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Abstract—Calibration of multiple cameras is a critical step
in most vision enhancement systems. Target-based calibration
approaches are known to provide accurate and stable results.
However, they require manually performed capture procedures.
This paper presents a generalization of a widely used single-
camera target-based calibration algorithm to the case of n
cameras. In order to obtain fully repeatable results, we propose
the elimination of the manual capture step using a programmable
robotic arm. Furthermore, we investigate the use of the position
feedback provided by the robot. This is done specifically for
the case of calibrating cameras without assumptions on their
positions and overlapping of their fields of view. Results show that
automatically captured images provide more accurate calibration
results than the classical approach. Additionally, calibration
of fully non-overlapping setups is made possible through our
approach.

Index Terms—Multi-Camera, Calibration, Photogrammetric
Calibration, Mobile Work Machines, Light-Field Capture

I. INTRODUCTION

Sensing is the starting point and limiting factor in any
immersive visual reproduction of real-life content. Multi-
viewpoint image sensing is required both for 3D scene re-
construction and image-based rendering. Current approaches
to wide baseline multi-view image capture rely either on
the use of a single moving camera or simultaneous capture
using multiple cameras. In either case, and for virtually any
application, cameras’ internal parameters and positions need to
be accurately estimated for adequate content interpretation and
reproduction. However, while a single moving camera cannot
capture dynamic scenes, the use of multiple cameras entails the
calibration of an even higher number of camera parameters.

In this work, we look into methods for the calibration
of multi-camera systems and analyze two particular sensor
setups. First, we focus on the calibration of a light field
capture system composed of 20 cameras in a linear equidistant
configuration. In this setup, all cameras are approximately ori-
ented in the same direction. The application that motivated this
section is the setup of a teleconferencing environment using
a light field display. These types of displays have relevant
characteristics for teleconferencing due to the possibility of
conveying directionality of the speaker’s gaze and gestures,
which provides important cues for communication.

Second, we focus on the calibration of camera systems
where neither the cameras’ fields of view intersect each other
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Fig. 1. Concept of sensing around a work machine using a non-overlapping
multi-camera setup.

nor any assumption can be made about their proximity in
space. A relevant use case for this type of a setup is 3D
scene sensing around work machines. In this application,
cameras can be placed at any location and orientation to
cover, for example, blind spots and enhance the operator’s
awareness of the machine’s surroundings, as illustrated in
Figure 1. The same principles apply to the calibration of
other sensors that can be modeled through the pinhole camera
model. This includes some types of time-of-flight and infra-
red cameras. Each sensor or sub-group of sensors may create
a partial point cloud of a relevant section of the scene. These
partial representations must be merged either for correct view
rendering or extracting relevant measurements for operator
assistance. Calibration parameters may also be used as ad-
ditional constraints for generating maps through simultaneous
localization and mapping (SLAM).

While the use of calibration targets is considered to be the
most accurate and stable approach, the manual calibration im-
age capture introduces variation to the results. Additionally, the
higher the number of cameras in the rig, the more demanding
and time consuming the calibration becomes.

Therefore we propose automatizing the image capture step
of a standard photogrammetric calibration approach using an
industrial robotic arm to manipulate a planar calibration object.
With this method, we create an extensive dataset of calibration
images with known relative target positions.

Our contribution to the state of the art can, thus, be
summarized as follows:

o Implementation of an automatic calibration procedure



using a robotic arm.

o A data-set of calibration images with known relative
target positions.

o An open-source implementation of a multi-camera cali-
bration procedure.

o Development of a method for photogrammetric calibra-
tion of non-overlapping camera setups with arbitrary
locations and orientations.

II. STATE OF THE ART OVERVIEW

Camera calibration is defined as the process of finding the
transformation between the three-dimensional geometric loca-
tion of a point and its corresponding point in the image plane
of the camera [1]. It is performed through the establishment of
a camera model and subsequent estimation of its parameters.

An ideal camera can be modeled by the pinhole camera
model, where the focal length (f,, f,), principal point (c;, c,)
and scaling factor (s) describe the mapping of 3-D world
points into 2D image points through the principles of projec-
tive geometry, as described in equation 1. These parameters
are referred to as intrinsic parameters or intrinsics. Real
devices require, additionally, the estimation of the geometric
distortions created by the introduction of a lens. Geometric
distortion is frequently modeled using polynomials in the 2-D
coordinates of the image plane which account for each of the
radial and tangential components [2] [3]. The coefficients of
these polynomials constitute the distortion parameters, which
complement the set of intrinsic parameters.

