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Abstract 

This paper presents and validates a non commercial discrete element model code for 

performing nonlinear analysis of one leaf masonry assemblages with regular texture, in three 

dimensional field. Hypotheses of rigid blocks and joints modelled as interfaces are adopted 

for representing historic masonry behaviour, characterized by dry joints or weak mortar joints 

having negligible size with respect to block size. Masonry elastic and inelastic behaviour is 

concentrated at joints by defining their normal, shear, bending and torsion stiffness and 

strength, adopting a Mohr-Coulomb criterion for restraining interface actions. The proposed 

model is an extension to the nonlinear field of an existing code, moreover nonlinear analyses 

follow an effective approach introduced by authors for the in plane case, based on the 

determination and update of the stiffness matrix of the masonry assemblage during the 

incremental analysis, accounting for damage. 

A numerical experimentation is performed for determining limit load multipliers and collapse 

mechanisms of several masonry walls subject to in plane actions generated by self-weight and 

out of plane actions that may cause tilting or toppling of masonry assemblage portions. Dry 

and mortar joints are considered and existing case studies are adopted for calibrating the 

proposed model and evaluating its effectiveness 
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1 INTRODUCTION 

Earthquake actions are one of the main causes of collapse of masonry structures, hence the 

assessment of their seismic performance remains a challenging task in the structural analysis 

field of research. As well known, the two main seismic induced damages and collapse modes 

of masonry walls are in plane and out of plane collapse mechanisms. The former are 

responsible for extended in plane shear deformations and cracks, while the latter may cause 

the tilting of entire wall portions, depending on wall restraints, leading eventually to the 

partial or total collapse of the construction. These collapse mechanisms were observed in past 

earthquakes and recurring mechanism types have been frequently found. Rondelet (1802) was 

the first to show several fundamental out of plane mechanism types, whereas the more recent 

research work of Giuffré (1991) has brought back to light the out of plane collapse behaviour 

of masonry. The description of out of plane mechanisms related to seismic actions has been 

recently described by several authors and mechanisms description by means of numerical and 

analytical models have been done and are still being developed (de Felice and Giannini, 2001; 

D’Ayala and Speranza, 2003). 

Masonry is a heterogeneous structural material obtained by composition of natural or artificial 

blocks connected by dry or mortar joints following a regular or irregular arrangement.  

The behaviour of masonry is frequently modelled numerically in order to assess the structural 

behaviour of masonry buildings or building portions; for this purpose several types of models 

may be adopted. On one hand, models may consider material heterogeneity and 

microstructure by means of heterogeneous Finite Element (FE) Models or Discrete Element 

(DE) Models (or DEMs), in particular for performing analysis at micro- or meso-scale level. 

On the other hand, masonry may be modelled as a homogeneous material by means of FE 

models, for performing analysis at macro scale level or modelling a masonry structure as a 

whole. Moreover, different analysis types may be performed such as limit analysis or 

incremental/pushover analysis. For instance, an overview of the methods for modelling 

masonry structures may be found in the work of Smoljanović et al. (2013) and a deep 

literature review related to masonry out of plane behaviour and to the corresponding 

numerical models has been recently done by Ferreira et al. (2015). 

Focusing on discrete models, the simplest DEM is based on the assumptions of rigid blocks 

and joints modelled as interfaces. These assumptions may be suitable for modelling historical 

masonry, characterized by block stiffness larger than joint stiffness, allowing to assume 

blocks as rigid bodies, and characterized by a negligible joint thickness if compared with 



 

block size, especially in case of dry joints, allowing to model joints as interfaces. Moreover, a 

frictional interface behaviour is often adopted for modelling contacts between blocks. 

Discrete models with rigid blocks were adopted in the past by many authors for studying 

masonry out of plane behaviour in linear and nonlinear fields, given that the hypotheses 

adopted allow to perform both traditional elastic or pushover analysis (Casolo, 2000; Cecchi 

and Sab, 2004; Stefanou et al., 2008) and, more frequently, limit analysis (Livesley, 1978, 

1992; Baggio and Trovalusci, 1993; 1998; Gilbert and Melbourne, 1994; Ferris and Tin-Loi, 

2001; Gilbert et al., 2003; Orduña and Lourenço, 2005a).. In particular, Cecchi and Sab 

(2004) defined a simple and effective DEM for studying the three-dimensional behaviour of 

masonry panels with a small computational effort due to the small number of degrees of 

freedom (DOFs) involved, represented by block translations and rotations. 

It is worth noting that in this field of analysis a lot of experimental campaigns have been 

performed for assessing the out of plane behaviour and strength of masonry and in order to 

validate less or more accurate numerical models. Tests were performed both in case of mortar 

joints (West et al., 1977; Chee Liang, 1996; van der Pluijm, 1999; Griffith et al., 2004; Milani 

et al., 2007) and in case of dry joints (Portioli et al., 2013; Restrepo-Vélez et al., 2013; 

Casapulla and Portioli, 2015, 2016), with particular attention, in the latter case, to the 

frictional behaviour of dry joints in case of torsion. 

In this work, the original three-dimensional discrete element model (3D DEM) introduced by 

Cecchi and Sab (2004) in the linear elastic field for one leaf regular masonry, is extended to 

the field of collapse analysis by assuming a Mohr-Coulomb yield criterion for defining the 

elastic limit of interface actions and an elastic-perfectly plastic relationship between interface 

forces and interface relative translations and rotations is assumed. With this aim, a simple set 

of nonlinear springs based on interface discretization is introduced for simulating interface 

normal and shear stresses generated by interface relative translations and rotations, in order to 

obtain a yield criterion in terms of interface actions. The resulting restraints to interface 

actions turn out to be coincident with the results obtained analytically by Orduña and 

Lourenço (2005a), as expected; moreover, parametric analyses are carried on for obtaining 

simple expressions for interface shear strength and combined shear-torsion strength, that are 

adopted for the analysis of masonry panels instead of using the approximated domains 

described by Orduña and Lourenço (2005a). Nonlinear incremental/pushover analyses are 

performed both at interface level and at panel size level. In the second case, a static solution 

approach characterized by the determination of the stiffness matrix of the masonry 



 

assemblage is adopted, following and extending the procedure introduced by authors for the 

nonlinear incremental analysis of masonry walls in plane loaded (Baraldi and Cecchi, 2016a), 

showing the better computational performance of the proposed method instead of adopting a 

molecular dynamics algorithm. Moreover, stiffness matrix determination has already been 

adopted for performing in and out of plane modal analysis of masonry walls (Baraldi et al, 

2016; Baraldi and Cecchi, 2016c). Several numerical experiments of masonry panels out of 

plane loaded are carried on in order to validate the proposed nonlinear DEM with respect to 

existing numerical and laboratory results. For first, numeric out of plane tests performed by 

Orduña and Lourenço (2005b) are reproduced. Then, the experimental campaign on scaled 

masonry-like specimens performed by Restrepo Vélez et al. (2014) is taken in consideration 

and several cases are reproduced with the proposed nonlinear DEM. Finally, the laboratory 

experiments carried out by Chee Liang (1996) are considered for evaluating nonlinear DEM 

effectiveness in case of walls with mortar joints. Analyses performed with the proposed DEM 

allow to obtain ultimate loads together with the corresponding collapse mechanisms and, 

differently than limit analysis, load-displacement incremental curves are obtained as a further 

information on panel behaviour. In general, the proposed numerical solution method turns out 

to be effective for the determination of limit loads and of the corresponding out of plane 

collapse mechanisms, with a small computational effort represented by the determination of 

the updated stiffness matrix of the masonry assemblage during each step of the incremental 

analyses. 

