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16. Automatic Score Extraction
with Optical Music Recognition (OMR)

Ichiro Fujinaga, Andrew Hankinson, Laurent Pugin

Optical music recognition (OMR) describes the pro-
cess of automatically transcribing music notation
from a digital image. Although similar to optical
character recognition (OCR), the process and pro-
cedures of OMR diverge due to the fundamental
differences between text and music notation, such
as the two-dimensional nature of the notation
system and the overlay of music symbols on top
of staff lines. The OMR process can be described
as a sequence of steps, with techniques adapted
from disciplines including image processing, ma-
chine learning, grammars, and notation encoding.
The sequence and specific techniques used can
differ depending on the condition of the image,
the type of notation, and the desired output.

Several commercial and open-source OMR
software systems have been available since the
mid-1990s. Most of them are designed to be used
by individuals and recognize common (post-18th-
century) Western music notation, though there
have been some efforts to recognize other types of
music notation such as for the lute and for earlier
Western music.

Even though traditional applications of OMR
have focused on small-scale recognition tasks,
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typically as an automated method of musical entry
for score editing, new applications of large-scale
OMR are under development, where automated
recognition is the central technology for building
full-music search systems, similar to the large-
scale full-text recognition efforts.

16.1 History
Computer-based optical recognition technologies, in-
cluding both OMR and OCR, have been under devel-
opment since the early days of computing technology.
Computerized OCR was first developed in 1951 [16.1]
and sold to large corporations, such as Reader’s Digest
and AT&T, to help process subscription and billing in-
formation [16.2].

Pruslin [16.3] demonstrated the first optical music
recognition system. This system operated on a single
measure of commonWestern music notation (CWMN),
and was capable of recognizing a limited set of mu-
sical symbols. Several years later, Prerau [16.4] in-
troduced the DO-RE-MI OMR system, capable of
recognizing three measures of printed CWMN con-

sisting of a single voice on two staves in a single
font.

The goal of most early OMR development was
a universal recognition system, capable of recogniz-
ing the entirety of music notation output, in much the
same way that early OCR systems were envisioned as
a tool capable of complete and accurate transcription
of all textual documents [16.5, 6]. Despite understand-
ing the limitations of the early OMR systems, Prerau
concludes that the technique should be able to be ex-
panded to the recognition of all printed music [16.7].
This early optimism was driven by a näive (in hind-
sight) understanding of the diversity and complexity
of document contents. For text, page features such as

© Springer-Verlag GmbH Germany 2018
R. Bader (Ed.), Springer Handbook of Systematic Musicology, https://doi.org/10.1007/978-3-662-55004-5_16



Part
B
|16.2

300 Part B Signal Processing

columns, figures, tables, footnotes, and even headings
posed a challenge for accurate textual recognition. For
music recognition, the troubles were even more acute
since music notation styles and practices would vary
by composer, publisher, repertoire and historical prac-
tices. By the 1990s, the goal of creating a universal
recognition system had been largely abandoned in fa-
vor of repertoire and application-specific OMR systems
capable of transcribing a well-defined subset of music
documents [16.8]:

[. . . ] in practice, composers and publishers often
feel free to adapt old notation to new uses, and
invent new notation, as they see fit. There are in
fact national dialects of music notation, and mu-
sical works use many different levels of notational
complexity. Thus it may not be possible to devise
a single recognition system capable of recognizing
all music notation. [Pruslin 1966] states that a com-
plete solution to the music recognition problem is
the specification of: which notes are present, what
order they are played in, their time values or dura-
tions, and volume, tempo, and interpretation. This

level of recognition suffices for only some of the ap-
plications listed [later in this paper].

As research and development continued through the
1990s and 2000s, OMR systems were developed to
specialize in transcribing specific repertoires or styles
of notation. In addition to CWMN recognition sys-
tems, repertoire-specific recognition systems exist for
many different music notation styles, including lute
tablature [16.9–11], Byzantine chant [16.12, 13], men-
sural notation, both in print [16.14] and manuscript
sources [16.15], and others.

Several OMR toolkits have also been developed to
help assemble bespoke OMR systems. These toolkits
have been used to build several of the aforementioned
systems, and provide a generalized structure and toolset
from which these customized OMR systems may be
built. Examples of these frameworks include the CAN-
TOR system [16.16] and the Gamera system [16.17].
While these systems present a more flexible approach to
OMR, they require significantly more development ex-
pertise to create and run OMR than turnkey systems and,
as such, are generally only used in research contexts.

16.2 Overview
The recognition process can generally be defined as
identifying and contextualizing from a signal the infor-
mation contained in it. It is a discriminative response
to a specific stimulus that makes it possible to assign
each object to a particular class. Recognizing shapes
and reading are typical recognition processes performed
by humans, and cognitive research has studied the com-
plexity of this task.Marr [16.18], a pioneer in cognitive
science, has proposed a theory of vision describing
it as a bottom-up process, in which an image is first
deconstructed into bidimensional primitives and then
reconstructed as a spatial object. Since then, other stud-
ies [16.19] have shown that such a theory, however
rational, is too restrictive and that a top-down activity
is part of the human recognition processes, in particular
when the subject does not easily understand the scene
or the context. For example, when a human is reading
a highly degraded document, the type of document and
the context will be instrumental clues to deciphering its
contents. For example, knowing that the document is
a string quartet and reading the beginning of the bottom
staff provides the reader with the information that the
content to be read at that place is quite likely to be an
F clef. Studies on human text reading have highlighted
different reading techniques [16.20]. In most cases, the
brain does not operate by letter decoding but rather by

adopting a more global approach based on the linguistic
context. This explains why reading known words within
which letters are missing or are inverted can usually be
achieved without problems. Conversely, when one has
to read an unknown word, reading is performed via let-
ter decoding and assembly.

