPI:

a. pypi_validity_evaluationSQL\pypi_info.sql

b. pypi_validity_evaluationSQL\pypi_info_version_all.sql

The authors provided the data sheet format files, which can be directly imported into our

database management tool. We randomly sampled ten Python projects and manually down-

loaded their dependency management files (i.e., requirement.txt or setup.py) and checked

whether our collected data were consistent with the records in the provided data sheets.

To validate the historical fixing records of DC issues in the collected projects, we manually

checked the file pypi_validity_evaluationSQL\evaluation_info.sql, which contains the records of

the DC issues in the collected projects. The fixing records were mined by the Watchman’s au-

thors from the projects’ issue tracking systems. We randomly sampled ten records and checked

whether the date of each sampled DC issue that has been fixed on GitHub was consistent with

the records in the data sheet provided by the authors.

We confirm the validity of the provided dataset. We believe that this dataset is useful for

future research.

3.2.2 Replaying the library evolution history

According to INSTALL.md, the authors divided the whole time period into five sub-periods.

We randomly selected two periods, namely Period2 (1 July, 2017 to 31 December, 2017) and

http://www.watchman-pypi.com/history

-4-

Period3 (1 January, 2018 to 30 June, 2018), and executed the corresponding scripts in windows

console mode for replication:

a. Watchman_Artifacts\validity_evaluation_period2.py

b. Watchman_Artifacts\validity_evaluation_period3.py

When executing the scripts, we can see the outputted evolution history of the libraries in

the console and the outputted result files in the directory C:\. Taking Period2 as an example, the

results are shown in Figure 1.

(a) The outputted evolution history information of the libraries on the console (b) The results in file C:\20170701-20171231\DC_issue_Pattern_A.txt

(c) The results in file C:\20170701-20171231\DC_issue_Type_1.txt (d) The results in file C:\20170701-20171231\DC_issue_Type_2.txt

Figure 1. The outputted results of replaying the library evolution history

By manually checking the values of metrics resolving ratio and lasting time, we obtained

the same results as those reported in the Table 3 of the paper. Executing the script of each time

period took about 3.5 days.

4. Verifying the experiment results reported in Section 5.2

For this replication experiment, we manually checked the following data:

(1) The daily library update information on PyPI captured by Watchman during two time

periods (from 1 July, 2019 to 10 August, 2019, and 1 December, 2019 to 31 December,

2019), and the corresponding downstream projects affected by the library updates iden-

tified by Watchman.

-5-

(2) Diagnosis information and the status of the 279 real issues reported by Watchman to the

open-source projects.

4.1 Daily library update information

The daily library update information on PyPI captured by Watchman during two time peri-

ods (1 July, 2019 to 10 August, 2019 and 1 December, 2019 to 31 December, 2019) are provided

on Watchman’s website (“UPDATES” page). The authors organized the millions of records of

library updates and their corresponding affected downstream projects into an online searcha-

ble table.

After selecting one date on the “UPDATES” page, we can see all the updated library infor-

mation. Furthermore, if we select one updated library, all the affected downstream projects will

be listed. We sampled ten listed library updates and verified their PyPI records. Besides, we

manually downloaded their downstream projects’ requirement.txt files and checked whether

these downstream projects could be affected.

We confirm the validity of the daily library update information captured by Watchman.

4.2 Diagnosis information and the status of the reported 279 real issues

For this replication experiment, we manually checked the diagnosis information and the

status of the 279 real issues reported by Watchman to the open-source projects. As the status

of the issues has changed since the paper submission, we relabeled the issues in the following

two tables, where the labels are consistent with the definition in the Watchman paper.

Status 1: The issue has already been fixed using the solution suggested by Watchman authors.

Status 2: The issue has already been fixed using other solutions.

Status 3: The issue has been confirmed and is under fixing using the solution suggested by

Watchman authors.

Status 4: The issue has been confirmed and is under fixing using other solutions.

Status 5: The issue is still pending.