 

2 THREE DIMENSIONAL DISCRETE MODEL 

A regular one leaf masonry with running bond periodic pattern is considered; the generic 

block ,i jB  is in contact with six neighbours by means of six interfaces or joints 
1 2,k kS , with k1, 

k2 = ± 1 for horizontal interfaces and k1 = ± 2, k2 = 0, for vertical interfaces (Figure 1a). Block 

dimensions are: a (height), b (width) and s (thickness) and the periodic pattern is 

characterized by horizontal interfaces having width equal to block half width. 

Assuming rigid block hypothesis, the displacement of the generic block ,i jB  is represented by 

a rigid body motion referred to the translation of its centre and the rotation with respect to its 

centre: 

 , , , ,( ) ( )i j i j i j i j  u y u Ω y y . (1) 



 

Where ji,
y  is the position of block centre in the Euclidean space: ,

1 2( / 2)i j i b j a y e e . 

Considering the 3D case, , , , ,

1 2 3{ }i j i j i j i j Tu u uu  is the translation vector of jiB ,  and ,i j
Ω  is its 

rotation skew tensor collecting block rotations with respect to block local coordinate axes: 
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In and out of plane block translations and rotations (Figure 1b) may be collected in 

, , , , , , ,

1 2 3 1 2 3{ }i j i j i j i j i j i j i j Tu u u   q . Following the procedure described by Cecchi and Sab 

(2004), relative translations and rotations of two adjacent blocks jiB ,  and 
1 2,i k j kB    may be 

defined as function of block translations and rotations: 
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that may be collected in 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , ,

1 2 3 1 2 3{ }
k k k k k k k k k k k k k k Td d d   d . It is worth noting that in 

order to better highlight the relation between relative displacements and block translations and 

rotations, the above expressions may be written in matrix form as 1 2 1 2 1 2, , ,k k k k k k
d H q , where 

1 2,k k
q  collects translations and rotations of two adjacent blocks: 1 2 1 2, ,,{( ) ( ) }

k k i k j ki j T T T 
q q q , 

and 1 2,k k
H  may be defined as interface ‘compatibility’ matrix (Ferris and Tin-Loi, 2003), that 

is a triangular matrix collecting, following Equation (3), the relative distances between the 

centres of the blocks considered. Such distances are equal to b/2 and a due to the regular 

pattern considered, but the expression may be extended to generic relative distances dy1 and 

dy2 in case of different patterns, further details are given in appendix. 

The interactions between two adjacent blocks jiB ,  and 
1 2,i k j kB    through a generic interface 

1 2,k kS  are represented by interface stresses σ that are related to the relative displacement and 

rotations between adjacent blocks by means of a constitutive relation σn K d , neglecting 

for simplicity apex k1,k2. Here σ is the stress tensor, n is the normal vector to the generic 

interface and K is the interface stiffness matrix. Assuming initially the hypothesis of elastic 



 

interface behaviour, the interface stiffness matrix K may be detailed for horizontal and 

vertical case: diag{ }h t n t r t rk k k k k kK  and diag{ }v n t t t r rk k k k k kK , collecting tangential 

(kt), normal (kn) and rotational (kr) stiffness of the interface. It is worth noting that rotational 

stiffness assumes the same value of normal stiffness (kr = kn), but it is defined by a different 

variable given that in the following description of interface nonlinear behaviour it will be 

necessary to distinguish between nonlinear behaviour of normal forces with respect to that of 

bending moments. Assuming mortar joints with an isotropic and elastic behaviour, interface 

stiffness values are function of mortar elastic modulus E
m
 and Poisson ratio ν

m
 (Cecchi and 

Sab, 2004). The elastic energy of the interface is determined by defining the product of 

interface stresses and interface relative displacements: 
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where apex k1,k2 for vectors and matrices is omitted for simplicity, A is the generic (diagonal) 

matrix of area and inertias of the interface, that may be detailed for horizontal and vertical 

cases: Ah = diag{Sh  Sh  Sh  Ih1  (Ih1+Ih3)  Ih3}, Av = diag{Sv  Sv  Sv  (Iv2+Iv3)  Iv2  Iv3}, with 
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Expressions (Ih1+Ih3) and (Iv2+Iv3) represent interface polar inertia for horizontal and vertical 

case, respectively. Interface forces and moments may be obtained by differentiating the 

expression of interface elastic energy in Equation (4) with respect to each block displacement 

component. Such unknown forces 1 2 1 2 1 2, , ,

1 2 3, ,
k k k k k k

f f f  and moments 1 2 1 2 1 2, , ,

1 2 3, ,
k k k k k k

m m m  may be 

collected in 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , ,

1 2 3 1 2 3{ }
k k k k k k k k k k k k k k Tf f f m m mf  and it can be easily demonstrated 

that 1 2 1 2 1 2, , ,k k k k k k
f K d . Extending Equation (4) to the entire masonry assemblage (i.e. masonry 

panel), the total elastic energy Π is obtained and the subsequent equilibrium equation for the 

assemblage subject to generic in and out of plane actions F
ext

 is: 

 / = ,ext panel panel panel  F q K q  (6) 

where q
panel

 collects block displacements and rotations of the entire panel. Equation (6) may 

be solved by adopting a molecular dynamics algorithm (Cecchi and Sab, 2004) or directly by 

explicitly defining the stiffness matrix of the entire assemblage K
panel

, joining together the 

procedures already proposed by authors (Baraldi et al., 2015; Baraldi and Cecchi, 2016a and 

Baraldi et al., 2016)  for the in and out of plane cases, respectively, and used separately in the 



 

field of in and out of plane modal analysis of masonry panels and in the field of nonlinear 

analysis of masonry panels in plane loaded. In particular, the determination of panel stiffness 

matrix is based on the definition of a ‘compatibility’ matrix at panel level H
panel

 obtained by 

assembling matrices 1 2,k k
H  over the panel and that relates relative displacements of the entire 

panel d
panel

 with block displacements and rotations: panel panel paneld H q . Then, panel stiffness 

matrix may be calculated as: ( )panel panel T panel panelK H K H , where panel
K  is a diagonal matrix 

collecting interface stiffness values of the entire panel. 

