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Abstract
The Goldbach’s conjecture has been described as the most difficult problem in the history of
Mathematics. This conjecture states that every even integer greater than 2 can be written as
the sum of two primes. This is known as the strong Goldbach’s conjecture. The conjecture that
all odd numbers greater than 7 are the sum of three odd primes is known today as the weak
Goldbach conjecture. A major complexity class is NSPACE(S(n)) for some S(n). We show if the
weak Goldbach’s conjecture is true, then the problem PRIMES is not in NSPACE(S(n)) for all
S(n) = o(log n). However, if PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the
strong Goldbach’s conjecture is true or this has an infinite number of counterexamples. Since Harald
Helfgott proved that the weak Goldbach’s conjecture is true, then the strong Goldbach’s conjecture
is true or this has an infinite number of counterexamples, where the contains of infinite number of
counterexamples is statistically less unlike it.
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1 Introduction

Number theory is a branch of pure mathematics devoted primarily to the study of the
integers and integer-valued functions [15]. Goldbach’s conjecture is one of the most important
and unsolved problems in number theory [8]. Nowadays, it is one of the open problems of
Hilbert and Landau [8]. Goldbach’s original conjecture, written on 7 June 1742 in a letter to
Leonhard Euler, states: “... at least it seems that every number that is greater than 2 is the
sum of three primes” [6]. This is known as the ternary Goldbach conjecture. We call a prime
as a natural number that is greater than 1 and has exactly two divisors, 1 and the number
itself [18]. However, the mathematician Christian Goldbach considered 1 as a prime number.
Euler replied in a letter dated 30 June 1742 the following statement: “Every even integer
greater than 2 can be written as the sum of two primes” [6]. This is known as the strong
Goldbach conjecture.

Using Vinogradov’s method [17], it has been showed that almost all even numbers can
be written as the sum of two primes. In 1973, Chen showed that every sufficiently large
even number can be written as the sum of some prime number and a semiprime [4]. The
strong Goldbach conjecture implies the conjecture that all odd numbers greater than 7 are
the sum of three odd primes, which is known today as the weak Goldbach conjecture [6]. In
2012 and 2013, Peruvian mathematician Harald Helfgott published a pair of papers claiming
to improve major and minor arc estimates sufficiently to unconditionally prove the weak
Goldbach conjecture [9], [10].

We define a non-regular language under the assumption that the weak Goldbach’s
conjecture is true. Indeed, the possible language can be easily proved that might be non-
regular using the Pumping lemma for regular languages [13]. However, we prove this language
is actually regular when the exponentially more succinct version is in NSPACE(S(n)) for some
S(n) = o(log n). This result is based on the breakthrough approach that checking whether a
number is prime can be decided in polynomial time by a deterministic Turing machine [1].
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This problem is known as PRIMES [1]. Since the weak Goldbach’s conjecture is true, then we
obtain that necessarily the mentioned language should be non-regular [9], [10]. Nevertheless,
this implies the language PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n). Moreover,
if the language PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the strong
Goldbach’s conjecture is true or this has an infinite number of counterexamples. In this
way, we prove the strong Goldbach’s conjecture is true or this has an infinite number of
counterexamples.

2 Background Theory

In 1936, Turing developed his theoretical computational model [16]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [16]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [16]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [16].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each
string w in Σ∗ there is a computation associated with M on input w [3]. We say that M

accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [3].
Note that M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [3].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [5].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [5]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [5]. We
denote by tM (w) the number of steps in the computation of M on input w [3]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [5].

A logarithmic space Turing machine has a read-only input tape, a write-only output
tape, and read/write work tapes [16]. The work tapes may contain at most O(log n) symbols
[16]. In computational complexity theory, NL is the complexity class containing the decision
problems that can be decided by a nondeterministic logarithmic space Turing machine [12].

We use o-notation to denote an upper bound that is not asymptotically tight. We formally
define o(g(n)) as the set

o(g(n)) = {f(n) : for any positive constant c > 0, there exists a constant
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n0 > 0 such that 0 ≤ f(n) < c× g(n) for all n ≥ n0}.

