
Resource Sharing via Capability-Based
Multiparty Session Types ?

A. Laura Voinea[0000−0003−4482−205X], Ornela Dardha[0000−0001−9927−7875], and
Simon J. Gay[0000−0003−3033−9091]

School of Computing Science, University of Glasgow, United Kingdom
a.voinea.1@research.gla.ac.uk

{Ornela.Dardha, Simon.Gay}@glasgow.ac.uk

Abstract. Multiparty Session Types (MPST) are a type formalism used
to model communication protocols among components in distributed
systems, by specifying type and direction of data transmitted. It is stan-
dard for multiparty session type systems to use access control based
on linear or affine types. While useful in offering strong guarantees of
communication safety and session fidelity, linearity and affinity run into
the well-known problem of inflexible programming, excluding scenarios
that make use of shared channels or need to store channels in shared data
structures.

In this paper, we develop capability-based resource sharing for multiparty
session types. In this setting, channels are split into two entities, the
channel itself and the capability of using it. This gives rise to a more
flexible session type system, which allows channel references to be shared
and stored in persistent data structures. We illustrate our type system
through a producer-consumer case study. Finally, we prove that the
resulting language satisfies type safety.

Keywords: session types · sharing · concurrent programming

1 Introduction

In the present era of communication-centric software systems, it is increasingly
recognised that the structure of communication is an essential aspect of system
design. (Multiparty) session types [18,19,31] allow communication structures to
be codified as type definitions in programming languages, which can be exploited
by compilers, development environments and runtime systems, for compile-time
analysis or runtime monitoring. A substantial and ever-growing literature on
session types and, more generally, behavioural types [20] provides a rich theoretical
foundation, now being applied to a range of programming languages [1,16].

? Supported by the UK EPSRC grant EP/K034413/1, “From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)”, by the EU HORI-
ZON 2020 MSCA RISE project 778233 “BehAPI: Behavioural Application Program
Interfaces”, and by an EPSRC PhD studentship.

2 A.L. Voinea, O.Dardha, S.J. Gay

B

b

P q Cq

s

B

b

P

p

q
C

c

q

s1

s

(a) (b)

Fig. 1. Producer-consumer system: Producer—P and Consumer—C sharing access
to Buffer—B by implementing the same role q. (a) P and C communicate with B in
session s; (b) P and C exchange the capability to use channel s[q] in session s1 and
then use it to communicate with B in session s

Session type systems must control aliasing of the endpoints of communication
channels, in order to avoid race conditions. If agents A and B both think they
are running the client side of a protocol with the same server S, then a message
sent by A advances the session state without B’s knowledge, which interferes
with B’s attempt to run the protocol.

In order to guarantee unique ownership of channel endpoints and eliminate
aliasing, most session type systems use strict linear typing. For more flexibility,
some others use affine typing, which allows channels to be discarded, but they
still forbid aliasing. It is possible to allow a session-typed channel to become
sharable in the special case in which the session type reaches a point which is
essentially stateless. However, in such systems, channels are linearly typed for
the most interesting parts of their lifetimes—we discuss these possibilities in § 6.

This leads us to our research questions:

Q1 Are session types intrinsically related to linearity or affinity?

Q2 Can we define session type systems without linear types?

Q3 How can we check resource (channel) sharing and aliasing, to guarantee
communication safety and session fidelity, i.e., type safety?

The goal of this paper is to investigate questions Q1–Q3. To give a more
flexible approach to resource sharing and access control, we propose a system of
multiparty session types (MPST) that includes techniques from the Capability
Calculus [11], and from Walker et al.’s work on alias types [35]. The key idea is
to split a communication channel into two entities: (1) the channel itself, and (2)
its usage capability. Both entities are first-class and can be referred to separately.
Channels can now be shared, or stored in shared data structures, and aliasing
is allowed. However, in order to guarantee communication safety and session
fidelity, i.e., type safety, capabilities are used linearly so that only one alias can
be used at a time.