 

2.1 Yield criterion for interface 

In this work, the nonlinear behaviour of interfaces is assumed to be governed by a simple 

Mohr-Coulomb yield criterion, characterized by a cohesion c and a friction ratio μ = tanφ: 

 | | tan ,s nc     (7) 

where σs ia a generic shear stress over the interface with a generic plane direction 

( 2 2

,1 ,2s s s    ) and negative values of normal stress σn are assumed in case of 

compression. Moreover, normal stresses must be less than interface tensile strength t , if 

present: 

 .n t   (8) 

For instance, dry interfaces cannot support tension and have a negligible cohesion, whereas 

mortar joints are characterized by a tensile strength t  that may be determined by means of 

experimental tests (EN 1015-11:2007). Tensile strength value may become a cap for the graph 

represented by Equation (7) or, for simplicity, it may be assumed equal to the normal stress 

corresponding to a null shear strength: / tant c  . Mortar joints cohesion may be 

determined by means of experimental tests (EN 1052-3:2002). In any case, both dry or mortar 

interface types are characterized by a frictional behaviour and an unlimited compressive 

strength is assumed. 

Considering a generic horizontal or vertical interface (Figure 2a,b) and assuming a local 

coordinate system y1y2y3, with plane y1y2 coincident with interface mid-plane and y3 

orthogonal to it, forces and moments exerted by two adjacent blocks at the interface centre 

are: normal force 3 3 3nf fe e , shear forces 1 1 2 2,f fe e , bending moments 1 1 2 2,m me e  and 

torsion 3 3m e  (Figure 2c). 



 

In order to obtain an interface yield criterion based on Equations (7-8) but related to interface 

actions, a simple interface model is introduced and interface area is subdivided in rectangular 

portions and a set of springs acting on each sub-element centre is defined (Figure 3a,b). Each 

spring is characterized by a normal and a shear stiffness (kn and ks) and Mohr-Coulomb yield 

criterion and no-tension criterion are adopted for restraining normal and shear forces 

transmitted by each spring. In case of mortar joints, kn and ks depend on mortar elastic 

modulus and Poisson ratio (E
m
, ν

m
), and joint thickness e: /m

nk E e , 

/ [2(1 )] /m m m

nk E G e   ; whereas in case of dry joints, normal stiffness value may be set 

equal to a large fictitious value in order to avoid compenetration between adjacent blocks. The 

main purpose of this model is to assess numerically interface behaviour and its strength by 

discretising the distributions of normal and shear stresses acting on the interface considered. 

It may be pointed out that the proposed interface model turns on to be coincident with the 

problem of a rigid 3D indenter on a Winkler elastic-plastic support with friction; in particular, 

the forces of each spring do not depend on the deformation of other springs and the 

displacement of the rigid indenter is represented by the relative displacement between the 

adjacent blocks connected by the interface. Moreover, modelling an interface element by 

means of a discretization of its cross-section is an approach quite close to that adopted in fiber 

beam finite elements (Spacone et al., 1996), then a possible further development of the 

proposed DEM may be related to the adoption of fibre beam FEs for representing the 

nonlinear behaviour of interfaces, in particular in case of mortar interfaces connecting rigid 

blocks. 

In the following sub-paragraphs, the effects of shear forces, torsion and bending moments 

over an interface are evaluated by means of the spring model described above. The dry 

interface between two rigid blocks studied by Orduña (2004) is here considered (Figure 3b). 

Block dimensions are: width b = 0.3 m, height a = 0.2 and thickness s = 0.2 m, whereas block 

volumetric weight is γ = 20 kN/m
3
, leading to a compressive force over the interface equal to 

240 N. Interface stiffness values are kn = 2.4 MPa/mm and ks = 1 MPa/mm and friction ratio is 

μ = 0.7. Interface dimensions are equal to block width and thickness (l1 = b and l2 = s) and in 

order to obtain sufficiently accurate solutions, interface sides are subdivided in 32 portions, 

leading to a set of 1024 springs equally spaced in both plane directions. 

 



 

2.1.1 Normal and flexural yield criterion 

Considering for first interface normal force and bending moments, the yield criterion is 

governed by tensile strength, if present, whereas unlimited compressive strength is 

considered. Normal force and bending moments must not generate tensile stresses larger than 

the corresponding strength, hence they must satisfy the following conditions: 
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 (9) 

Where t tf S  represents the tensile strength of the entire interface, defined as the product 

of tensile strength t  and interface area (Sv or Sh). Distance lci with i = 1,2 is the characteristic 

length of the interface with respect to interface plane directions, namely the maximum 

eccentricity of normal force with respect to block centre that may be supported by the 

interface. Each value is equal to 1 2/ 2, / 4c cl s l b   for a horizontal interface and to 

1 2/ 2, / 2c cl a l s   for a vertical one. First and second conditions in Equation (9) have been 

already adopted by authors for the in plane case (Baraldi and Cecchi, 2016a) and they turn out 

to be coincident to those adopted by Trovalusci and Masiani (2003). In particular, the first 

condition may be defined as ‘detachment’ condition, whereas the second and third ones may 

be defined as ‘rotation’ conditions with respect to y1 and y2 axis. It is worth noting that the 

actual stress distributions given by normal forces and bending moments are not taken into 

account for simplicity, following the hypothesis adopted by Orduña and Lourenco (2005a). In 

particular, uniform normal stress distributions are considered, also in case of increasing 

bending moments and if the combination of normal force and bending moments do not 

respect the middle-third rule, uniform stresses over reduced rectangular areas are considered. 

 

2.1.2 Shear yield criterion 

In this subparagraph interface shear strength is studied by adopting the simple spring model 

based on interface subdivision and elastic-perfectly plastic frictional springs. The interface 

subject to shear in both plane directions is studied and a compressive force given by the self-

weight of the block over the interface f3 = -240 N is considered. Several incremental analyses 

are performed by applying to the model a set of relative shear displacements with varying 

direction on y1y2 plane (Figure 4), in order to obtain interface shear strength along each plane 

direction and to evaluate the effect of combined shear forces along plane directions. 



 

Considering the model adopted for studying interface behaviour, each spring is compressed 

by a portion of block self-weight and it is subject to the same overall relative shear 

displacement of the interface; then each spring is subject to the same normal and shear force. 

This conditions represents the uniform distribution of normal and shear stresses over the 

original entire interface; moreover it must be pointed out that in this case the number of 

subdivisions of interface area does not affect results. 

Figure 5 shows for first the shear force-relative displacement incremental curves in y1 and y2 

directions and then it presents the strength domain for combined shear forces. In this case 

shear strength depends only on friction ratio and on the applied normal force, then the 

corresponding value along a generic plane direction is equal to , 3 168 Ns uf f   . Such 

value is reached by analyses characterized by relative displacements along one plane direction 

only and also by analyses with relative displacements in both plane directions. The resulting 

strength domain is represented by a circle, characterized by the expression 

2 2 2 2

1 2 , 3( )s uf f f f    . More generally, considering also the effect of joint cohesion or 

tensile strength t tf S , the interface shear strength domain is defined by the well-known 

Mohr-Coulomb yield criterion in terms of shear force resultants:  

 
2 2 2

1 2 [ ( )]t nf f f f    (10) 

That may be written also as 2 2 2

1 2 ,( ) / 1s uf f f  . Such relationship is adopted in the following 

numerical tests without any approximation of the domain, whereas several authors are used to 

simplify the circular domain with a polygonal (octagonal) shape (Orduña and Lourenco, 

2005a). 