The goal pursued in optical recognition of music
scores and of documents is similar to the recognition
process as described above. A major problem, however,
is that it is extremely difficult to formalize this process
algorithmically, especially if the aim is to design a sys-
tem that can operate simultaneously with the bottom-up
and top-down analysis mechanisms.

Among the various applications developed in the
field of document recognition, the most advanced ones
are certainly the optical character recognition (OCR)
applications for which many functional and business
solutions already exist. In fact, very early on, the re-
sults obtained in this field allowed complete solutions
to be implemented for the recognition of typewritten
texts or fonts, at least for fairly good documents hav-
ing a relatively simple structure. In most systems, the
recognition is performed by a sequential process of
preprocessing, segmentation, classification and valida-
tion. This approach provides excellent results for two
main reasons: firstly because character segmentation is
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relatively easy and can be done simply by analyzing
verticals projections, and secondly because classifiers
such as neural networks (NN) or k-nearest-neighbor
(k-NN) that are often used in these systems perform par-
ticularly well for this type of operation and on this type
of data.

The results obtained in the recognition of cursive
handwriting, or related tasks, are significantly less suc-
cessful and it is unanimously agreed that this task is
much more difficult [16.21]. In addition, it is strik-
ing to see how difficult it is, if not impossible, to
adapt techniques traditionally used for recognition of
printed texts to the recognition of handwritten text. In

fact, the problem faced with handwriting recognition
is a problem that can be summed up in a well-known
paradox stated by Sayre [16.22]: to recognize, we need
to segment the input signal, but in order to segment
appropriately we need to recognize. The best results
in handwriting recognition were obtained using other
techniques than NN or k-NN that enable validating the
recognition at different linguistic levels. The approach
that has been the most widely used in recent years is
hidden Markov models (HMM), especially because of
their excellent noise absorption capacity and, above all,
because of their linguistic context integration capac-
ity [16.23].

16.3 OMR Challenges
OMR is a special case of document recognition. From
a technical point of view, it has many similarities with
OCR. Many of the challenges encountered in char-
acter recognition also arise with music. A recurring
problem is the quality of documents considered. Some
techniques can show promising results and yield high
recognition rates when the documents considered are
very clean, are straight, and show perfectly printed
symbols. The difficulty of the task, however, increases
dramatically with document degradation, if the docu-
ment is skewed or curved, or if some symbols are poorly
printed or partially deleted. In real-life cases, however,
it is very rare that the documents to be processed are
clean, straight, and perfectly printed. In most cases, we
can expect imperfections of various types. They can be
grouped into two distinct categories: the imperfections
in the document itself and degradation introduced by
the document acquisition phase.

Imperfections in the document can vary from one
type of document to another, from one document to an-
other, and sometimes even from one page to another.
The following problems are commonly encountered:

! Printing imperfections (such as uneven absorption
of ink by the paper)

! Partial erasure of symbols
! Ink bleed-through from the opposite side of the pa-

per
! Stains
! Paper degradation (yellowing, foxing, mold and

mildew etc.)
! Holes or tears.

An essential step in the recognition process is digi-
tization, where the analog signal (an original document,
a photo etc.) is converted into a digital image. This doc-
ument acquisition phase is not always limited to a single

capture event. In practice it is composed of several suc-
cessive steps, and in the recognition stage the user may
not have a clean and clear image of the original phys-
ical document but only a version that previously went
through different imaging processes. In some cases for
instance, the document is photographed before being
digitized. A source may have been photographed and
then transferred to a microfilm or microfiche, and ulti-
mately only the microfilm is available to be digitized.
Each step of the of document acquisition can introduce
various types of unwanted artifacts:

! Document image skewing
! Noise
! Bulged or curved appearance of the document im-

age
! Nonuniform lighting
! Borders around the document image
! Partial content of other pages around the document

image.

An important consideration during this phase is
the digitization resolution. The resolution has a direct
effect on the size and definition of details that can
be captured from the physical object. Musical nota-
tion contains specific features that depend on relatively
small symbols, for example staccato, dotted notes and
accidentals. Ng and Boyle [16.24] showed that with
a document scanned at a resolution of 300 dpi, the
distinction between a sharp and a natural could be am-
biguous. Several studies [16.25, 26] have shown that as
a result the appropriate resolution for capturing details
from a music document is higher than that for text.