-6-

Table 2. The 117 issues reported by Watchman from 1 July, 2019 to 10 August, 2019

(These issues were mentioned in the submitted version of the Watchman paper)

Pattern A.a: 60

Status 1: 33

Status 2: 3

Status 3: 6

Status 4:3

Status 5: 15

Pattern A.b: 4

Status 1: 2

Status 2: 1

Status 3: 0

Status 4: 0

Status 5: 1

Type1: 10

Status 1: 1

Status 2: 0

Status 3: 4

Status 4: 0

Status 5: 5

Type2: 43

Status 1: 13

Status 2: 0

Status 3: 6

Status 4: 1

Status 5: 23

Manifestation Issue reports

Pattern A.a

Issue#1, aucome; Issue#4, pymacaron; Issue#110, crypto; Issue#1, OrcaSong; Issue#2, pypmml-spark;
Issue#138, toolium; Issue#26, GatewayFramework; Issue#1, ScrapyRedisBloomFilterBlockCluster;
Issue#3, unblock_youku_gateway; Issue#2, auto_crawler_ptt_beauty_image; Issue#56, Airbnb-data;
Issue#2, beauty_image; Issue#1389, Indy-node; Issue#2, Runcible; Issue#95, identification; Issue#96, identification;
Issue#212, openpose-plus; Issue#356,Archery; Issue#325, bocadillo; Issue#21, crema;
Issue#4, what-digit-you-write; Issue#9, webinfo-crawler; Issue#5, whats-bot; Issue#35, zarp;
Issue#4, open-helpdesk; Issue#5, languagecrunch;
Issue#103, account-creator; Issue#688, dxr; Issue#39, derrick;
Issue#16, Historical-Prices; Issue#2, api-indotel; Issue#9, jawfish;
Issue#21, ltiauthenticator;
Issue#16, kindred; Issue#545, djangopackages; Issue#13, Generator-GUI;
Issue#18526, erpnext; Issue#4778, InstaPy; Issue#198, service-fabric-cli;
Issue#1, scrapy-qtwebkit; Issue#3, tabular; Issue#65, armory-bot;
Issue#146, django-elasticsearch-dsl-drf; Issue#145, cert-issuer;
Issue#2048, cadasta-platform;
Issue#1, aoc-mgz-db; Issue#1, twitterbots; Issue#2, gremlin;
Issue#17, AWSBucketDump; Issue#130, swapi; Issue#279, explorer;
Issue#34 footmark; Issue#3, driver-acs; Issue#56, driver-napi; Issue#11, simulator; Issue#9, Friends-Finder; Issue#1,
chatbot-template; Issue#122, adminset;
Issue#45, Wallpaper; Issue#28, cryptography;

Pattern A.b

Issue#243, bakerydemo; Issue#70, Osmedeus;
Issue#4, pytools;
Issue#101, aldryn-search;

Type 1

Issue#182, django-dynamic-preferences;
Issue#20, ldapdomaindump; Issue#326, redis-py-cluster;
Issue#3, GloboNetworkAPI-client-python; Issue#986, faker;
Issue#717, newspaper; Issue#120, mixer; Issue#953, django-compressor;
Issue#75, Pylnquirer; Issue#26, certstream-python;

Type 2

Issue#8, AutoCrawler; Issue#31, BBScan; Issue#2077, freqtrade; Issue#492, pywb;
Issue#8, ct-exposer; Issue#71, EagleEyeAC; Issue#1179, mithril; Issue#1, frida-util;
Issue#295, sherlock; Issue#36, trains; Issue#4, SecurityManageFramwork;
Issue#5, Machine-Learning-with-Python; Issue#34, xbox-smartglass-rest-python-urwid;
Issue#167, tldextract; Issue#98, bless; Issue#70, arxiv-submission-core;
Issue#2729, plaso; Issue#569, kalliope; Issue#298, glastopf;
Issue#17, oauth-dropins;
Issue#303, automatic-ripping-machine; Issue#27, ChannelBreakoutBot;
Issue#183, messytables; Issue#9, kuberdock-platform; Issue#42, python-weixin;
Issue#146, Photon; Issue#911, pyspider; Issue#7, fan; Issue#126, historical;
Issue#49, stephanie-va; Issue#979, subliminal; Issue#56, WPSeku;
Issue#3, zhihu-crawler-people; Issue#38, Pendingwisp-network-topology;
Issue#647, marathon-lb; Issue#962, hangoutsbot; Issue#41, GyoiThon;
Issue#120, automation-tools; Issue#4, app-engine-start-vm; Issue#10, ahmia-index;
Issue#25, NoDB;Issue#9, Konan; Issue#181, JBPOS

-7-

Table 3. The 162 issues reported by Watchman from 1 December, 2019 to 31 December, 2019

(These issues were detected after the paper submission)