 

2.1.3 Torsion yield criterion 

Considering the simple spring model, torsion strength is evaluated for first in case of pure 

torsion, hence a relative rotation δ3 is applied to the blocks connected by the interface (Figure 

6a). A torsion strength 3, 16.2 Nmum   is obtained, this value turns out to depend on friction 

ratio and compressive force by means of a torsion constant: 3, 3( )u Tm c f  . With 
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where 2 2

1 2c l l  . Such constant may be obtained analytically by solving the integral of 

shear stresses generated by a plastic torsion of the interface and the corresponding expression 

may be found in the original work of Orduña (2004) or in a recent work of Portioli et al. 

(2013). If interface cohesion is present or interface tensile strength ft is not negligible, torsion 

strength increases in the same way of shear strength and the yield criterion in case of pure 

torsion is given by: 

 2 2

3 1 2| | [ ( )] if 0T t nm c f f f f    . (12) 

Appendix collects more details obtained by performing numerical analyses with the proposed 

spring model with varying cohesion values. 

In case of pure torsion, the twisting centre coincides with interface centre and Figure 7a 

shows the corresponding shear stress lines. If a combination of shear force and torsion is 

considered, the twisting centre moves towards to interface centre, as showed in Figure 7b and 

in appendix by Figure A2. Such shear stress lines are found performing several incremental 

analyses characterized by a relative rotation δ3 and a relative displacement d1 (Figure 6b). 

Moreover in appendix, further images related to the case of combined torsion and shear in 

both plane directions are presented. As can be expected, the torsion strength is strictly related 

with the shear strength and vice-versa if combined actions are present; in particular, torsion 

strength decreases for increasing the applied shear force and similarly shear strength 

decreases for increasing the applied torsion. Figure 8 shows shear-relative displacement and 

torsion-relative rotation curves of several incremental analyses performed with the adopted 

spring model; then, ultimate values of torsion and shear force are combined into a m3-f1 

strength domain. In order to appreciate the shape of such domain, the circular curve 

2 2

3 3, 1 ,( / ) ( / ) 1u s um m f f   is plotted over the domain with a dashed line, showing that the 

actual m3-f1 strength domain does not have a perfect circular shape. Following the analytic 

results showed by Orduña and Lourenco (2005a), the shape of torsion-shear strength domain 

depends on the ratio between interface width and depth l1/l2, and in order to avoid such effect, 

they adopted a simplified polygonal domain, as they did in case of combined plane shear 

actions. Figure 9 shows dimensionless m3-f1 strength domains obtained with the proposed 

spring model for varying l1/l2. In appendix, each domain is presented separately from the 

others and a proposal of a unique expression of strength domain accounting also for l1/l2 is 

proposed. 



 

Finally, the effect of bending moments m1, m2 (acting separated and combined) on torsion 

strength is investigated with the proposed spring model. Following the considerations of 

Orduña and Lourenco (2005a), in case of negligible tensile strength, the interface cannot 

tolerate tensile actions, then the effective area subject to compression is reduced to a smaller 

rectangle accounting for the eccentricity in both plane directions given by bending moments. 

As previously stated, the simplification done by Orduña and Lourenco (2005a) is based on 

hypothesis of uniform compressive stresses over the reduced rectangular area. The same 

hypothesis was taken into account recently by Casapulla and Portioli (2015). Adopting the 

same hypothesis with the proposed spring model, the interaction between bending moments 

and torsion strength is evaluated for the interface assumed as reference. Incremental analyses 

are then performed by applying an increasing relative rotation over a reduced rectangular area 

due to applied bending moments. Figure 10 shows torsion strength obtained numerically as 

function of m1 and m2; the domain turns out to be in excellent agreement with the one 

obtained analytically by Orduña and Lourenco (2005a). 

 

2.2 Nonlinear interface behaviour 

In general, considering each force and couple acting over a generic interface (Figure 2c), a 

simple elastic-perfectly plastic relation between actions and relative displacements is adopted. 

Hence, after having defined interface strength detailed for each component of the actions that 

may be transmitted by adjacent blocks in a 3D problem, each interface strength is assumed as 

the elastic limit of the elastic-perfectly plastic action-relative displacement curve. Then, the 

relationship between interface normal force and relative normal displacement and the 

relationships between interface bending moments and relative rotations follow an elastic-

perfectly plastic behaviour. Moreover, an interaction between different failure modes is 

introduced. For instance, if the interface is subject to excessive plane rotation, only its 

rotational stiffness is set equal to zero, whereas if the interface is subject to detachment, all 

interface stiffness values are set equal to zero: 

 
0,

| | ( ) 0 1,2.
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 (13) 

An elastic-plastic behaviour is assumed if restraint conditions for shear force and torsion are 

not respected. In particular, interface tangential stiffness kt is set equal to zero, whereas 

normal and flexural stiffness values are not modified. 
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Where 3, ( )u T t nm c f f   if bending moments are not present, otherwise 3,um  is reduced due 

to bending moment effects as showed by Figure 10. Exponent α in the above equation may be 

assumed equal to 1.43 in case of interface dimension ratio l1/l2 close to 1 or α equal to 1.50 

considering typical interfaces in masonry panels with regular texture and standardized bricks. 

Further details may be found in appendix. 

 

2.3 Nonlinear DEM 

Restraint conditions for interface forces and moments allow to define the elastic limits of 

force-relative displacement and moment-relative rotation constitutive laws, that are assumed 

to be elastic-perfectly plastic. Then, incremental analyses or pushover analyses may be 

performed by applying incremental loads to the discrete model and updating the stiffness 

matrix panel
K  accounting for local interface nonlinear behaviour. For instance, the stiffness 

matrix at a generic load step i is based on interface damage at the previous step i-1. A generic 

incremental analysis may be performed by applying several load steps and evaluating for first 

the corresponding displacement increments iq  and then the internal forces int

iF  transmitted 

along interfaces: 
1

1

( )( )
i

panel ext

i 


 qq K F , 
11 ( )i

int int panel

i i i
  qF F K q . 

Internal forces are corrected accounting for the yield criterion adopted, then residual forces 

with respect to applied loads F
ext

 may be obtained: 
int ext

i i R F F . Then, a typical iterative 

process is performed in order to reduce residual forces less than a predefined tolerance. 

Similarly to the case limited to in plane actions and displacements, the proposed DEM allows 

to study regular block assemblages by adopting traditional procedures commonly used in 

nonlinear FE analysis. 

