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Abstract

We report on an extensive Monte Carlo and Transfer Matrix study of disordered 2D 8-state Potts model using conformal
invariance techniques. 1999 Elsevier Science B.V. All rights reserved.

Critical properties of disordered spin systems at-
tracted a lot of attention, especially since Harris pro-
posed a relevance criterion for second-order phase
transitions. The effect of quenched randomness at
first-order phase transitions was studied later, after the
pioneering work of Imry and Wortis who argued that
a rounding of the transition occurs, possibly leading
to continuous transitions [1], as it is the case in 2D.
These problems have been extensively studied numer-
ically recently in 2D in the case of the self-dual 8-
state random-bond Potts model (RBPM) with a bi-
modal coupling distribution [2]. Both Monte Carlo
(MC) simulations [2–5] and transfer matrix (TM) cal-
culations [6] were performed, leading to partially con-
flicting results (Table 1), which eventually found an
explanation in terms of a crossover behaviour in a re-
cent work of Picco [4]. A disorder amplituder in the
range 8–20 appears to be adapted to a numerical analy-
sis and gives a good estimate of disordered fixed point
exponents.

The PM is well known to exhibit a first-order
phase transition when the number of statesq is larger
than 4, the larger the value ofq , the sharper the
transition. The choice of a valueq = 8 is motivated
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Table 1
Results obtained by different authors on the eight-state RBPM

Authors r β/ν Technique

Chen et al. [2] 2 0.118(2) MC
Cardy and Jacobsen [6] 2 0.142(4) TM
Chatelain and Berche [3] 10 0.153(3) MC
Picco [4] 10 0.153(1) MC

by the value of the correlation length in the pure case
(ξ = 23.87). MC simulations can thus be performed
easily with systems of larger sizes which enable
to discriminate between a first-order regime and a
second-order transition.

The question of the application of conformal in-
variance techniques in these systems is of great in-
terest, since these techniques are known to be very
powerful. When one knows the critical behaviour of a
two-dimensional system in the infinite or semi-infinite
geometry, conformal invariance tells us how the corre-
lations behave in restricted geometries, such as strips
or squares. After the replica average[. . .], one can ex-
pect that the symmetry properties required by confor-
mal invariance do hold in the disordered system. The
method which is proposed here is to apply the trans-
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Fig. 1. Order parameter correlation function in the strip geometry and effective scaling dimension extrapolated toL→∞.

Fig. 2. Order parameter profile in the square geometry and magnetic scaling dimension.

formation of correlation functions under adapted con-
formal mappingsw(z)

Gσ (w1,w2)=
∣∣w′(z1)

∣∣−xb
σ
∣∣w′(z2)

∣∣−xb
σ Gσ (z1, z2) (1)

to deduce the magnetic scaling dimensionxb
σ = β/ν

in the disordered fixed point regimer = 10. The
comparison with standard Finite-Size Scaling (FSS)
resultsxb

σ = 0.150–0.155 will constitute the crucial
test.

The first restricted geometry considered in the
following is a strip, obtained from the infinite complex
z-plane via the logarithmic mapping

w(z)= L

2π
ln z.

The exponential decay of the correlations along the
strip (Fig. 1) then follows[〈
G

strip
σ (u2− u1)

〉]
=Cst(v)exp

[
− 2π

L
xb
σ (u2− u1)

]
(2)

Table 2
Results obtained by conformal mappings compared to FSS results.

FSS Conformal mappings

[〈Mb〉] [〈Gstrip
σ (u)〉] [〈Gsq.

σ (w)〉] [〈σ sq.(w)〉]
0.153(1) 0.1496(9) 0.152(3) 0.1499(1)

and allows the determination of the scaling dimension
(Table 2) for different strip sizes in the rangeL= 2 to
9 (average over 40× 103 disorder realizations).

In the square geometry (of sizeN2), the Schwarz–
Christoffel mappingz = sn(2Kw)/N leads to the
magnetization profile (Fig. 2), deduced from the al-
gebraic decay of the corresponding profile from the
distance to a surface with fixed boundary spins in the
semi-infinite geometry. The resulting expression is of
the form[〈
σ sq.(w)

〉]=Cst
(
f (z)/y

)xb
σ

and, again, the magnetic scaling dimension can be ex-
tracted (Table 2, 3000 disorder realizations on a square
of size 1012). One should mention that the shape of
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the correlation function in the square geometry gives a
third determination (Table 2).

In conclusion, the results deduced from the applica-
tion of conformal covariance of correlations do agree
with previous standard FSS results. This is clearly
in favor of the validity of conformal invariance at
randomness-induced second-order phase transitions,
and thus provides a very accurate technique for the in-
vestigation of their critical properties. This work was
supported by the CNUSC under project No C981009.
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