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Influence of deterministic fluctuations on the 8-state Potts model
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Abstract

We study a layered 8-state Potts model with an aperiodic modulation of the exchange couplings. Depending on its geometric
properties, the aperiodic sequence may induce a 2nd order phase transition. 1999 Elsevier Science B.V. All rights reserved.

In the light of the Imry–Wortis criterion [1], fluctua-
tions may cause a 1st order phase transition to change
into a 2nd order one. It is the case for the random-bond
8-state Potts model as first shown by Chen et al. [2].
The role played by aperiodic fluctuations at 1st order
phase transition is not currently understood.

The system considered is a layered square 8-state
Potts model defined by the following Hamiltonian

−βH=
∑
i,j

Ki
[
δσi,j ,σi,j+1 + δσi+1,j ,σi,j

]
,

σi,j = 0 . . .q − 1, (1)

where the exchange couplingsKi in each layeri are
given by an aperiodic sequence{fk ∈ {0;1}}k=0...L−1:
Ki =Krfi .

It can be shown that duality arguments apply for
sequences which are identical when read from the
left or the right apart from the exchange 0↔ 1,
i.e. when{fk}k=0...L−1 = {1− fL+1k}k=0...L−1. The
four sequences under investigation: periodic (known
to lead to a 1st order phase transition and denoted PS),
Thue–Morse (TM), Paper–Folding (PF) and Three–
Folding (TF) satisfy this property [3,4].
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The aperiodic sequences are generated by iterating
substitution rules. The Thue–Morse sequence is for
example generated with the rules:{

0→ S(0)= 01

1→ S(1)= 10
(2)

so that the first iterations are 0→ 01→ 0110→
01101001→ ·· · . The geometric properties of a se-
quence are given by its substitution matrixM defined
asMij = ni(Sj ) whereni(Sj ) is the number of digits
i in the sequence(Sj ). The lengthLn of the sequence
aftern iterations of the substitution rules and the fluc-
tuations of the density1ρ with respect to its asymp-
totic valueρ∞ behave as

Ln ∼ λn0,

1ρ = 1

Ln

Ln−1∑
i=0

(fi − ρ∞)∼
(
λ1

λ0

)n
∼ Lω−1

n , (3)

whereλi is theith eigenvalue ofM andω = ln |λ1|/
lnλ0 is the wandering exponent. This exponent is
equal toω = −∞ for PS and TM (bounded fluctua-
tions) andω = 0 for PF and TF (logarithmically diver-
gent fluctuations).

Large-scale Monte Carlo simulations using the
Swendsen–Wang algorithm show that PS and TM do
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Fig. 1. Magnetic susceptibilityχ for TM (δ-like asymptotic behaviour) and PF (power-law) (left) and size-dependence of the energy
auto-correlation time which is expected to be exponential for a 1st phase transition and a power law for a 2nd order one (right).

Fig. 2. Effective exponent as expected by phenomenological renormalization of the total magnetization and the magnetic susceptibility for TM
and PF atr = 5 (left) and effective size-dependent critical exponents obtained by finite-size scaling at the critical point forr = 5 (right).

not modify the order of the phase transition undergone
by the 8-state Potts model (they nevertheless signif-
icantly smooth it). On the other hand, the develop-
ment of singularities in the magnetic susceptibility and
the behaviour of the energy auto-correlation time are
strong evidences of a 2nd order phase transition for PF
and TF.

Finite-size scaling and phenomenological renormal-
ization allow the calculation of the critical exponents
for PF and TF. It appears that both PF and TF belong
to the same universality class defined byyt ' 1.00 and

yh ' 1.50. Moreover, these critical exponents do not
depend (within error bars) on the perturbation ampli-
tuder.
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