This approach has several benefits, and improves on the state of the art: (i) for
the first time, it is now possible for a system to have a communication structure
defined by shared channels, with the capabilities being transferred from process
to process as required; (ii) a capability can be implemented as a simple token,

Resource Sharing via Capability-Based Multiparty Session Types 3

whereas delegation of channels requires a relatively complex implementation,
thus making linearity of capabilities more lightweight than linearity of channels.

Example 1 (Producer-Consumer Fig. 1). Producer P and consumer C communi-
cate via buffer B in session s, given in Fig.1 (a). P and C implement role q, and B
implements role b. Shared access to buffer B is captured by the fact that both P
and C implement the same role q and use the same channel s[q] to communicate
with B.

Following MPST theory, we start by defining a global type, describing com-
munications among all participants:

G0 = q→b:add(Int). q→b:request(). b→q:send(Int). G0

In G0, protocol proceeds as follows: P (playing q) sends an add message to B
(playing b), to add data. In sequence, C (playing q) sends a request message to
B, to ask for data. B replies with a send message, sending data to C (playing q),
and the protocol repeats as G0. Projecting the global protocol to each role gives
us a local session type. In particular, for B, implementing role b, we obtain:

Sb = q?add(Int). q?request(). q!send(Int). Sb

where the q annotations show the other role participating in each interaction.
For the shared access by P and C (role q), we obtain:

Sq = b!add(Int). S′q S′q = b!request(). b?send(Int). Sq

Finally, the definitions of processes are as follows—we will detail the syntax in
§ 2.

P〈v〉 = s[q][b]⊕〈add(v)〉.P〈v + 1〉
C〈〉 = s[q][b]⊕〈request()〉.s[b][q]&{send(i)}.C〈〉
B〈〉 = s[q][b]&{add(x)}.s[q][b]&{request()}.s[b][q]⊕〈send(x)〉.B〈〉

Unfortunately, the system of processes above is not typable using standard
multiparty session type systems because role q is shared by P and C, thus
violating linearity of channel s[q]. To solve this issue and still allow sharing and
aliasing, in our work, instead of associating a channel c with a session type S,
we separately associate c with a tracked type tr(ρ), and S with capability ρ,
{ρ 7→S}. The capability can be passed between P and C as they take turns in
using the channel, illustrated in Fig. 1 (b). As a first attempt, we now define the
following global type, getting us closer to our framework.

G1 = q→b:add(Int). p→c:turn(tr(ρq)). q→b:request().
b→q:send(Int). c→p:turn(tr(ρq)).G1

However, a type such as tr(ρq) is usually too specific because it refers to the
capability of a particular channel. It is preferable to be able to give definitions
that abstract away from specific channels. We therefore introduce existential
types, in the style of [35], which package a channel with its capability, in the form
∃[ρ|{ρ 7→S}].tr(ρ).

With the existential types in place, we can define our global type G in the
following way. It now includes an extra initial message from P to C containing

4 A.L. Voinea, O.Dardha, S.J. Gay

P ::= 0 | P |Q | (ν s)P inaction, parallel composition, restriction
| c[p]⊕〈l(v)〉.P | c[p]&i∈I{li(xi). Pi} select, branch
| c[p]⊕〈l(pack(ρ, s[q]))〉.P select pack
| c[p]&i∈I{li(pack(ρi, si[q])). Pi} branch pack
| defD inP | X〈x̃〉 recursion, process call

D ::= X〈x̃〉 = P process declaration

c ::= x | s[p] variable, channel with role p
v ::= c | ρ | true | false | 0 | 1 | ... channel, capability, base value

Fig. 2. Multiparty session π-calculus

the channel used with the buffer. The session types Sq and S′q are the same as
before.