Manifestation Issue reports

Pattern A.a

Issue#12, afg; Issue#3, django-html-emailer; Issue#1, Generator; Issue#438, geokey; Issue#2, imgsync;
Issue#1, iprange-python; Issue#16, manheim-c7n-tools; Issue#245, program-y;
Issue#246, program-y; Issue#10, portia2code; Issue#1, scrapbag;
Issue#131, scvelo; Issue#18, mockerena; Issue#457, nornir;
Issue#4, pyexcel-export; Issue#115, pyGenealogical-Tools;
Issue#253, reana-cluster; Issue#18, smap_io; Issue#19, Spartacus;
Issue#39, ssmash;
Issue#5170, cloud-custodian; Issue#3, pyclics-clustering;
Issue#7，textX-languageserver; Issue#153, django-glitter; Issue#30, django-glitter-events;
Issue#28, django-glitter-news; Issue#2622, moto;
Issue#2, TMO4CT;
Issue#114, pyGenealogical-Tools; Issue#14, twitter_markov; Issue#28, tweetynet; Issue#12, baiji-serialization;
Issue#64, taar-lite; Issue#764, sockeye;
Issue#5, globomap-driver-acs; Issue#3, aclpwn.py;
Issue#2, arbok; Issue#1, dedis-cluster; Issue#212, django-cumulus; Issue#3, django-fperms-iscore;
Issue#3, django-es-utils; Issue#41, django-prices-openexchangerates; Issue#115, eGO; Issue#1, flask-mongokat;
Issue#1, HelpDeskBot; Issue#160, mlpiper; Issue#2, musco-tf; Issue#4, Operation-Pluto;
Issue#6, protean-elasticsearch; Issue#1, c7n; Issue#48, kik-python; Issue#276, mapbox-sdk-py; Issue#11, pymacaron;
Issue#272, python-bitshares; Issue#2, scPopCorn;
Issue#5, py-redis-pubsub-dict; Issue#24, rdfframework;
Issue#30, raredecay; Issue#31, raredecay; Issue#32, raredecay; Issue#66, Scriptax; Issue#2, StandardLibrary;
Issue#2, Scriptax-Runtime; Issue#4, gmssl; Issue#5, gmssl;
Issue#6, gmssl; Issue#7, SurfinPy; Issue#18, target-datadotworld; Issue#2, django-television;
Issue#3, django-television; Issue#26, traIXroute; Issue#1760, superdesk-core; Issue#4, musco-pytorch;

Pattern A.b

Issue#136, grimoirelab-manuscripts; Issue#36, polyaxon-client;
Issue#39, polyaxon-cli; Issue#40, polyaxon-cli;
Issue#54, polyaxon-schemas; Issue#271, transifex-client;
Issue#272, transifex-client; Issue#55, polyaxon-schemas;
Issue#377, money-to-prisoners-common; Issue#378, money-to-prisoners-common; Issue#208, pshtt;
Issue#1, dork; Issue#4, CommonMark-py-Extensions;
Issue#1, pymacaron-dynamodb; Issue#1, pymacaron-async;
Issue#1, Scriptax-Jupyter-Kernel; Issue#1, pymacaron-google-datastore; Issue#2, Scriptax-Jupyter-Kernel;
Issue#2, 1a23-telemetry;

Type 1

Issue#986, faker; Issue#26, certstream-python; Issue#69, click-pathlib;
Issue#182, django-dynamic-preferences;
Issue#20, ldapdomaindump; Issue#326, redis-py-cluster; Issue#3, GloboNetworkAPI-client-python;
Issue#75, Pylnquirer; Issue#1062, dash; Issue#1092, faker; Issue#2, chaosplatform-grpc; Issue#1902, angr;
Issue#1063, dash; Issue#1064, dash; Issue#1065, dash; Issue#850, Fiona;
Issue#717, newspaper; Issue#120, mixer; Issue#953, django-compressor;
Issue#3, chiki-base; Issue#1, Commandtax; Issue#68, dcplib;