In the following paragraphs, numerical tests are performed considering masonry panels 

subject to self-weight and increasing lateral loads. Such loads are proportional to the weight 

( P ab s , where γ is block volumetric weight) and are identified by the load multiplier λ; 

then, the vector collecting the total forces applied at block centres may be defined as 

λext

D L F F F , where FD collects dead loads represented by block self-weight P and further 

vertical loads and λFL represents unknown horizontal live loads (in or out of plane). 

 



 

3 OUT OF PLANE NUMERICAL EXPERIMENTS 

The proposed discrete model is able to represent the behaviour of masonry panels with regular 

texture characterized by dry joints or weak mortar joints. Analyses of specimens subject to 

self-weight and increasing in plane lateral loads have been already performed by authors by 

adopting a model limited to in plane DOFs (Baraldi and Cecchi, 2016a) and recently these 

analyses have been carried out also with the full 3D model proposed here (Baraldi and 

Cecchi, 2016b) showing coincident results, as expected, and in good agreement with other 

numerical solutions and laboratory tests. 

Then in this paragraph, several numerical experiments are carried on in order to evaluate the 

effectiveness of the proposed nonlinear DEM in the determination of out of plane collapse 

mechanisms and limit loads of masonry panels. It is worth noting that nonlinear out of plane 

behaviour is strictly dependent on in plane actions such as dead loads, hence in this case out 

of plane degrees of freedom cannot be considered uncoupled by in plane degrees of freedom. 

Talking about out of plane behaviour of masonry, the typical mechanisms described by 

Rondelet (1802) may be taken into account. Numerical experiments in first and second 

subparagraphs of this section are going to reproduce numerically the typical out of plane 

mechanisms of masonry panels with dry joints, taking as reference several existing results, 

both numerical and experimental. In particular, the first mechanism type defined by Rondelet 

is the typical out of plane rigid rotation of a free masonry wall with respect to its base (Figure 

11a), whereas the second mechanism regards a masonry wall restrained along a vertical edge 

by an orthogonal wall, leading to the development of a diagonal crack and to a rotation of a 

triangular wall portion (Figure 11b). This mechanism is characterized by a larger ultimate 

load with respect to the previous case due to the lateral restraint. The third mechanism regards 

a masonry wall restrained by two orthogonal walls at both vertical edges; in this case a 

vertical crack along panel axis of symmetry develops together with two diagonal cracks 

starting from panel upper corners (Figure 11c), leading to two triangular wall portions that 

rotate with respect to diagonal cracks. In this last case, the ultimate load is larger than those of 

the previous mechanisms due to the lateral restraints. 

In the second subparagraph of this section, further numerical examples are dedicated to 

masonry panels with dry joints loaded by wooden beams and masonry panels with openings. 

Finally in the third subparagraph of this section, masonry panels with mortar joints are 

considered and laboratory tests of panels supported along three and four sides are reproduced. 

Restraints along three sides lead to a collapse mechanism coincident with the third one 



 

proposed by Rondelet (Figure 11c), whereas restraints along four sides lead to a collapse 

mechanism with four diagonal cracks (Figure 11d). 

 

3.1 Case studies proposed by Orduña and Lourenço 

Two simple examples of masonry panels out of plane loaded are taken into account for first 

by assuming as reference the numerical tests performed by Orduña and Lourenço (2005b). In 

both cases masonry panels are made of blocks with running bond arrangement and having 

dimensions a = 0.081 m, b = 0.210 m, s = 0.07 m and volumetric weight equal to 20 kN/m
3
. 

Contacts between blocks are dry, with μ = 0.7 and null cohesion and tensile strength. In the 

first example, panel dimensions are: length L = 0.630 m, height H = 1.053 m and thickness s 

= 0.07 m, obtained by assembling 3 blocks along panel length and 13 blocks along its height; 

block translations are fixed along panel left column (Figure 12a). In the second example panel 

dimensions are: L = 1.260 m, H = 1.053 m and s = 0.07 m, obtained with 6 blocks along panel 

length and 13 blocks along its height; block translations are fixed along both lateral columns 

(Figure 12b). 

Figure 13a shows a collapse mechanism characterized by a diagonal crack starting from the 

right side of the panel after the 2nd row of blocks. Such mechanism is in quite good 

agreement with the one showed in the original analysis and the limit load obtained with the 

proposed nonlinear DEM is included between FEM and limit analysis performed by Orduña 

and Lourenço (Table 1). Figure 13b shows a collapse mechanism characterized by a 

symmetric flexural deformation with large displacements along vertical axis of symmetry. 

Similarly to the previous case, collapse mechanism and limit load (Table 1) are in quite good 

agreement with reference solutions. 

 

3.2 Restrepo Vélez, Magenes and Griffith experiments 

In this paragraph, several experimental tests performed by Restrepo Vélez et al. (2014) are 

taken as reference. Original tests were performed on scaled masonry-like specimens with dry 

joints, subject to self-weight and increasing out of plane loads by means of an inclined plane 

machine, in order to obtain out of plane failure mechanisms. Block dimensions are a = 28.24 

mm, b = 79.78 mm and s = 39.68 mm and block volumetric weight is 26.8 kN/m
3
. Dry joints 

are characterized by friction ratio μ = 0.7, with null cohesion and null tensile strength. All 

cases are characterized by 21 block courses along panel height and varying number n of 

blocks along panel length (from 4 to 14, for instance). Panel restraints at one or both lateral 



 

edges are obtained with one or two orthogonal walls (Figure 14a and b, respectively); for this 

reason, several mechanisms turned out to involve also blocks in orthogonal walls. In the 

following numerical experiments, the effect of orthogonal walls is simply modelled by 

restraining block translations and rotations along one or both lateral columns (Figure 14e and 

f, respectively). Then, the present model will not be able to represent complex collapse 

mechanisms involving orthogonal walls, leading to small differences between proposed 

numerical results and experimental tests. Moreover, additional specimen types considered a 

panel without orthogonal walls simply supported at the base and loaded by several wooden 

beams (Figure 14c) and panels with openings (Figure 14d).  

Figure 15 shows failure mechanisms of several panels restrained along left column, varying 

the number of blocks along panel length (for further details about block number see the first 

row of Table 2). Mechanisms are characterized by a diagonal crack starting from lower-right 

panel corner, directed towards the upper-left panel corner and a triangular/trapezoidal portion 

of panel is subject to an out of plane roto-translation with respect to such diagonal crack. 