G = p→c:buffer(∃[ρq|{ρq 7→S′q}].tr(ρq)).µ t.q→b:add(Int).p→c:turn({ρq 7→S′q}).
q→b:request().b→q:send(Int).c→p:turn({ρq 7→Sq}).t

In § 4 we complete this example by showing the projections to a local type for
each role, and the definitions of processes that implement each role. ut

Contributions of the paper

(i) MPST with capabilities: we present a new version of MPST theory without
linear typing for channels, but with linearly-typed capabilities. In § 2 we
define a multiparty session π-calculus with capabilities, and its operational
semantics, and in § 3 we define a MPST system for it.

(ii) Producer-Consumer Case Study: in § 4 we present a detailed account
of the producer-consumer case study, capturing the core of resource sharing
and use of capabilities.

(iii) Type Safety: in § 5 we state the type safety property, and outline its proof.

2 Multiparty Session π-Calculus with Capabilities

Our π-calculus with multiparty session types is based on the language defined
by Scalas et al. [28]. The syntax is defined in Fig. 2. We assume infinite sets of
identifiers for variables (x), sessions (s), capabilities (ρ) and roles (p).

The calculus combines branch (resp., select) with input (resp., output), and
a message l(v) consists of a label l and a payload v, which is a value. A message
in session s from role p to role q has the prefix s[p][q], where s[p] is represented
by c in the grammar. The select and branch operations come in two forms. The
first form is standard, and the second form handles packages, which are the novel
feature of our type system. A package consists of a capability ρ and a channel of
type tr(ρ). We will see in § 3 in the typing rules, the capability is existentially

Resource Sharing via Capability-Based Multiparty Session Types 5

P |0 ≡ P P |Q ≡ Q |P (P |Q) |R ≡ P | (Q |R)

(ν s)0 ≡ 0 (ν s)(ν s′)P ≡ (ν s′)(ν s)P (ν s)P |Q ≡ (ν s)(P |Q) if s 6∈ fc(Q)

defD in0 ≡ 0 defD in (ν s)P ≡ (ν s)(defD inP) if s 6∈ fc(P)

defD in (P |Q) ≡ (defD inP) |Q if dpv(D) ∩ fpv(Q) = ∅

defD in defD′ inP ≡ defD′ in defD inP
if (dpv(D) ∪ fpv(D)) ∩ dpv(D′) = (dpv(D′) ∪ fpv(D′)) ∩ dpv(D) = ∅

Fig. 3. Structural congruence (processes)

j ∈ I and fv(v) = ∅
s[p][q]&i∈I{li(xi). Pi} | s[q][p]⊕〈lj(v)〉.P −→ Pj{v/xj} |P

RCom

j ∈ I
s[p][q]&i∈I{li(pack(ρi, vi)). Pi} | s[q][p]⊕〈lj(pack(ρ, v))〉.P −→ Pj{v/vi} |P

RComP

x̃ = x1, . . . , xn ṽ = v1, . . . , vn fv(ṽ) = ∅
defX〈x̃〉 = P in (X〈x̃〉 |Q) −→ defX〈x̃〉 = P in (P{ṽ/x̃} |Q)

RCall

P −→ Q

(ν s)P −→ (ν s)Q
RRes

P −→ Q

P |R −→ Q |R
RPar

P −→ Q

defD inP −→ defD inQ
RDef

Fig. 4. Reduction (processes)

quantified. This enables a channel to be delegated, with the information that it
is linked to some capability, which will be transmitted in a second message.

As usual, we define structural congruence to compensate for the limitations
of textual syntax. It is the smallest congruence satisfying the axioms in Fig. 3.
The definition uses the concepts of free channels of a process, fc(P); free process
variables of a process, fpv(P); and defined process variables of a process declara-
tion, dpv(D). We omit the definitions of these concepts, which are standard and
can be found in [28].

We define a reduction-based operational semantics by the rules in Fig. 4.
Rule RCom is a standard communication between roles p and q. Rule RComP is
communication of an existential package. Rule RCall defines a standard approach
to handling process definitions. The rest are standard contextual rules.