For example, 2× n = o(n2), but 2× n2 6= o(n2) [5].
In theoretical computer science and formal language theory, a regular language is a formal

language that can be expressed using a regular expression [2]. The complexity class that
contains all the regular languages is REG. The complexity class NSPACE(f(n)) is the set of
decision problems that can be solved by a nondeterministic Turing machine M , using space
f(n), where n is the length of the input [11].

3 Results

I Definition 1. We define the weak Goldbach’s language LW G as follows:

LW G = {12×n+10p0q0r : n ∈ N∧n ≥ 4∧p, q and r are odd primes ∧2×n+1 = p+q +r}.

We define the strong Goldbach’s language LG as follows:

LG = {12×n0p0q : n ∈ N ∧ n ≥ 3 ∧ p and q are odd primes ∧ 2× n = p + q}.

I Theorem 2. If the weak Goldbach’s conjecture is true, then the weak Goldbach’s language
LW G is non-regular. Moreover, if the strong Goldbach’s conjecture is true, then the strong
Goldbach’s language LG is non-regular.

Proof. If the weak Goldbach’s conjecture is true, then the weak Goldbach’s language LW G

is equal to the another language L′ defined as follows:

L′ = {12×n+102×n+1 : n ∈ N ∧ n ≥ 4}.

We can easily prove that L′ is non-regular using the Pumping lemma for regular languages
[13]. Moreover, if the strong Goldbach’s conjecture is true, then the strong Goldbach’s
language LG is equal to the another language L′′ defined as follows:

L′′ = {12×n02×n : n ∈ N ∧ n ≥ 3}.

We can easily prove that L′′ is non-regular using the Pumping lemma for regular languages
as well [13]. J

I Definition 3. We define the weak verification Goldbach’s language LW V G as follows:

LW V G = {(2×n+1, p, q, r) : n ∈ N∧n ≥ 4∧p, q and r are odd primes ∧2×n+1 = p+q+r}.

We define the strong verification Goldbach’s language LV G as follows:

LV G = {(2× n, p, q) : n ∈ N ∧ n ≥ 3 ∧ p and q are odd primes ∧ 2× n = p + q}.

I Theorem 4. LW V G ∈ P and LV G ∈ P .

Proof. This result is based on the breakthrough approach that checking whether a number is
prime can be decided in polynomial time by a deterministic Turing machine [1]. Certainly, we
can check in polynomial time whether p, q and r are odd primes and the other verifications
can be easily done in polynomial time as well. J
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I Definition 5. We define the weak Goldbach’s language with separator LW SG as follows:

LW SG = {02×n+1#0p#0q#0r : n ∈ N∧n ≥ 4∧p, q and r are odd primes ∧2×n+1 = p+q+r}

and we define the strong Goldbach’s language with separator LSG as follows:

LSG = {02×n#0p#0q : n ∈ N ∧ n ≥ 3 ∧ p and q are odd primes ∧ 2× n = p + q}

where # is the blank symbol.

I Lemma 6. The weak Goldbach’s language with separator LW SG is the unary representation
of the weak verification Goldbach’s language LW V G. The strong Goldbach’s language with
separator LSG is the unary representation of the strong verification Goldbach’s language
LV G.

Proof. This is trivially true from the definition of these languages. J

I Theorem 7. If LW V G ∈ NSPACE(S(n)) for some S(n) = o(log n), then LW G ∈ REG.