Single camera calibration comprises the estimation of the
camera’s intrinsics and its position ([R,t]) (i.e. the extrinsics),
in terms of a rotation R and a translation ¢, relative to a given
world reference frame. The intrinsics and extrinsics describe
the projection of world coordinates (X,Y,Z) into camera
coordinates (z,y):
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Camera calibration is a widely researched topic. Existing
approaches can be broadly divided into two groups: pho-
togrammetric calibration and self-calibration.

Self-calibration relies on feature correspondences in arbi-
trary world scenes. This approach assumes that the scene is
static and provides constraints on the camera parameters when
observed from several viewpoints. A review of self-calibration
algorithms can be found in [1] and [4]. This approach is
particularly important in applications where cameras must be
re-calibrated on the fly or are deployed to end-users and the
use of calibration targets is not feasible.

Photogrammetric calibration relies on capturing a calibra-
tion object of precisely known geometry which acts as a
space reference point. Approaches have been proposed using
3D calibration targets and 2D calibration targets undergoing
known translation [5], [6]. Zhang proposed a more flexible

technique using several (at least two) views of a planar target
taken at different orientations [7].

Photogrammetric approaches are generally considered more
accurate than self-calibration [8] as more constraints are
taken into account and fewer variables are estimated at once.
Additionally, detection of corners on calibration targets is
known to perform more accurately than detection of image
features such as scale invariant feature transform (SIFT) or
speeded up robust features (SURF) [9]. Therefore, the use of
a calibration target is the method of choice in applications
with high precision requirements, such as in-factory camera
calibration.

Zhangs® algorithm [7] has long been the gold standard
for photogrammetric camera calibration and widely used
toolboxes such as Bouguet’s Toolbox [10], Matlab Camera
Calibrator Application [11] and Open CV [12] implement it
with slightly different distortion models. Its pipeline consists
of the detection of feature points in the calibration images,
estimation of the homography between a model point and
its image and calculation of the closed-form solution of the
camera parameters. Starting with the closed-form solution
as an initial estimate, the mean squared error between the
detected and projected points is minimized using the iterative
Levenberg-Marquardt algorithm.

Multi-camera calibration consists of the estimation of
each cameras’ intrinsic parameters and the extrinsic geo-
metric relation between their sensors. The extrinsic relations
([R,t]¢, —c,) can be easily computed from the transformations
between each camera and the same world reference target
pi ([R,t]e;—pis [R,t]e,—p;)- Due to estimation errors, each
calibration target image produces a slightly different value
of the cameras’ extrinsic parameters. Therefore, extensions
of Zhang’s algorithm to the stereo case calibrate, at first,
each camera independently. This step is followed by the
calculation of [R,t]., ., . As a different value is estimated for
each image, the median is taken as an initial estimate. This
estimate is refined by optimizing all calibration parameters
over all target positions and both cameras. The extension of
Zhang’s algorithm to the two-camera case is implemented in
such a manner in the abovementioned toolboxes. The overall
optimization procedure is expected to improve independent
calibration since the measurements from one camera might
contribute to improving the estimation of other cameras’
parameters [13].

There are few available implementations using a similar
approach and taking into account more than two cameras.
The AMCC toolbox [14] performs pairwise multi-camera
calibration, i.e. results are optimized only between adjacent
views. Herrera’s toolbox [13] jointly calibrates a rig of several
cameras and depth sensors. To the best of our knowledge,
there is no readily available implementation of the extension of
Zhang’s algorithm to the calibration of more than two cameras
of the same type with overall optimization.

When considering the joint calibration of many cameras, it
is important to take into account the overlap of their fields
of view. Figure 2 illustrates the case in which two cameras



have highly overlapping fields of view and an entire calibration
object can be simultaneously detected by both cameras. Here,
[R,t]c,—c, can be directly calculated from [R,t].,—,, and
[R,t]c, —p;- This is often the case for arrangements with a
small number of cameras. Particularly, if the cameras are
parallel or face inwards. However, simultaneous detection of
an entire target by an array of many cameras is frequently
unfeasible. A higher number of cameras leads to a smaller
shared field of view. Furthermore, the smaller the independent
fields of view, the smaller the joint field of view of the system.