3 Multiparty Session Types with Capabilities

We now introduce a type system for the multiparty session π-calculus. The
general methodology of multiparty session types is that system design begins
with a global type, which specifies all of the communication among various roles.
Given a global type G and a role p, projection yields a session type or local type
G � p that describes all of the communication involving p. This local type can be
further projected for another role q, to give a partial session type that describes
communication between p and q.

6 A.L. Voinea, O.Dardha, S.J. Gay

S ::= local session type
end terminated session
| p⊕i∈I !li(Ui).Si selection towards role p
| p&i∈I?li (Ui) .Si branching from role p
| p⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si pack selection towards role p
| p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si pack branching from role p
| t type variable
| µ t.S recursive session type

G ::= global type
end termination
| p→q:{li(Ui).Gi}i∈I interaction
| p→q:{li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Gi}i∈I pack interaction
| t type variable
| µ t.G recursive type

H ::= partial session type
end terminated session
| ⊕i∈I !li(Ui).Hi selection
| &i∈I ?li(Ui).Hi branching
| ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi pack selection
| &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi pack branching
| t type variable
| µ t.H recursive type

C ::= ∅ | C⊗{ρ 7→S} capabilities

B ::= Int | Bool ground type

U ::= payload type
B ground type
| tr(ρ) tracked type
| {ρ 7→S} capability type
| S closed session type

Γ ::= ∅ | Γ , x : U | Γ , s[p] : tr(ρ) environment

∆ ::= ∅ | ∆,X : Ũ process names

All branch and select types have the conditions I 6= ∅ and Ui closed.

Fig. 5. Types, capabilities, environments

Resource Sharing via Capability-Based Multiparty Session Types 7

Global types Fig.5. Each interaction has a source role p and a target role q. We
combine branching and message transmission, so an interaction has a label li, a
payload of type Ui, or of type ∃[ρi|{ρi 7→Ui}].tr(ρi), and a continuation type Gi.
If there is only one branch then we usually abbreviate the syntax to p→q:l(U). G,
respectively p→q:l(∃[ρi|{ρi 7→Ui}].tr(ρi)). G. Recursive types are allowed, with
the assumption that they are guarded. Base types B,B′, . . . can be types like
Bool, Int, etc. Payload types U,Ui, . . . are either base types, tracked types,
capability types or closed session types.

Local (session) types Fig. 5. The single form of interaction from global types
splits into select (internal choice) and branch (external choice). The branching
type p&i∈I?li (Ui) .Si describes a channel that can receive a label li from role p

(for some i ∈ I, chosen by p), together with a payload of type Ui; then, the channel
must be used as the continuation type Si. The selection type p⊕i∈I !li(Ui).Si,
describes a channel that can choose a label li (for any i ∈ I), and send it to
p together with a payload of type Ui; then, the channel must be used as Si.
The types for pack select and pack branch act in a similar manner, and bind
the capability ρi for the continuation type Si. Session types also allow guarded
recursion.

The relationship between global types and session types is formalised by the
notion of projection.

Definition 1. The projection of G onto a role q, written G � q, is:

end � q , end t � q , t (µ t.G) � q ,

{
µ t.(G � q) if G � q 6= t′ (∀t′)
end otherwise

(p→p′:{li(Ui).Gi}i∈I) � q ,


p′ ⊕i∈I !li(Ui).(Gi � q) if q = p,

p &i∈I ?li(Ui).(Gi � q) if q = p′,
d

i∈I(Gi � q) if p 6= q 6= p′

(p→p′:{li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Gi}i∈I) � q ,
p′ ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Gi � q) if q = p,

p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Gi � q) if q = p′,
d

i∈I(Gi � q) if p 6= q 6= p′

Where the merge operator for session types,
d

, is defined by:

end u end , end t u t , t µ t.S u µ t.S′ , µ t.(S u S′)
p &i∈I ?li(Ui).Si u p &j∈J ?lj(Uj).S