These mechanism types are in quite good agreement with experimental tests, moreover 

numerical results obtained with the proposed nonlinear DEM are in quite good agreement 

with experimental results (Table 2), especially for specimens S11, S12 and S13, thanks to the 

large number of blocks of the models, whereas for specimen S15, characterized by a small 

number of blocks along panel length, limit load obtained with DEM is quite far from 

experimental result with respect to other cases. Figure 16 shows failure mechanisms of 

several panels restrained along both lateral vertical edges. Such mechanisms are characterized 

by a vertical crack along the axis of symmetry of the panel and diagonal cracks starting from 

lateral edges and moving down to panel axis of symmetry. Mechanisms are similar but not 

coincident with respect to those obtained experimentally, due to the actual restraint adopted 

for masonry specimens; however limit loads obtained numerically with nonlinear DEM are 

still in quite good agreement with experimental results. Figure 17 shows the failure 

mechanism of a simply supported panel loaded by eleven wooden beams (16.46 N transmitted 

by each beam) and subject to increasing out of plane loads (see Figure 14c for the 

corresponding specimen type and Figure 14g for the corresponding DEM representation). The 

mechanism is characterized by a horizontal hinge in the upper portion of the panel, along the 

joints between the 15
th

 and 16
th

 block courses and it is almost coincident with the real 

mechanism obtained during laboratory tests; similarly, the collapse load is close to the one 

evaluated experimentally. Finally Figure 18 show the failure mechanisms of two masonry 



 

walls with openings, the first one with a wide central pier (specimen S23) and the second one 

with a thin central pier (specimen S24). In both cases, collapse obtained with the proposed 

DEM is characterized by the out of plane rotation of the central pier and the connected 

spandrels over the openings, with diagonal cracks starting from the opening bottom to the 

midpoint of panel base. Such mechanisms are not completely coincident with those obtained 

in laboratory that were characterized by an evident out of plane flexural deformation of the 

entire upper portion of the wall, involving also the upper portion of the orthogonal walls. 

Similarly to previous cases, such differences are caused by the not completely correct 

representation of lateral restraints. Limit loads obtained with the proposed DEM, however, are 

in quite good agreement with those obtained experimentally (Table 2). 

 

3.3 Chee Liang experiments 

Finally in this subparagraph, analyses on masonry panels with mortar joints are performed. 

The experimental campaign carried out by Chee Liang (1996) is considered and several 

specimens are taken as reference and studied with the proposed DEM model. It is worth 

noting that such specimens are frequently taken as reference by researchers involved in the 

formulation of models and methods for the collapse analysis of out of plane loaded masonry 

walls ((Macorini and Izzuddin, 2011; Milani and Taliercio, 2016). 

Masonry specimens tested by Chee Liang have square or rectangular shape, they are made of 

clay bricks in running bond pattern and they are simply supported along four sides or three 

sides (Figure 19). During all experiments masonry specimens are subject to self-weight and to 

an increasing uniform out of plane pressure p. Block dimensions are b = 0.112 m, a = 0.036 

m, s = 0.053 m and mortar joint thickness is e = 0.01 m. Mortar interface stiffness values are 

assumed equal to those adopted by Liang for simulating experimental tests with a FE model, 

in particular kn = 25. N/mm
3
 and kt = 105 N/mm

3
 (Macorini and Izzuddin, 2011). Interface 

friction ratio is μ = 0.57 and tensile strength is 0.35 MPat  . Among the specimens tested 

by Chee Liang, the following numerical tests regard three of them characterized by simple 

supports along the four sides, two of them with three supported sides and free top side and the 

last test is characterized by three supported sides and free left side. Specimen dimensions and 

restraint case are listed in Table 3, together with ultimate out of plane pressure p obtained 

with the proposed nonlinear DEM and with laboratory tests. Numerical results are in quite 

good agreement with laboratory tests, whereas the final damaged configurations obtained 

numerically, showed in Figures 20-21 are a bit different than laboratory results, due to the 



 

perfect symmetry of discrete models and applied loads that generate symmetric displacements 

and symmetric interface damage. Masonry specimens supported along four sides are 

characterized by diagonal cracks from panel corners to panel centre, following the generic 

mechanism already presented in Figure 11d, whereas masonry specimens supported along 

three sides are characterized by two diagonal cracks starting from the restrained corners and a 

straight crack along panel axis of symmetry starting from the midpoint of the free edge. 

Further information that may be obtained with the proposed model are the load-displacement 

curves related to each analysis (Figure 22), collecting out of plane displacement evaluated at 

each panel centre in case of panels with four side simply supported or at the midpoint of the 

free side in the other cases considered. The proposed DEM is able to predict the ultimate 

loads obtained experimentally but the models are stiffer than the real specimens, probably due 

to the rigid block hypothesis adopted; in fact DEM out of plane displacements turn out to be 

smaller than those obtained experimentally. 

 

4 CONCLUSIONS  

In this work, the 3D DEM introduced by Cecchi and Sab (2004) for modelling regular 

masonry in the linear elastic field has been extended to the collapse analysis of masonry 

panels with dry and mortar joints by adopting a Mohr-Coulomb yield criterion for defining 

elastic limits to interface actions. A simplified elastic-perfectly plastic spring model has been 

adopted for studying the local behaviour of a generic interface subject to independent and 

combined normal, shear, bending and torsion actions. The spring model allowed to discretize 

normal and shear interface stresses, in order to obtain simple expressions of interface strength 

in terms of force and moment resultants, that turned out to be coincident with those obtained 

analytically by Orduña and Lourenço (2005a), but without the necessity of introducing 

simplified strength domains in case of combined shear forces and combined shear force with 

torsion. 

The proposed nonlinear 3D DEM allowed to perform incremental analyses of several 

masonry specimens by adopting the traditional procedures used for nonlinear FE analysis, 

with a small computational effort due to the small number of DOFs involved. The model 

turned out to be simple and effective in the determination of limit loads and collapse 

mechanisms of masonry panels having regular texture, with dry and mortar joints, subject to 

self-weight and out of plane loads. 



 

Several numerical tests reproduced the laboratory campaign carried out by Restrepo Vélez et 

al. (2014) on masonry specimens with dry joints, in this case the nonlinear DEM simulated 

correctly limit loads of the specimens taken into account. Moreover, considering collapse 

mechanisms, the ones relative to panels restrained by a lateral orthogonal wall have been 

reproduced correctly by the DEM, whereas small differences have been found in collapse 

mechanisms relative to panels restrained by orthogonal walls along panel lateral edges. 

Further numerical tests reproduced the laboratory campaign carried out by Chee Liang (1996) 

with masonry specimens with mortar joints. Similarly to previous cases, the nonlinear DEM 

simulated correctly limit lateral pressures, even if the corresponding collapse mechanisms 

turned out to be obviously perfectly symmetric with small differences with respect to the 

observed damage patterns. Moreover, the nonlinear DEM allowed to obtain load-

displacement incremental curves as further information on the collapse behaviour of the 

specimens considered. 