.

Fig. 2. Multi-camera setup with highly overlapping fields of view, where the
calibration pattern can be fully seen by both cameras.
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While most calibration patterns are composed of ambiguous
features, some calibration patterns have been developed with
unique features that make it possible to calibrate cameras, even
if their fields of view have small or no overlaps. Examples
include several modified versions of the checkerboard pattern,
in which each corner in unambiguous, and more complex
patterns like the one proposed by Li et al. [9]. This last target
is obtained through reverse engineering of the SURF feature
detection algorithm. SURF is an accelerated version of SIFT.
SIFT extracts from images local features that are invariant to
scale and rotation. The features are highly distinctive and are
frequently used to solve image matching. The proposed target
is constructed through the introduction of noise at different
scales. Detected features are matched between the image and
the known generated target image. The related toolbox can
calibrate cameras with no overlap in their fields of view.
However, it is limited to configurations where neighboring
cameras can simultaneously observe different parts of the same
calibration target, as illustrated in Figure 3.
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Fig. 3. Detection of unique target features by a camera setup with non-
overlapping fields of view.

Another important requirement is that the feature points

should be distributed uniformly across the image. This is
mainly needed for the adequate estimation of the distortion
coefficients. [15]. In particular, it should be possible to detect
feature points near the image boundaries, where radial distor-
tions are generally higher.

Targets composed of unambiguous features are tackling also
this problem since they make it easier to capture usable fea-
tures close to the image borders. However, manual capturing
introduces uncertainty in the feature distribution and makes the
quality of results unpredictable. The authors in [15] address
this problem by proposing the use of a computer screen
spanning the camera’s field of view and providing images of
a virtual pattern. However, their solution cannot be efficiently
applied to large camera arrangements.

Furthermore, we are not aware of any existing photogram-
metric approach which would allow calibration of cameras in
such a configuration that their fields of view do not overlap
and it is not possible to simultaneously detect different regions
of the same calibration target.

III. METHODS
A. Multi-camera Calibration

Calibration of n cameras imposes more constraints and
cannot be accurately solved through independent and pairwise
camera calibration. Therefore, in this section we propose a
generalization of the Zhang’s single camera calibration algo-
rithm for the case of n cameras. More specifically, we run an
overall optimization, which addresses all specified constraints
for this case.

The calibration procedure goes as follows:

1) Independent single camera calibration using Zhang’s
algorithm. After this step, we obtain: an initial estimate
of each camera’s intrinsic matrix (K,) and, for each
calibration image where a target could be detected, the
rigid transformation between camera and world refer-
ence frame ([R, t]c, —p;)-

2) Estimation of each camera’s position and orientation
relative to a reference camera ([R,t], c,). We use
the left-most camera in the rig as a reference. As each
pattern position provides a slightly different result, the
median value is taken as an estimate of the extrinsic
camera parameters.

3) Minimization of the reprojection error using the
Levenberg-Marquardt algorithm. The reprojection error
corresponds to the Euclidean distance between detected
image feature points and reprojected world points, ob-
tained through the principles of projective geometry. Fig-
ure 4 represents the inputs and output at each iteration
step.

The minimization step runs over a subset of calibration
images that can be simultaneously detected by all cameras.
This set of images has, naturally, fewer features near the image
edges. Thus, we hypothesize that the re-optimization of the
intrinsic parameters, particularly of lens distortions, might not
be desirable.
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Fig. 4. Calculation of reprojection error. Inputs are: camera’s intrinsic

matrix (K.), extrinsic relations ([R, t}cn_ml ), world to reference camera
transformations ([R,t]¢,, —p,;), coordinates of world reference points and
detected image feature points.

In the following sections, we will perform some experiments
to evaluate which subset of camera parameters should be re-
optimized for best results. In order to evaluate the calibration
accuracy, we use the following metrics: 1) reprojection error in
the calibration images; and 2) absolute vertical misalignment
of target feature points in rectified test images. Test images
are rectified pairwise in relation to one of the central cameras
(in our arrangement, this is camera 10), and are not used in
any of the calibration or optimization procedures.