While OCR and OMR are similar tasks in many as-
pects, they also have fundamental differences that make
OMR a more difficult task than OCR. The first dif-
ference concerns the placement of symbols on a page
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and how they are arranged. Text is, for the most part,
unidimensional. Characters and words are typically
composed in a horizontal line, and each line has no
vertical relationship with the parallel lines above or
below it. This approach is not appropriate for music,
because it is necessary in music to consider both the
vertical and the horizontal dimensions simultaneously.
The addition of the vertical dimension poses challenges
in accurately determining the pitch of a note, for ex-
ample, or the component pitches of a chord, while
simultaneously information embedded in the horizontal
dimension determines co-occurrences of both sounding
and nonsounding events (i. e., notes that sound at the
same time, or ties that control the sounding duration of
a note).

Another difference is the musical characteristic that
symbols are superimposed on staff lines. Superimposi-
tion of the elements is known to be a difficult problem
of recognition of forms [16.27]. Many segmentation
algorithms widely used in textual recognition are inef-
fective with music scores because they operate by edge
detection. Thus, in OMR, the superposition of the sym-
bols makes segmentation a particularly critical phase.
Most musical recognition systems include the removal
of the staff lines, which is particularly difficult when
a musical symbol merges with a staff line, for example

on top of an F clef. In practice, several factors can make
staff line detection and removal difficult:

! The lines are usually not perfectly straight
! The line thickness is often variable
! The lines may be interrupted at certain points.

Many musical symbols have similar characteristics
to each other (e.g., a half note and a quarter note are
both made of a stem and a note head of the same
size), but must be interpreted in vastly different ways.
The visual difference between a note with a dotted du-
ration and a note with a staccato is simply a slight
shift in the position of the dot, but one means to
lengthen the sounded note, and the other means to
shorten it! This often leads to classification problems.
Many musical symbols are not made of a single graph-
ical element, but are compound symbols composed of
two or more distinct elements. This is the case, for
example, of an F clef, where the entire symbol is com-
posed of three components: a curved line and two dots.
Elements of compound symbols can belong to differ-
ent types of symbols. A small dot can be the point
of an F clef, a point of a dotted note, or a staccato
point. Similarly, a sharp can be part of a key signa-
ture, the accidental of a note, or belong to a figured
bass.

16.4 Technical Background
Several studies cover the early OMR techniques
exhaustively, including Blostein and Baird [16.8],
Selfridge-Field [16.28], Bainbridge and Bell [16.27],
and more recently Rebelo et al. [16.21].

The nature of musical symbols has meant that from
very early on OMR research had to look at struc-
tural recognition methods. The earliest research quickly
showed that a functional recognition approach would
work only for excessively simple cases. In general,
symbols are grouped into two distinct categories: on
one side, the symbolic, which can be treated as char-
acters (keys, alterations, rests etc.), and on the other
side, those that Martin and Bellissant [16.29] name the
iconic, or assembled (e.g., note heads, stems, flags and
beams), which are made of different primitives that may
undergo various transformations and are assembled fol-
lowing certain rules.

Most OMR systems developed to date have more or
less the same pipeline architecture that can be broken
down into distinct phases:

1. Preprocessing of the image
2. Detection and removal of staff lines

3. Segmentation of the objects
4. Reconstruction of musical symbols
5. Classification and interpretation.

In many systems, musical rules are applied to in-
crease accuracy. This can happen during several phases
of the process, but most of the time the rules are ap-
plied during the reconstruction of the musical symbols
from the primitives and during the classification of the
symbols and the interpretation of the music content.

Using grammar to describe the musical notation
and musical knowledge is a common technique [16.30].
Various methods have been proposed to integrate gram-
matical methods developed originally for languages
into the bidimensional space of OMR. The transposition
from one to two dimensions increases the complexity
of the grammar, in both the design of the grammars and
their use. This results in grammars that are either fairly
simple but incomplete, or very complex but challenging
to manage. One approach to simplify the problem is to
have two distinct grammatical levels: low-level gram-
mars, for describing the structure of a musical symbol
constructed from primitives, and high-level grammars
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for the description of the organization of musical nota-
tion itself [16.31].

16.4.1 Preprocessing

In many OMR research projects no particular attention
is given to the preprocessing. The reason is that many of
the problems to be solved are common to that faced by
OCR, or even more generally in document recognition.
In most researches a reference is made to the solutions
proposed in these two research areas.

However, some more specific studies focusing on
old documents looked more precisely at the threshold-
ing problem during the binarization phase. This is the
case withMacMillan et al. for the Levy project [16.32].
It shows that in this practical case, it is necessary to use
more advanced methods of binarization. As does Ng
for manuscript sources, MacMillan et al. use some lo-
cally adaptive thresholding algorithms. This technique
allows the binarization to be optimized for document
images with nonuniform lighting [16.33]. Furthermore,
Burgoyne et al. [16.34] found that binarization methods
that worked well for text documents did not work well
for music documents and vice versa.

16.4.2 Staff-Line Detection and Removal

The detection and the removal of the staff lines is a key
phase in OMR systems. This phase is often part of the
preprocessing phase since usually the detection of the
staff lines is used also to correct the skew of the docu-
ment. Ideally, the staff lines are straight, parallel to each
other, have constant thickness, and are horizontal. In re-
ality, for various reasons, the lines may be curved, not
parallel to each other, have varying thickness, and be
skewed. A wide range of solutions has been proposed
of tackle these challenges [16.21, 35]. These include
projections, line tracing, two-dimensional vector fields,
skeletonization, and graph-based approaches.