′
j ,

p &k∈I∩J ?lk(Uk).(Sk u S′k) & p &j∈I\J ?li(Ui).Si & p &j∈J\I ?lj(Uj).S
′
j

p⊕i∈I !li(Ui).Si u p⊕i∈I !li(Ui).Si , p⊕i∈I !li(Ui).Si

p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si u p &j∈J ?lj(∃[ρj |{ρj 7→Uj}].tr(ρj)).S
′
j ,

p &k∈I∩J ?lk(∃[ρk|{ρk 7→Uk}].tr(ρk)).(SkuS′k) & p &j∈I\J ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si

& p &j∈J\I ?lj(∃[ρj |{ρj 7→Uj}].tr(ρj)).S
′
j

p⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si u p⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si ,
p⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si

Projecting end or a type variable t onto any role does not change it. Projecting
a recursive type µ t.G onto q means projecting G onto q. However, if G does

8 A.L. Voinea, O.Dardha, S.J. Gay

not involve q then G � q is a type variable, t′, and it must be replaced by end

to avoid introducing an unguarded recursive type. Projecting an interaction
between p and p′ onto either p or p′ produces a select or a branch. Projecting
onto a different role q ignores the interaction and combines the projections of
the continuations using the merge operator.

The merge operator, u, introduced in [13,36], allows more global types to have
defined projections, which in turn allows more processes to be typed. Different
external choices from the same role p are integrated by merging the continuation
types following a common message label, and including the branches with different
labels. Merging for internal choices is undefined unless the interactions are
identical. This excludes meaningless types that result when a sender p is unaware
of which branch has been chosen by other roles in a previous interaction.

Definition 2. For a session type S, roles(S) denotes the set of roles occurring
in S. We write p ∈ S for p ∈ roles(S), and p ∈ S\q for p ∈ roles(S) \ {q}.

Partial session types Fig. 5 have the same cases as local types, without role
annotations. Partial types have a notion of duality which exchanges branch and
select but preserves payload types.

Definition 3. H is the dual of H, defined by:

⊕i∈I !li(U i).Hi , &i∈I ?li(Ui).Hi &i∈I?li (U i) .Hi , ⊕i∈I !li(Ui).Hi

⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi , &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi

&i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi , ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi

end , end t , t µ t.H , µ t.H

Similarly to the projection of global types to local types, a local type can
be projected onto a role q to give a partial type. This yields a partial type that
only describes the communications in S that involve q. The definition follows
the same principles as the previous definition (cf. Definition 1).

Definition 4. S �q is the partial projection of S onto q:

end �q , end t �q , t (µ t.S) �q ,

{
µ t.(S �q) if S �q 6= t′ (∀t′)
end otherwise

(p⊕i∈I !li(Ui).Si) �q ,

{
⊕i∈I !li(Ui).(Si �q) if q = p,
d

i∈I(Si �q) if p 6= q

(p&i∈I?li (Ui) .Si) �q ,

{
&i∈I ?li(Ui).Si �q if q = p,
d

i∈I(Si �q) if p 6= q

(p⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si) �q ,{
⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Si � q) if q = p,
d

i∈I(Si �q) if p 6= q

(p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si) �q ,{
&i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si �q if q = p,
d

i∈I(Si �q) if p 6= q

Resource Sharing via Capability-Based Multiparty Session Types 9

Where the merge operator for partial session types,
d

, is defined by:

endu end , end tu t , t µ t.H u µ t.H ′ , µ t.(H uH ′)
&i∈I ?li(Ui).Hi u &i∈I ?li(Ui).H

′
i , &i∈I ?li(Ui).(Hi uH ′i)

⊕i∈I !li(Ui).Hi u ⊕j∈J !lj(Uj).H
′
j ,(

⊕k∈I∩J !lk(Uk).(Hk uH ′k)
)
⊕
(
⊕i∈I\J !li(Ui).Hi

)
⊕
(
⊕j∈J\I !lj(Uj).H

′
j

)
&i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi u &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).H