B. Automatic Capture Using A Programmable Robotic Arm

In order to obtain a fully repeatable calibration pipeline, we
implement an automatic capturing procedure using a robotic
arm. The only manual step of this procedure is that the camera
rig is initially positioned in such a configuration that the left-
most camera sees the pattern. The pattern is rigidly attached
to the robot end-effector. Additionally, practical considerations
about the robot’s working area need to be made. The robot
motion that will produce the desired pattern-camera relations is
calculated based on a rough nominal estimate of cameras’ pa-
rameters and the transformation between the robot end-effector
and calibration target. This hand to pattern transformation
is obtained using the reprojection-based hand-eye calibration
method proposed in [16].

During the procedure, two sub-sets of calibration images
are captured. The first sub-set is composed of images taken
at a distance of approximately 0,5 meters from the cameras.
At such distance, the calibration target fills almost the entire
camera field of view and thus facilitates the detection of
more points close to the image borders. The second sub-set is
composed of images taken at a distance of approximately 1
meter from the cameras at central positions, where all cameras
can see the entire pattern.

C. Calibration Of Extreme Camera Configurations

In this section, we investigate whether the positions pro-
vided by the robotic arm can be used to calibrate two cameras
while not assuming any spatial relation between them or their
fields of view.

The calibration procedure goes as described in section A,
except for a few modifications: The initial estimate of the

transformation between camera n and camera 1 ([R,t]c, —c,)
is calculated from the relative positions of target position 1
(that can be detected by camera 1) and target position n (that
can be detected by camera n), as illustrated in Figure 5. As
shown in Figure 6, the relative target positions are calculated
from the positions of the robot’s end-effector relative to
the robot center ([R,t],—) and applying hand to pattern
transformation ([R, t]p—p).
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Fig. 5. Calibrating of two cameras in a setup where they cannot detect the
same world reference target, however, relative target positions are known.
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Fig. 6. Calculation of relative target positions based on the positions of robot’s
end-effector and hand-pattern calibration.

Calibration target positions are divided into two groups.
Group 1 is visible by the reference camera. Thus
[R,t]e; —pgroup: 1S calculated from image-based measure-
ments. Group 2 is not visible by the reference camera. Thus,
[R,t]e) = pgroups 18 calculated from both image-based measure-
ments and robot positions.

We implement an iterative optimization procedure. As a first
step we optimize [R,t].,—,, while other variables are fixed.
In a second stage we optimize [R,t]., p,, ... a0d [R,t]c, e,
simultaneously. In the last stage we optimize [R,t]c, 5p,, 0up
and [R,t]c, —c,. The choice of parameter optimization order
is related with the confidence we have in each group of
parameters. We expect estimates relying on a combination of
image-based measurements, robot positions and hand-pattern
calibration to be less reliable than sole image-based mea-
surements. Inaccuracy in the robot positions and hand-eye
calibration are expected to be significant and contribute to the
uncertainty of the measurement.



IV. EXPERIMENTS

We perform our experiments using a camera rig composed
of 20 Basler acA1920-50gc GigE cameras with 1920x1200
pixel resolution rigidly attached to a metal structure in a linear
equidistant configuration. These are connected through an
Ethernet switch to the control computer. We use high quality
6 mm C-mount lenses. Their fields of view are, according to
the manufacturer’s specifications, approximately 84 degrees
for the given sensor size.

We use the industrial robotic arm KUKA KR 16 L6-2.
According to the manufacturer specifications, the robot has
a repeatability of 0,05 mm. The manufacturer does not state
the absolute accuracy of the robot. Potentially significant
additional errors are expected if the attachment between the
robot base and the floor is not sufficiently rigid.

The absolute accuracy of the robot was evaluated in the
course of another work using a spherically mounted retro-
reflector target and the Sokkia NETOS5 electronic distance mea-
surement system [17]. Using the abovementioned methods, the
accuracy of the robot was evaluated to be 0,3 mm on average
with maximum errors of 0,8 mm.

The error in hand-pattern calibration is estimated to be 0.338
pixels.