Once detected, staff lines are usually removed with-
out removing the musical symbols. This step is critical,
in particular with symbols touching the staff lines. In
such cases, the removal of the staff lines may breakup
the musical symbols into smaller pieces, which will
then make their classification difficult without recon-
struction. The difficulty of the task is therefore to find
a solution that does not erase the staff line when it in-
tersects with a symbol.

16.4.3 Recognition Architectures

The techniques used in OMR for locating and classify-
ing symbols varies significantly from system to system
and have evolved considerably since the first systems.

This has been made possible by the considerable and
steady increase of computational resources offered by
new machines. Despite this diversity, some techniques
are recurrent and are to be found similar in many ap-
proaches.

The simplest approach to locating and classifying
the symbols is to look for the connected components
and to classify them. This technology, already used by
Prerau, generally uses simple measures such as the size
of the bounding box of the symbol or the surface of the
symbol. As simple as it is, this approach is still rela-
tively effective because of the morphological diversity
of some musical symbols (including in size) and can
still be used today for a first classification phase.

Another approach widely used for the localization
of the umsic symbols is to look for some easily de-
tectable primitive and then to look around it for other
primitives belonging to the expected symbol. For ex-
ample, Martin and Bellissant [16.29] locate the note
stems and then search for ellipses of note heads in the
adjacent area. Miyao [16.36] uses a similar technique
tailored for recognizing polyphonic passages. First, the
note stems are located together with all the note heads
and with stem flag candidates around each stem. Then,
two neural networks are used to identify from the can-
didates those that are attached to a specific stem. With
Rossant [16.37], vertical segments are not only used
to locate the stems but also a whole series of sym-
bols in which a vertical segment of a certain size is
included: these symbols belong to various categories,
such as notes, accidentals, bar lines, or certain types
of rests. For the remaining symbols, Rossant performs
a template correlation on limited zones: for locating
whole note or half note rests, this area can be lim-
ited to a staff range, whereas the location of the whole
notes, the correlation must be performed on a wider
area.

Fujinaga [16.38] uses mainly vertical and horizon-
tal projections. The symbols are located by vertical
projection of the area between the upper line and the
lower line. Different local projections are used to calcu-
late the height, width, area, and the number of peaks
to the vertical projection of the symbol. The data is
used for classification in conjunction with some syn-
tactic rules. For example, the first symbol on a staff is
expected to be a clef; or a beam of eighth notes can con-
tain only notes, rests or accidental; or a duration dot can
be placed only after a note or rest. Classification is per-
formed using a k-NN classifier together with a genetic
algorithm.

Kato and Inokuchi [16.39] use a blackboard expert
system where knowledge of musical notation is used
in the process to remove ambiguities. The recognition
is performed measure by measure once the clef, the
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key signatures and the time signatures have been rec-
ognized. To allow optimal recognition of the different
musical symbols that differ significantly in their size,
their position, and their possible appearance frequency
or importance, a wide variety of recognition methods
are used. The architecture consists of four separate
modules, which communicate with each other through
a shared common data structure representing a measure.
The role of the various modules is as follows:

1. Extraction of the primitives
2. Reconstruction of the symbols
3. Recognition of the symbols
4. Semantic analysis.

The memory shared by the four modules consists of
five distinct layers representing five different levels of
abstraction for a measure:

1. Pixels of the image
2. Primitives (note heads, stems, accidentals etc.)
3. Musical symbols (reconstituted notes, rests etc.)
4. Musical meaning of symbols (pitch, duration etc.)
5. Possible interpretation of the content of the mea-

surement.

The recognition process is guided by a variable
threshold that controls the recognition. Each layer
makes assumptions that are verified by the upper layer
from a tight line. If an upper layer considers a hy-
pothesis unacceptable, the threshold is released and the
treatment is reperformed at the lower level with the new
threshold. For example, an unrecognized primitive will
be put back in the pixels of the image. A document of
good quality will be recognized with tighter thresholds
and faster than poor-quality paper.

Ng and Boyle [16.24] use an iterative process of seg-
mentation and recognition. Recognition is performed
at different phases of the segmentation process, rather
than requiring all the symbols to be segmented into
primitive or broken signs prior to recognition. The pur-
pose of this method is to avoid over-segmentation of
the symbols. A first pass of recognition is performed
directly after the removal of staff lines based on sim-
ple rules and using a k-NN classifier. For nonrecognized
symbols, different types of subsegmentation and heuris-
tics are performed.

Coüasnon [16.40] proposes a solution that uses
the syntactic structure of musical notation. The idea
is to use the a priori knowledge given by the music
writing rules in order to guide the process of segmen-
tation and labeling of objects. Coüasnon distinguishes
between two types of information: the physical infor-
mation corresponding to the arrangement of notes and
attributes on the partition, and the logical information
corresponding to the transformation of the notes in mu-

sic writing. He defines a grammar that models this
separation into two levels. The terminals of this gram-
mar are the basic entities of the document description
and are recognizable without contextual information in
order to have information on which the recognition pro-
cess can be based. They consist of terminal segments
and symbols. The recognition process is performed in
two phases corresponding to the two levels of infor-
mation: graphic recognition and syntactic recognition.
The first phase deals with the notes and recognizes the
relative positioning of the attributes, while the second
phase recognizes the symbols connected with a voice
(slurs, dynamics etc.) and assigns the notes to the dif-
ferent voices depending on the vertical alignment and
the number of beats per measure. The method specifi-
cally targets orchestral scores, where a distinction must
be made between voices and staves: there may be up to
three voices per staff and, conversely, a voice may be
written on more than one staff.