Further developments of the model will regard the assessment of nonlinear analysis of more 

complex masonry specimens, characterized for example by blocks arranged irregularly and 

real 3D structures with orthogonal walls and roofs. 
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Appendix 

Compatibility matrix 

As stated in paragraph 2, relative translations and rotations between two adjacent blocks 

connected by a generic interface may be related to global block translations and rotations (or 

Lagrangian parameters). Equations (3) may be re-written in case of two generic adjacent 

blocks by introducing the generic in plane distances dy1, dy2 between the corresponding 

centres: 
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 (A1) 

Then, the 'compatibility' matrix at interface level 1 2,k k
H , needed for relating interface relative 

displacements with global block displacements ( 1 2 1 2 1 2, , ,k k k k k k
d H q ), is a 6-by-12 matrix 

obtained by assembling several sub-matrices as follows: 

 1 2, ,
i jk k

  
  

 

I D I D
H

0 I 0 I
 (A2) 

where I and 0 are, respectively, identical and zeros 3-by-3 matrices and 

 

2 2

1 1

2 1 2 1

0 0 0 0
1 1

0 0 , 0 0 .
2 2

0 0

i j

dy dy

dy dy

dy dy dy dy

   
   

  
   
       

D D  (A3) 

 

Torsion strength 

In this subparagraph, further details about numerical tests performed with the proposed spring 

model for determining interface torsion strength and the effects of tensile strength and 

combined shear forces on torsion strength are presented. 

For first, the effect of interface tensile strength t  on pure torsion strength is evaluated. Each 

spring of the interface model follows the Mohr-Coulomb yield criterion (Equation 7) already 

introduced, with tantc   . Figure A1 shows the torsion strength obtained with the spring 

model and increasing tensile strength with a continuous line, compared with the analytic 



 

expression of Equation (12) plotted with dashed line. Small differences are found for 

increasing tensile strength, due to the interface discretization. 

Then, the effect of combined torsion and shear along one or both plane directions is evaluated 

and the shear stress lines over the interface are plotted for several intermediate cases between 

the pure torsion (already showed in Figure 7) and the pure shear force. Figure A2 collects 

stress lines in case of torsion and increasing shear force in y1 direction, showing that the 

twisting centre moves towards interface centre along y2 axis and stress lines tend to become 

straight and parallel to y1 axis. Similarly, Figure A3 collects stress lines in case of torsion and 

increasing shear forces in both plane directions. Moreover, in order to evaluate the effects of 

interface dimension ratio l1/l2 on the torsion-shear strength domain, several incremental 

analyses are performed with the proposed spring model and adopting a set of values for l1/l2. 

Figure A4 collects separately the torsion-shear strength domains determined numerically and 

already showed in Figure 9. Given that the expression for the perfect circular shape of torsion-

shear strength domain is 2 2

3 3, 1 ,( / ) ( / ) 1u s um m f f  , the corresponding curve turns out to be 

almost coincident with numerical results only if l1/l2 = 0.5, whereas it must be noted that in 

case of l1/l2 = 10, torsion-shear strength domain turns out to be well approximated by the 

expression 2

3 3, 1 ,/ ( / ) 1u s um m f f  . Then, a general expression for such domain may be 

defined as: 

 2

3 3, 1 ,( / ) ( / ) 1.u s um m f f    (A4) 

Where exponent α depends on interface dimension ratio and converges to 1 for small values 

of l1/l2; several estimates of α are presented in the second column of Table A1; the 

corresponding curves are added to the domains in Figure A4 with dashed lines, showing a 

quite good agreement between the proposed expression and numerical results. However, it 

must be noted that Equation (A4) regards the simple case of combined torsion and shear along 

y1 direction. In case of torsion and shear along y2 direction, exponents α assume the values 

corresponding to the cases with inverse l1/l2 values (third column of Table A1). Moreover, the 

more general case with combined shear forces along y1 and y2 direction is characterized by α 

values depending also on the ratio between f1 and f2 and varying between the two limit cases 

showed in second and third column of Table A1. Then, the estimate of exponents α turns out 

to be more difficult than expected and for instance the simple case of interface subject to 

equal shear forces f1 = f2 is added to Table A1. For simplicity, it must be noted that masonry 

panels made of standardised bricks with regular –running bond– pattern are characterized by 



 

horizontal interfaces having l1/l2 almost equal to 1 (given that in most of standardized bricks 

b/s = 2). In this case, it may be easily found that, in case of horizontal joints, exponents α do 

not depend on f1/f2 and are always equal to 1.43. In case of vertical joints, l1/l2 is almost equal 

to 0.5 (a/s = 0.5 for standardised bricks) and exponents α vary from 1.25 to 1.92. Then, an 

intermediate value of α may be assumed equal to 1.50 in the following expression for torsion 

strength domain as function of generic shear stresses: 

 2 2 2

3 3, 1 2 ,( / ) ( ) / 1.u s um m f f f     (A5) 

 



 

Table captions 

Table 1: Limit loads obtained with DEM and reference results of the masonry panels studied by 

Orduña and Lourenço (2005b). 

Table 2: Limit loads obtained with DEM and reference results of the masonry specimens considered 

by Restrepo Vélez et al. (2014). 

Table 3: Dimensions, restraints, ultimate pressures obtained with DEM and reference results of 

several masonry specimens tested by Chee Liang (1996). 

Table A1: Exponents α in Equation A5 depending on interface dimension ratio l1/l2 and varying 

shear forces. 



 

Figure captions 

 

Figure 1. Discrete model, a) running bond Representative Elementary Volume (REV), b) block 

displacements and rotations. 

Figure 2: a) generic horizontal interface; b) generic vertical interface; c) generic interface with local 

coordinate system and interface forces and moments. 

Figure 3: a) interface discretization; b) set of springs for modelling a generic interface. 

Figure 4: Interface subject to relative plane displacements. 

Figure 5: Incremental analyses for evaluating interface shear strength in both plane directions. 

Figure 6: Interface subject to (a) relative plane rotation; (b) plane relative rotation and relative 

displacement. 

Figure 7: Shear stress lines over the interface in case of pure torsion (a) and in case of combined 

torsion and shear force f1 (b). 

Figure 8: Incremental analyses for evaluating the combination of interface shear strength with 

interface torsion strength. 

Figure 9: Dimensionless torsion-shear strength domain for varying interface dimensions ratio l1/l2. 

Figure 10: Torsion strength-bending moments interaction curves. 

Figure 11: Typical out of plane collapse mechanisms of a masonry wall with increasing restraints. 

Figure 12: Case studies considered originally by Orduña and Lourenço (2005b). 

Figure 13: Failure mechanisms for the masonry panels studied by Orduña and Lourenço (2005b) 

modelled with DEM. 

Figure 14: Masonry specimen types considered in the experimental campaign by Restrepo Vélez et 

al (2014) (a-d); corresponding specimens modelled with DEM in present analysis (e-h). 

Figure 15: Failure mechanisms for several masonry panels restrained along left column considered 

by Restrepo Vélez et al. (2014) modelled with DEM. 

Figure 16: Failure mechanisms for several masonry panels restrained along lateral columns 

considered by Restrepo Vélez et al. (2014) modelled with DEM. 

Figure 17: Failure mechanisms for the masonry panel loaded by a set of wooden beams and simply 

supported at its base considered by Restrepo Vélez et al. (2014) modelled with DEM. 