In our work, we use most of the tools and functions
provided by Matlab (R2017 version) and mostly follow their
conventions. When performing single camera calibration, we
consider only the first three terms of radial distortion, since we
found that the tangential distortion was negligible for the high
quality lenses we experimented with. The Matlab implemen-
tation of our calibration approach will be made available in
the following link: https://immersafe-itn.eu/trainees/esr1-laura-
ribeiro/.

The comparison between manual and automatic positioning
of the calibration pattern is drawn by asking ten participants
to perform calibration of the 20-camera rig. Participants were
researchers from the laboratory and had some understanding of
camera calibration. They were asked to take as many images
as they deemed necessary to satisfy the following conditions:

o Each camera sees at least 3 fully visible pattern positions.

o Account for as much of each camera’s image frames as

possible.

e In 10 to 20 pattern positions the checkerboard is fully

visible by all cameras.

o In each image, the checkerboard pattern must be at

different orientations relative to the camera.

o The checkerboard should preferably fill at least 20% of

the image frame.

o The checkerboard must be at an angle of less than 45

degrees relative to the camera plane.

These instructions are an adaptation of the Matlab docu-
mentation but for the multi-camera case.

V. RESULTS
A. Linear Multi-camera Setup

We expect that adequately calibrated cameras should pro-
duce images that will be correctly rectified. Therefore, we
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Fig. 7. Error in the calibration of the linear 20 camera rig.

quantify the calibration results not only by calculating the
reprojection error by also by calculating the vertical mis-
alignment after rectifying images, which were not used in the
calibration procedure.

Figure 7 shows the error associated with the calibration of
the linear 20 camera rig. We note that the reprojection error is
lowest when all parameters are refined, i.e. full optimization.
However, the vertical misalignment of rectified image pairs
is lowest when the intrinsic parameters or the distortions
are fixed during the optimization procedure. These results
agree with our initial hypothesis. Additionally, we see that
a low reprojection error on the optimization set does not
necessarily mean that the estimated model parameters are
correct or provide the best rectification results in other image
sets. The refinement procedure might be over-learning the
characteristics of the calibration images and provide poor
results in real imaging conditions. Furthermore, our results
are well within the sub-pixel range and perform considerably
better than pairwise calibration.

Figure 8 presents the comparative results of the calibration
performed by 10 participants and by the robotic arm. We
observe that both quality measures are considerably lower
when the pattern is manipulated by the robot. We also observe
that there is significant variability among the results obtained
by different participants.

B. Non-overlapping Stereo

In this experiment, we considered only the first and last
cameras of the rig, and calibration images taken at such
distance that the target cannot be simultaneously seen by the
two cameras. This setting simulates the conditions of a non-
overlapping setup. Figure 9 presents the results of calibrating
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Fig. 8. Error in the calibration of the linear 20 camera rig. Numbers on top
of the bars represent the number of images in each set.

the stereo pair with no overlapping features, at each optimiza-
tion step. We observe that the initial parameter estimate is quite
poor. This is likely due to the error associated with the robot
positions. This initial estimate can be drastically improved by
optimizing the extrinsic camera relations while fixing all other
variables (optimization step 1). This improved estimate can be
further improved by re-optimizing other groups of parameters,
as described in the previous sections (optimization steps 2 and
3).

VI. CONCLUSIONS

The results of the calibration of the 20 camera system are
satisfactory as we were able to achieve sub-pixel accuracy
for both the calibration and test datasets. By using the robot
arm we solved the repeatability issue of manual calibration.
Additionally, we obtained more accurate results. Further work
in this regard could include the use of targets with uniquely
identifiable features. These targets would provide more feature
points in less positions.

Results of the calibration of the non-overlapping stereo
pair are also considered satisfactory. This type of setup can
not be calibrated using standard photogrammetric calibration
methods. The reprojection error is well in the sub-pixel range.
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Fig. 9. Error in the calibration of the non-overlapping stereo pair for each
consecutive step of the optimization procedure.

However, misalignment of the rectified test images is approx-
imately 1 pixel. Further work could be done on improving the
robot setup by compensating the positional errors.

It is important to note that these approaches provide an
accurate estimation of the camera system’s parameters in
their current state. Vibration, movement or even changes in
temperature might cause changes that deem the calibration
parameters unusable. Strategies for the compensation of these
changes or online calibration approaches might be needed to
re-estimate these values in real imaging conditions.
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