Bainbridge and Bell [16.31] provide an extensible
solution also based on the use of a grammar. The solu-
tion is meant to allow the recognition of different types
of music notations and not be limited to CWMN. The
system, named CANTOR, consists of distinct modules
to be applied after the removal of stave lines:

1. Primitive recognition
2. Primitive assembly
3. Musical semantics.

Recognition of primitives is defined through a lan-
guage specifically designed for the task. The idea is to
accommodate a wide range of music writing by easily
assigning a primitive recognition for each shape (e.g.,
projections, Hough transform etc.). Assembly of the
primitive, the second module, is based on a slightly
modified definite clause grammar, which has the limited
scope of describing the taxonomy of musical notation.
The purpose of keeping the scope of the grammar lim-
ited is to prevent it from becoming too complex and
difficult to manage. The purpose of the last phase is to
combine the symbols recognized by looking at their po-
sition in order to produce a structure representing the
musical content of the image.

16.4.4 OMR Aggregation

Several researches have tried to improve OMR results
by aggregating multiple commercial OMR tools. This
approach relies on the fact that the commercial OMR
tools all have their strengths and weaknesses and thus
it should be possible to improve the overall recognition
results by comparing the output of several tools. The
first attempts were made by Knopke and Byrd [16.41].
Their approach involves two steps. First, the strengths
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and the weaknesses of each tool that will be used
are evaluated. Then the results of this evaluation are
used for weighting the output of each tool when com-
paring their output and when the tools do not agree.
Bugge et al. [16.42] propose a similar approach together
with the definition of a dedicated format (MusicXiMp-

Le), a subset of the MusicXML file format used for
the alignment of the tool’s output and that is meant
to facilitate the alignment of the data. More recently,
Church and Cuthbert [16.43] have proposed a different
approach that integrates rhythmic analysis in the align-
ment process.

16.5 Adaptive OMR
A wide range of music printing techniques have been
used throughout history [16.44, 45], each having their
own graphic particularities. This has led to the creation
of highly varied music document symbols and notation
practices. For each printing technique, publisher, edi-
tor, composer, or musical repertoire, the appearance of
the notation can vary significantly. Printers often had
their own distinctive font. The font shapes also vary
depending on the size of the book, ranging from small
in-octavo formats to larger in-folio or even in-plano for-
mats. Font designs also have trends and changes occur
over time. For example, the shape of the note heads in
music fonts of the 16th and 17th centuries was gen-
erally diamond shaped. It then gradually changed and
by the 18th century round note heads had become the
trend.

In many OMR systems, the recognition of symbols
is performed using supervised machine-learning algo-
rithms. Supervised learning algorithms require ground-
truth datasets of symbols in order to be trained. For
each ground-truth symbol (e.g., a note head), fea-
tures are extracted and fed to the algorithm for train-
ing. Once trained, the system will be able to iden-
tify similar symbols of the same category. When
building an OMR system, gathering the ground-truth
data for training is a highly time-consuming task
since the amount of data required can be quite high,
the data should ideally come from a wide range of
sources, and each symbol needs to be correctly la-
beled. The high variability in the data makes it un-
realistic to build an OMR system optimized for rec-
ognizing any document, even if targeting documents
from a reduced historical period or one of restricted
type.

A solution for tackling this issue is adaptive
OMR [16.38, 46]. The assumption with adaptive OMR
is that the system is not likely to consistently reach
100% accuracy and that most of the time, OMR work-
flows require human verification and correction to
achieve usable results. In this context, adaptive OMR
uses these correction results as further training data,
feeding them back to the system and retraining the
recognition system. As a result, systems will learn
from their previous mistakes, correctly identifying pre-
viously misrecognized symbols through the expansion
of its training data.

Pugin et al. [16.47] describe how this can be
achieved using maximum a posteriori (MAP) adapta-
tion, a technique widely used in handwriting and speech
recognition. In a preliminary phase, a book-independent
(BI) model is trained using ground-truth data taken
from a selection of different books drawn from different
printers and featuring variations in font shape and size,
and is used as a seed for the recognition system. Thus
the BI model gives acceptable results in general but
is not specifically optimized for a particular source. In
real-world usage, as each page of a book is recognized
and corrected, the BI model is amended and optimized
with MAP adaptation for the symbols in that book. As
soon as the user has corrected the recognition errors on
a newly processed page, that page is used as ground-
truth to adapt the BI model. Eventually, after a user
has corrected a number of pages, a book-dependent
(BD) model emerges that is optimized for a particular
set of sources (e.g., from a specific printer). The BD
model can be saved and used for recognizing similar
documents, creating a more optimal bootstrap than the
general BI model.