Type 2

Issue#8, AutoCrawler; Issue#31, BBScan; Issue#2077, freqtrade; Issue#298, glastopf;
Issue#492, pywb; Issue#8, ct-exposer; Issue#71, EagleEyeAC; Issue#1179, mithril;
Issue#1, frida-util; Issue#295, sherlock; Issue#36, trains; Issue#4, SecurityManageFramwork;
Issue#5, Machine-Learning-with-Python; Issue#181, JBOPS;
Issue#34, xbox-smartglass-rest-python-urwid; Issue#127, allofplos;
Issue#4, api-mocker-generator; Issue#772, appscale-tools; Issue#26, Arachnid;
Issue#9, AsyncLine; Issue#3, augur; Issue#68, bcdata; Issue#148, aws-adfs;
Issue#454, awslimitchecker; Issue#2, bigga;
Issue#167, tldextract; Issue#98, bless; Issue#70, arxiv-submission-core; Issue#2729, plaso; Issue#9, Konan;
Issue#569, kalliope; Issue#4, ansible-runner-http; Issue#1042, python; Issue#7, argo-models;
Issue#1, AwsInfrastructureSdk; Issue#2, aws2; Issue#83, awscfncli; Issue#42, azkaban; Issue#1, BlizzPy;
Issue#2, aceql-http-client-python; Issue#7655, certbot; Issue#7, apispec-oneofschema;
Issue#184, tldextract; Issue#310, bioblend;
Issue#25, NoDB; Issue#17, oauth-dropins;
Issue#303, automatic-ripping-machine; Issue#27, ChannelBreakoutBot; Issue#183, messytables;
Issue#9, kuberdock-platform; Issue#42, python-weixin; Issue#146, Photon; Issue#911, pyspider;
Issue#7, fan; Issue#126, historical; Issue#49, stephanie-va; Issue#979, subliminal; Issue#56, WPSeku;
Issue#3, zhihu-crawler-people; Issue#38, Pendingwisp-network-topology; Issue#647, marathon-lb;
Issue#962, hangoutsbot; Issue#41, GyoiThon; Issue#120, automation-tools; Issue#4, app-engine-start-vm;
Issue#10, ahmia-index; Issue#118, agavepy; Issue#2, agavedb; Issue#32, AGFusion; Issue#232, pyensembl;
Issue#7, ambient_api; Issue#7, ambient_aprs; Issue#45, requests-unixsocket; Issue#26, appscale-agents;
Issue#1, artem; Issue#1, async_bowl; Issue#78, atomicpuppy; Issue#1, AwsEcrMigration; Issue#6, autoSubTakeover;
Issue#3, autochomsky; Issue#1, aws-assume; Issue#37, awscli-login; Issue#12, awsmfa; Issue#5, awswl;
Issue#1, awsutils-s3; Issue#10, basecampy3; Issue#1, axonbot_slack; Issue#11, basecampy3; Issue#12, basecampy3;
Issue#1, basalunit; Issue#1040, python-zeep; Issue#18, betdaq; Issue#3, biomaj2galaxy; Issue#466, python-binance;
Issue#1, binance-db; Issue#6, python-biopipe; Issue#467, python-binance; Issue#2, binance-db;
Issue#7, python-biopipe; Issue#8, python-biopipe; Issue#179, bookstore;

https://github.com/dvolgyes/TMO4CT

-8-

Pattern A.a: 73

Status 1: 20

Status 2: 8

Status 3: 4

Status 4: 2

Status 5: 39

Pattern A.b: 19

Status 1: 8

Status 2: 0

Status 3: 3

Status 4: 0

Status 5: 8

Type1: 22

Status 1: 4

Status 2: 0

Status 3: 12

Status 4: 0

Status 5: 6

Type2: 101

Status 1: 25

Status 2: 0

Status 3: 19

Status 4: 2

Status 5: 55

Based on the above statistics, for the first time period, i.e., from 1 July, 2019 to 10 August,

2019, the overall confirmation rate by developers is 73/117 = 62.3% and the corresponding fixing

rate is (53/73) = 72.6%, which are higher than those reported in the submitted version of the

paper. For the second time period, i.e., from 1 December, 2019 to 31 December, 2019, the

overall confirmation rate is 107/162 = 66.0% and the fixing rate is 65/107=60.5%.

By reading the issue reports, we found some comments from developers, which show the

usefulness and effectiveness of Watchman, such as:

https://github.com/webrecorder/pywb/pull/494

https://github.com/tensorlayer/openpose-plus/pull/213

https://github.com/arXiv/arxiv-submission-core/pull/71

https://github.com/webrecorder/pywb/pull/494
https://github.com/arXiv/arxiv-submission-core/pull/71

-9-

5. Conclusion

We successfully replicated the experiment results presented in the Watchman paper. We

tried Watchman’s online service and found that the tool can generate correct FDGs as well as

diagnosis information for DC issues. We also validated the released dataset. We believe that the

dataset can benefit future research on DC issues in the Python ecosystem.

References

[1] PyPI. https://pypi.org/.

[2] Alexandre Decan, Tom Mens, and Maelick Claes. 2016. On the topology of package depend-
ency networks: A comparison of three programming language ecosystems. In Proceedings of
the 10th European Conference on Software Architecture Workshops. ACM, 21.

[3] Dependency specification for Python. https://www.python.org/dev/peps/pep-0508/.

[4] Pietro Abate and Roberto Di Cosmo. 2011. Predicting upgrade failures using dependency
analysis. In 27th IEEE International Conference on Data Engineering Workshops. IEEE, 145–150.

https://pypi.org/
https://www.python.org/dev/peps/pep-0508/