Figure 18: Failure mechanisms for two masonry panels with openings restrained along lateral 

columns considered by Restrepo Vélez et al. (2014) modelled with DEM. 

Figure 19: Masonry specimen types considered in the experimental campaign performed by Chee 

Liang (1996). Supported along four sides (a), supported along three sides (b). 



 

Figure 20: Deformed configuration at collapse and corresponding damage maps for several 

specimens tested by Chee Liang (1996) and modelled with DEM with four simply supported sides 

(interface colours: green = elastic, red = shear failure, magenta = flexural failure). 

Figure 21: Deformed configuration at collapse and corresponding damage maps for several 

specimens tested by Chee Liang (1996) and modelled with DEM with three simply supported and 

one free side (interface colours: green = elastic, red = shear failure, magenta = flexural failure). 

Figure 22: Lateral pressure-out of plane displacement pushover curves for several specimens 

originally tested by Chee Liang (1996) and modelled with DEM. 

 

Figure A1: Torsion strength as function of interface tensile strength. Continuous line for numerical 

results with the proposed spring model, dashed line for analytic expression (Equation 12). 

Figure A2: Stress lines for combined torsion and shear force along y1 direction. 

Figure A3: Stress lines for combined torsion and shear forces along y1 and y2 directions. 

Figure A4: Dimensionless torsion-shear strength domains varying interface dimensions ratio l1/l2  
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Figure 1. Discrete model, a) running bond Representative Elementary Volume (REV), b) block 

displacements and rotations. 
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Figure 2: a) generic horizontal interface; b) generic vertical interface; c) generic interface with local 

coordinate system and interface forces and moments. 
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Figure 3: a) interface discretization; b) set of springs for modelling a generic interface. 
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Figure 4: Interface subject to relative plane displacements. 
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Figure 5: Incremental analyses for evaluating interface shear strength in both plane directions. 
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Figure 6: Interface subject to (a) relative plane rotation; (b) plane relative rotation and relative 

displacement. 
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Figure 7: Shear stress lines over the interface in case of pure torsion (a) and in case of combined 

torsion and shear force f1 (b). 
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Figure 8: Incremental analyses for evaluating the combination of interface shear strength with 

interface torsion strength. 
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Figure 9: Dimensionless torsion-shear strength domain varying interface dimensions ratio l1/l2. 
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Figure 10: Torsion strength-bending moments interaction curves. 



 

a b c d  

Figure 11: Typical out of plane collapse mechanisms of a masonry wall with increasing restraints. 
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Figure 12: Case studies considered originally by Orduña and Lourenço (2005b) 
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Figure 13: Failure mechanisms for the masonry panels studied by Orduña and Lourenço (2005b) 

modelled with DEM. 
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Figure 14: Masonry specimen types considered in the experimental campaign by Restrepo Vélez et 

al (2014) (a-d); corresponding specimens modelled with DEM in present analysis (e-h). 
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Figure 15: Failure mechanisms for several masonry panels restrained along left column considered 

by Restrepo Vélez et al. (2014) modelled with DEM. 



 

S6 S1-S2-S3 S5 

  
 

Figure 16: Failure mechanisms for several masonry panels restrained along lateral columns 

considered by Restrepo Vélez et al. (2014) modelled with DEM. 
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Figure 17: Failure mechanism for the masonry panel loaded by a set of wooden beams and simply 

supported at its base considered by Restrepo Vélez et al. (2014) modelled with DEM. 
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Figure 18: Failure mechanisms for two masonry panels with openings restrained along lateral 

columns considered by Restrepo Vélez et al. (2014) modelled with DEM. 
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Figure 19: Masonry specimen types considered in the experimental campaign performed by Chee 

Liang (1996). 
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Figure 20: Deformed configuration at collapse and corresponding damage maps for several 

specimens tested by Chee Liang (1996) and modelled with DEM with four simply supported sides 

(interface colours: green = elastic, red = shear failure, magenta = flexural failure). 
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Figure 21: Deformed configuration at collapse and corresponding damage maps for several 

specimens tested by Chee Liang (1996) and modelled with DEM with three simply supported and 

one free side (interface colours: green = elastic, red = shear failure, magenta = flexural failure). 
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Figure 22: Lateral pressure-out of plane displacement pushover curves for several specimens 

originally tested by Chee Liang (1996) and modelled with DEM. 
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Figure A1: Torsion strength as function of interface tensile strength. Continuous line for numerical 

results with the proposed spring model, dashed line for analytic expression (Eq. 12). 
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Figure A2: Stress lines for combined torsion and shear force along y1 direction. 
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Figure A3: Stress lines for combined torsion and shear forces along y1 and y2 directions. 
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Figure A4: Dimensionless torsion-shear strength domains varying interface dimensions ratio l1/l2  



Tables 

 

case 1 2 

λ
DEM

 0.175 0.215 

λ
REF,FEM

 0.210 0.260 

λ
REF,lim

 0.127 0.193 

 

Table 1: Limit loads obtained with DEM and reference results of the masonry panels studied by 

Orduña and Lourenço (2005b). 

 

specimen S11 S12 S13 S15 S6 S1-S2-S3 S5 S32 S23 S34 

n 12 8 6 4 13 11 8 14 14 14 

λ
DEM

 0.100 0.125 0.165 0.250 0.160 0.225 0.350 0.305 0.130 0.140 

λ
REF

 0.097 0.129 0.181 0.199 0.208 0.208 0.349 0.293 0.144 0.156 

 

Table 2: Limit loads obtained with DEM and reference results of the masonry specimens considered 

by Restrepo Vélez et al. (2014). 

 

wall 2-3 8-12 14-15 4-5 9-13 10-11 

L [m] 1.15 0.795 1.130 1.14 0.795 1.20 

H [m] 1.15 1.190 0.755 1.14 1.140 1.20 

restraint 4 sides 3 sides, free top 3 sides, free left 

p
DEM

 [kN/m
2
] 13.00 25.0 18.0 10.00 20.0 6.5 

p
REF

 [kN/m
2
] 12.20 

12.55 

25.0 

31.8 

20.6 

18.9 

8.54 

8.55 

23.5 

27.8 

5.20 

4.51 

 

Table 3: Dimensions, restraints, ultimate pressures obtained with DEM and reference results of 

several masonry specimens tested by Chee Liang (1996). 

 

l1/l2 α 1 2( 0, 0)f f   α 1 2( 0, 0)f f   α 1 2( 0)f f   

0.1 1.00 2.56 2.00 

0.2 1.05 2.44 1.90 

0.5 1.25 1.92 1.70 

1.0 1.43 1.43 1.43 

2.0 1.92 1.25 1.70 

5.0 2.44 1.05 1.90 

10.0 2.56 1.00 2.00 

 

Table A1: Exponents α in Equation A5 depending on interface dimension ratio l1/l2 and varying 

shear forces. 
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