16.6 Symbolic Music Encoding
The output of an OMR process is a machine-readable
encoded music score. Whereas for text recognition,
unformatted text files can serve as a basic encoded
output of OCR processes, there is no equivalent for

music encoding. There is no uniformly recognized ba-
sic music encoding scheme equivalent to unicode or
to ASCII (American Standard Code for Information
Interchange). For OMR applications, this means that
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the encoded output has to be structured according to
a defined music code, be it designed specifically for
the OMR application, such as the Liszt format for
the SharpEye commercial application, for example, or
a more generic musical code.

Over the years, hundreds of musical codes have
been proposed, illustrating both the complexity of mu-
sic notation and the wide range of applications codes
can serve [16.48]. Selfridge-Field groups them into
three categories:

1. The codes targeting sound applications
2. The codes targeting notational applications
3. Those targeting analytical or more abstract applica-

tions.

Looking at how note pitches are handled is a sim-
ple way to help understand the difference between these
code categories. In the first category, the most widely
used code is undoubtedly MIDI (Musical Instrument
Digital Interface), whose primary goal was to allow
sound information to be exchanged between instru-
ments. One particularity of MIDI regarding pitches is
that it does not make the difference between, say, an F-
sharp and a G-flat even if they were noted differently
in the score. The second category of codes is meant to
capture visual characteristics of music notation. Musi-
cal codes that belong to this category include DARMS
(Digital Alternative Representation of Music Scores),
one of the oldest computer codes; SCORE, the code
used by the Score music notation software application
developed by Leland Smith; or the notation interchange
file format (NIFF). One particularity of the codes for
notational applications is that they often do not have
a concept of pitch. They do not store the notes by re-
ferring to the pitch name and the octave but instead by
referring to the staff line on which they appear. The C4
(C of the fourth octave) with the treble G-clef will be
coded with the same staff line parameters as an E2 with
the bass F clef. Codes from the later category that target
analytical applications, such as the plain and easy code,
the kern representation, or the Essen associative code
(EsAC), to mention only a few, store the note informa-
tion through its pitch name and its octave.

Codes for notational applications are well suited to
OMR applications. In fact, NIFF was developed with
OMR in mind and is still used by some commercial
software applications. NIFF was designed in the mid-
1990s and subsequently came to be supported by a fair
range of commercial OMR systems, including Sharp-
Eye, SmartScore, and PhotoScore. The use of NIFF
remained limited, however, and it never really took off
beyond its use by commercial OMR applications, which
eventually abandoned it. Nor did another attempt in mu-

sic code definition that was to extend MIDI for OMR
with the expressive MIDI [16.48].

One reason NIFF failed to establish itself as a stan-
dard file format may be that it is a binary format.
(Binary codes had the advantage of being more com-
pact than ASCII codes, but disk space is no longer an
issue for this type of data). But another reason might be
that it is a notational code, with the limitation that only
the graphical component of music notation is taken into
account. In OMR, the recognition task acts as an en-
coding process that moves from a graphical domain to
a logical domain. With a notational code such as NIFF,
the processing of the data remains limited. For example,
the pitch name and the octave of a note can remain un-
known since only the position on the staff line is stored.
In many uses of OMR data, however, further processing
will be desirable in order to move to a code of the third
category, the codes for an analytical or more advanced
application. Typically, this will mean further process-
ing the data in order to determine the pitch names and
the octaves by taking into consideration the clef of the
staff (or possible intermediate clef changes) and the key
signature (or possible accidentals appearing previously
in the measure). When the goal of the OMR process
is the reediting of the original image, then a notational
code can suffice, assuming that the editing tool can
read the notational code produced by the OMR process.
(It should to be noted that such an approach can have
advantages regarding the impact of some recognition
errors. For example, if a clef of a staff was wrongly rec-
ognized, it will have no impact on the accuracy of the
content of the staff itself). This is, however, only one
possible use case of OMR. Typical use cases of OMR
require analytical data, for example to make an ar-
rangement or transposition of the musical content. The
analytical data can be derived from notational codes,
but this is not necessarily trivial to do. It is one reason
why encoding output formats other than NIFF were de-
sirable and why it eventually became obsolete.

One analytical format that is widely used as an out-
put of OMR processes is MusicXML, which is a code
that started as an XML (extensible markup language)
representation of MuseData [16.49]. It was developed
by Michael Good and is now owned by MakeMusic.
MusicXML is primarily an interchange format for ex-
changing music data between computer applications.
This makes it well suited for exporting data from an
OMR system to other types of applications, but it is not
designed to represent and store the information of an
OMR process.

Some XML alternatives to MusicXML were pro-
posed for encoding music notation. One targets a wide
range of applications, including OMR: the IEEE 1599–
2008 standard designed by the IEEE 1599 Working
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Group for XML Musical Application [16.50]. To our
knowledge this standard is not currently used by any
OMR systems.