′
i ,

&i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Hi uH ′i)
⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi u ⊕j∈J !lj(∃[ρj |{ρj 7→Uj}].tr(ρj)).H

′
j ,(

⊕k∈I∩J !lk(∃[ρk|{ρk 7→Uk}].tr(ρk)).(Hk uH ′k)
)
⊕
(
⊕i∈I\J !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi

)
⊕
(
⊕j∈J\I !lj(∃[ρj |{ρj 7→Uj}].tr(ρj)).H

′
j

)
Unlike session type merging, u can combine different internal choices, but not
external choices because that could violate type safety. Different internal choices
can depend on the outcome of previous interactions with other roles, since this
dependency can be safely approximated as an internal choice. Different external
choices, however cannot capture this dependency.

Example 2 (Projections of Global and Local Types). Consider the global type G
of the producer-consumer example from the introduction.

G = p→c:buffer(∃[ρq|{ρq 7→S′q}].tr(ρq)).µ t.q→b:add(Int).p→c:turn({ρq 7→S′q}).
q→b:request(Str).b→q:send(Int).c→p:turn({ρq 7→Sq}).t

It captures the interaction between the producer and consumer entities
through roles p, c, and between producer, consumer and buffer through roles
q (shared between producer and consumer) and b. Projecting onto p gives the
session type

S = G � p = c⊕!buffer(∃[ρq|{ρq 7→S′q}].tr(ρq)).µ t.c⊕!turn({ρq 7→S′q}).
c&?turn({ρq 7→Sq}).t

and further projecting onto c gives the partial session type:

H=S �c=⊕!buffer(∃[ρq|{ρq 7→S′q}].tr(ρq)).!µ t.⊕!turn({ρq 7→S′q}).&?turn({ρq 7→Sq}).t

Definition 5 (Subtyping). Subtyping on session types6S is the largest relation
such that (i) if S6SS

′, then ∀p∈(roles(S)∪roles(S′)) S�p6PS
′�p, and (ii) is

closed backwards under the coinductive rules in Fig. 6. Subtyping on partial
session types 6P is defined coinductively by the rules in Fig. 7.

Intuitively, the subtyping relation says that a session type S is “smaller” than S′

when S is “less demanding” than S′ i.e., when S allows more internal choices,
and imposes fewer external choices, than S′. Clause (i) links local and partial
subtyping, and ensures that if two types are related, then their partial projections
exist. This clause is used later in defining consistency in Definition 8. In the
second clause (ii) rules SBr, SSel define subtyping on branch/select types, and
SBrP, SSelP define subtyping on branch pack/select pack types. SBr and SBrP

are covariant in their continuation types as well as in the number of branches
offered, whereas SSel, and SSelP are contravariant in both. SB relates base types,

10 A.L. Voinea, O.Dardha, S.J. Gay

∀i ∈ I Ui6SU
′
i Si6SS

′
i SBr

===============================
p&i∈I?li (Ui) .Si 6S p &i∈I∪J ?li(U

′
i).S

′
i

∀i ∈ I U ′i6SUi Si6SS
′
i SSel

=============================
p⊕i∈I∪J !li(Ui).Si6Sp⊕i∈I !li(U

′
i).S

′
i

∀i ∈ I Ui6SU
′
i Si6SS

′
i SBrP

===
p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si 6S p &i∈I∪J ?li(∃[ρi|{ρi 7→U ′i}].tr(ρi)).S

′
i

∀i ∈ I U ′i6SUi Si6SS
′
i SSel

===
p⊕i∈I∪J !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si6Sp⊕i∈I !li(∃[ρi|{ρi 7→U ′i}].tr(ρi)).S

′
i

B 6B B
′

======= SB
B6SB

′
======== SEnd
end6Send

S{µ t.S/t}6SS
′

============= SµL
µ t.S6SS

′

S6SS
′{µ t.S′/t}

============= SµR
S6Sµ t.S

′

Fig. 6. Subtyping for local session types.