Proof. In case of LW V G ∈ NSPACE(S(n)) for some S(n) = o(log n), then there is a
nondeterministic Turing machine which decides LW SG that uses space that is smaller
than c × log log n for all c > 0, because of LW SG is the unary version of LW V G due to
Lemma 6 [7]. Certainly, the standard space translation between the unary and binary
languages actually works for nondeterministic machines with small space [7]. This means
that if some language belongs to NSPACE(S(n)), then the unary version of that language
belongs to NSPACE(S(log n)) [7]. In this way, we obtain that LW SG ∈ REG because of
REG = NSPACE(o(log log n)) [11]. In addition, we can reduce in a nondeterministic constant
space the language LW G to LW SG just nondeterministically inserting the blank symbol #
within two arbitrary positions between the 0’s on the input. Moreover, this nondeterminism
reduction inserts the blank symbol # between the 1’s and 0’s and converts the 1’s to 0’s from
the original input of LW G just generating the final output to LW SG. Consequently, we prove
LW G ∈ REG under the assumption that LW V G ∈ NSPACE(S(n)) for some S(n) = o(log n),
since REG is also the complexity class of languages decided by nondeterministic Turing
machines in constant space [14]. J

I Theorem 8. LW V G /∈ NSPACE(S(n)) for all S(n) = o(log n).

Proof. If the weak Goldbach’s conjecture is true, then LW G /∈ REG as a consequence of
Theorem 2. However, if LW V G ∈ NSPACE(S(n)) for some S(n) = o(log n), then LW G ∈
REG due to Theorem 7. In this way, the weak Goldbach’s conjecture cannot be true
under the assumption that LW V G ∈ NSPACE(S(n)) for some S(n) = o(log n). Since the
weak Goldbach’s conjecture is true, then we obtain that LW V G /∈ NSPACE(S(n)) for all
S(n) = o(log n) [9], [10]. J

I Theorem 9. PRIMES /∈ NSPACE(S(n)) for all S(n) = o(log n).

Proof. From the Theorem 8, we obtain that LW V G /∈ NSPACE(S(n)) for all S(n) = o(log n).
However, the checking of whether the four numbers on the input are odds and proving the
equality of the sum can be done in NSPACE(log log n). Certainly, the verification of the odd
property could be done in constant space. In addition, the verification of the equality of
the sum 2× n + 1 = p + q + r can be done in NSPACE(log log n), since we need a constant
space to save the remainder of the sum from each step and a binary string of length bounded
by log log n which represents the position of the bits that we are currently summing. For
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example, if we want to check whether the binary numbers 1, 10000001, 100000001 and
110000011 comply with the sum 110000011 = 1 + 10000001 + 100000001, then we start for
the rightmost one until the leftmost ones using the binary digit 1 as a remainder only in
the first step and saving the position of the bits we are summing using at most the binary
number 1001, because of 9 is the greatest bit position. The ultimate remaining verification
that we need to analyze in LW V G is whether p, q and r are primes. Since log log n = o(log n)
and LW V G /∈ NSPACE(S(n)) for all S(n) = o(log n), then we have as unique remaining
possibility that PRIMES /∈ NSPACE(S(n)) for all S(n) = o(log n). J

I Theorem 10. The strong Goldbach’s conjecture is true or this has an infinite number of
counterexamples.

Proof. If the strong Goldbach’s conjecture is false, then LG ∈ REG or LG is non-regular
and its complement is infinite, since every finite set is regular [12]. However, this implies that
the exponentially more succinct version of LG, that is LV G, should be in NSPACE(S(n))
for some S(n) = o(log n), because of REG = NSPACE(o(log log n)) and the same algorithm
that decides LG in NSPACE(o(log log n)) could be easily transformed into a slightly modified
algorithm that decides LV G in NSPACE(S(n)) for some S(n) = o(log n) [11]. However, that
is not possible because of LV G /∈ NSPACE(S(n)) for all S(n) = o(log n) when PRIMES /∈
NSPACE(S(n)) for all S(n) = o(log n). Certainly, the verification of whether p and q are
primes need to be done in order to accept the elements of this language. Consequently,
we obtain that LG /∈ REG, since it is not possible that LG ∈ NSPACE(o(log log n)) under
the result that LV G /∈ NSPACE(S(n)) for all S(n) = o(log n). In this way, we obtain a
contradiction just assuming that the strong Goldbach’s conjecture is false and LG ∈ REG.
In contraposition, we have the strong Goldbach’s conjecture is true or this has an infinite
number of counterexamples. J
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