16.6.1 The Music Encoding Initiative (MEI)

Over the last few years, a community-based project
began to occupy an increasingly important role: theMu-
sic Encoding Initiative (MEI) [16.51]. The project was
started around 2000 by Perry Roland from the Univer-
sity of Virginia. It was directly inspired by the Text
Encoding Initiative (TEI), a leading project in text stud-
ies that became over the years the commonly accepted
standard for representing and encoding texts. MEI
pursues similar goals for musical documents. It is ex-
pressed in the form of an XML schema that defines the
structure of the corresponding XML musical data. The
first version of the MEI schema was released in 2010 in
ODD (one document does it all), which is a schema def-
inition solution developed by the TEI community that
regroups in one document the schema definition and all
the documentation related to it. The MEI schema is reg-
ularly updated to incorporate the latest improvements.

One feature of MEI in contrast to many attempts
to define a musical code is that it is driven by an open
community of contributors representing a wide range of
backgrounds and interests. They include technologists,
musicologists with various repertoires of expertise, and
librarians. Beside the fact that MEI is community
driven, it also has the particularity of accommodating
a wide range of music notation and not being limited
to CWMN – even though this is its first target. This
flexibility is greatly facilitated by its modular approach
and its nonmonolithic design. Each music notation type
can be defined as a separate module, for example, MEI
already includes in its core set of modules specialized
modules for mensural and neume notations. The mod-
ularity of MEI does not serve only the separation of
music notation types. MEI includes distinct modules

for the metadata, for pointers and references, for linking
with facsimile or for the definition of graphics, shapes,
and symbols. Furthermore, each module can be modi-
fied or new modules added, should the default settings
of MEI not be appropriate. This can happen when en-
coding a different notation type or when another type of
application is targeted by the encoding. MEI includes
a so-called customization service that allows part of the
schema to be redefined or new encoding concepts to be
introduced [16.52].

Even though MEI was not designed specifically for
OMR applications, its richness and flexibility makes it
perfectly appropriate for them [16.53]. The aforemen-
tioned module for linking with facsimile images is of
particular interest. It makes it possible to easily and pre-
cisely refer from the encoding to zones in an image. This
is similar to what is achieved with the hOCR format de-
veloped by Google for their open-source OCR project
OCRopus. Since the output is text with OCR, they can
use HTML (hypertext markup language) to mark up the
text output [16.54]. However, the hOCR format enriches
the HTML with additional information on layout, refer-
ring to an image, and data such as character recognition
confidences. This is done in a way that does not affect
the structure of the HTML content, which remains stan-
dard HTML. In a similar (though not identical) way, the
MEI can include additional information, including ref-
erences to image zones without the logical structure of
theMEI to be modified.WithMEI, references to images
work by defining a facsimile subtree in the MEI file that
regroups a set of surfaces (typically each one represent-
ing a page) that will contain a reference to an image and
a list of zones in it. Each zone is identified with a unique
identity to which any element in the encoding (a clef, for
example) can refer. This not only enables robust linking
between the encoding and the image to be generated, but
it also has the advantage of keeping the information con-
cerning the references to the images separate from the
logical musical data.

16.7 Tools
16.7.1 Commercial OMR Software

Although several commercial OMR software packages
have been marketed, currently only a handful products
have stood the test of time. One of the survivors is also
the first commercial OMR software ever published. Ini-
tially under the name MIDISCAN, Musitek released its
product in August 1993 [16.55]. It was renamed later as
SmartScore and its Lite version was bundled with a mu-
sic editing software Finale 2003 in the spring of 2002.

Another popular music editing software Sibelius (now
owned by Avid Technology) uses Photoscore [16.56],
which was originally released by Neutron for the Acorn
system in 1997 (for Windows in 1999 and for the Mac
in 2000). The ScoreMaker by Kawai has been available
on the Windows system (in Japanese only) since 1995
and the capella-scan [16.57] from Germany has been
around since about 2000 [16.58]. According to the de-
veloper, Graham Jones, the development of SharpEye
started in 1996 [16.59], but it has not been updated
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since 2006 (version 2.86) when he transferred rights in
SharpEye to another company [16.60]. All of the com-
mercial OMR software mentioned above are designed
to work with CWMN.

16.7.2 Open-Source Tools
and Toolkits

A few OMR tools are available as open-source. We
can make the distinction between end-user ready-to-use
desktop applications and toolkits available for creating
custom OMR applications.

Desktop Applications
For CWMN, the only open-source tool available is Au-
diveris [16.61]. It is written in Java and is available
under the General Public License (GPL) v2 open-
source license. For text recognition, Audiveris uses the
Google OCR Tesseract engine. The recognition engine
is based on neural networks that can be retrained for
specific sources. Audiveris includes a user interface for
data correction and exports to MusicXML. Version 5 is
currently in preparation.

One open-source OMR project specifically targets
Renaissance music prints: the Aruspix project [16.62].
The project focuses on the development of techniques
and tools for processing early typographic music prints
from the 16th and 17th centuries. The Aruspix soft-
ware application is a desktop application written in C++
(cross-platform) and is available under the GPL v3 li-
cense. Aruspix uses HMM (hidden Markov models) for
the recognition with an original approach without staff
removal [16.14]. It includes a user editor for correcting
the results and an adaptive feature based on MAP adap-
tation [16.47]. Aruspix uses MEI as internal and output
format.

Toolkits
The most widely used toolkit for building OMR sys-
tems is Gamera [16.17, 63]. Gamera is written in C++

and Python and is available under the GPL v2 license. It
is designed as a toolkit for building pattern recognition
systems with a strong focus on document recognition
and OMR in particular. It includes a whole range of
image processing algorithms together with a k-NN clas-
sifier. With this tool, the users can build their own
recognition system by putting together scripts that will
perform selected operations. These can include vari-
ous preprocessing operations, such as noise removal,
blurring, deskewing, contrast adjustment, sharpening,
binarization, and morphology, for example. At the core
of the Gamera system is the segmentation and the clas-
sification. Several algorithms are provided for these
tasks together with a user interface for labeling the
data. Both the image processing and the classifier parts
are easily extendable, if necessary, with either C++ or
Python extensions.

Gamera is distributed with add-on toolkits specif-
ically designed for building OMR applications. The
MusicStaves toolkit implements various algorithms for
removing the staff lines [16.35]. It can be used in
an interactive mode through the Gamera graphical
user interface or in a noninteractive mode from the
command line or scripts. The OTR (optical tablature
recognition) toolkit is a package for the recognition
of lute tablature [16.9, 11]. It includes scripts for the
recognition of French, German, and Italian tablatures,
all being slightly different tablature notations. Gam-
era also includes a Psaltiki recognition toolkit for the
recognition of Byzantine chant notation used in chant
notation of the Eastern churches [16.13]. It also dis-
tributes an OCR toolkit with custom page segmenta-
tion algorithms and heuristics rules for dealing with
diacritics.

Gamera has been used for projects on other mu-
sic notation, including neumes [16.64]. Gamera is also
often used for evaluating research techniques, such as
with Aruspix [16.65] where two OMR approaches are
compared, or on more specific OMR steps such as staff
line removal [16.66–68].

16.8 Future
Recent directions taken in OMR developments together
with changes in technology make it possible to envis-
age completely new OMR paradigms. For decades, the
goal of OMR has focused almost exclusively on pro-
viding image transcriptions for further processing with
external software applications. Commercial OMR ap-
plications are usually desktop software applications that
take an input image and output an encoded score with-

out making further use of the link established between
the image and its content.

Recent advances that can change this paradigm are
manifold. First of all, open-source developments, such
as Gamera, open new perspectives. The OMR technol-
ogy is no longer embedded in a black box but instead
remains open in modules that can be modified and as-
sembled differently according to the needs and type
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of documents to be processed. Many music documents
raise similar though not identical challenges, and being
able to adjust the tools is essential. The aforementioned
Gamera MusicStaves toolkit is a perfect example in that
regard.

Adaptive-OMR design is another direction that
opens new perspectives and that also differs from the
design of most commercial OMR desktop applications.
Having systems that improve themselves over time
is essential for bringing OMR to a next level. Cor-
recting OMR errors is a highly time-consuming task,
and the advantages gained by being able to feed this
knowledge back into the system appear self-evident.
Nonetheless, for years users have been using OMR sys-
tems and correcting their output without exploiting this
data goldmine. This wasteful practice can be changed,
but only if the output of the OMR process preserves
the link between the output data and the image. It ap-
pears that the developments of MEI will play a key
role in this endeavor. Having a standard format for
preserving OMR data will allow the creation of large
datasets. They will be usable for training or improving
any OMR systems, which in turn will greatly facilitate
the development and improvement of OMR technol-
ogy.

One significant technological change that has oc-
curred over the last few years is the emergence of
online applications that can run in web browsers. It is
now possible to develop software applications that run
online without any application or plugin to be down-
loaded and installed locally. This radically changes the
way software applications can be made available to the
users. Over the next few years we can expect to see
online OMR tools appearing that will be a significant
breakthrough from the desktop applications currently
available. In this context, the development of MEI en-
graving tools, such Verovio [16.69, 70] will be essential
for making the OMR output editable online. For OMR,

having online tools will also make it possible to de-
velop adaptive systems where the corrections of one
user can be immediately incorporated into the system
and benefit all users, not only the one who made the
corrections.

Online technology also transforms the way data can
be made available. We now have access to thousands
of images of music sources that are being digitized
and made available by music libraries and archives all
around the world. These images are an unparalleled re-
source for musicians, musicologists, and other scholars
alike. However, only OMR technology can fully revo-
lutionize the way they are made available to the user.
The recent developments of Diva.js [16.71, 72] offer
a glimpse of the future, where the output of the OMR
process in MEI is displayed on top of high-resolution
images directly in the web browser. This is a setup that
is widely known for books but is still lacking for music,
and large-scale online OMR technology is the key to fill
this gap.

As large amounts of score data become available in
symbolic formats, the next challenge is how to effec-
tively use these large corpora of musical data. There
are two basic issues: searching and analysis. Search-
ing music is complex: there are pitches, rhythms, text,
multiple voices sounding simultaneously, chords, dif-
ferent instruments etc. Linking metadata for sources
and works (e.g., date of composition, location, or genre)
and musical content is also essential. Analyzing music
is also challenging given the large amounts of symbolic
data that were not available previously. Thus, there
will be questions such as what are the best ways to
search through these corpora? What should the queries
look like? What kinds of user interfaces are needed for
queries and displays? What types of analysis of music
are possible given these large datasets? The answers to
these and other questions will create new research av-
enues paved with the aid of OMR technology.
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