∀i ∈ I Ui6SU
′
i Hi6PHi

′
SParBr

=============================
&i∈I?li (U i) .Hi6P &i∈I∪J ?li(U

′
i).Hi

′

∀i ∈ I U ′i6SUi Hi6PHi
′

SParSel
=============================
⊕i∈I∪J !li(Ui).Hi6P ⊕i∈I !li(U

′
i).H

′
i

∀i ∈ I Ui6SU
′
i Hi6PHi

′
SParBrP

==
&i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).H6P &i∈I∪J ?li(∃[ρi|{ρi 7→U ′i}].tr(ρi)).H

′
i

∀i ∈ I U ′i6SUi Hi6PHi
′

SParSelP
==
⊕i∈I∪J !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi6P ⊕i∈I !li(∃[ρi|{ρi 7→U ′i}].tr(ρi)).H

′
i

======== SParEnd
end6Pend

H{µ t.H/t}6PH
′

============== SParµL
µ t.H6PH

′

H6PH
′{µ t.H ′/t}

=============== SParµR
H6Pµ t.H

′

Fig. 7. Subtyping for partial session types.

if they are related by 6B. SEnd relates terminated channel types. SµL and SµR

are standard under coinduction [26, § 21], relating types up-to their unfolding.

Capabilities In our type system linearity is enforced via capabilities, rather
than via environment splitting as in most session type systems. Each process
has a capability set C associated with it, allowing it to communicate on the
associated channels. The tracked type tr(ρ) is a singleton type associating a
channel to capability ρ and to no other, which in turn maps to the channel’s
session type {ρ 7→S}. Hence two variables with the same capability ρ are aliases
for the same channel. Individual capabilities are joined together using the ⊗
operator: C = {ρ1 7→S1}⊗ . . .⊗{ρn 7→Sn}. The ordering is insignificant. The
type system maintains the invariant that ρ1, . . . , ρn are distinct.

Definition 6 (Terminated capabilities). A capability set C is terminated if
for every ρ ∈ dom (C), C(ρ) = end.

Definition 7 (Substitution of capabilities).

{ρ 7→S}[ρ′/ρ2] = {ρ 7→S} {ρ 7→S}[ρ′/ρ] = {ρ′ 7→S}

∅[ρ′/ρ] = ∅ (C1⊗C2)[ρ′/ρ] = C1[ρ′/ρ]⊗C2[ρ′/ρ]

Resource Sharing via Capability-Based Multiparty Session Types 11

There are two important concepts relating the environment Γ and the capa-
bility set C: completeness and consistency, used in our type system.

Completeness means that if a channel is in Γ and its capability is in C, then Γ
also contains the other endpoints of the channel and C contains the corresponding
capability. In this case, there is a self-contained collection of channels that can
communicate. Consistency means that the opposite endpoints of every channel
have dual partial types.

Definition 8 (Completeness and consistency).
(Γ ,C) is complete iff for all s[p] :tr(ρp) with ρp :{ρp 7→Sp} ∈ Γ and {ρp 7→Sp} ∈
C, q ∈ Sp implies s[q] : tr(ρq), ρq : {ρq 7→Sq} ∈ Γ and {ρq 7→Sq} ∈ C.

(Γ ,C) is consistent iff for all s[p] : tr(ρp), s[q] : tr(ρq), ρp : {ρp 7→Sp}, ρq :
{ρq 7→Sq} ∈ Γ we have Sp �q6PSq �p.

Definition 9. Typing judgements are inductively defined by the rules in Fig. 8,
and have the form: Γ ` v : T ;C for values, or ∆;Γ ` P ;C for processes (with
(Γ ,C) consistent, and ∀(c : tr(ρ) ∈ Γ ; {ρ 7→S} ∈ C), S � p is defined ∀p ∈ S).

Γ is an environment of typed variables and channels together with their capability
typing. ∆, defined in Fig. 5 is an environment of typed process names, used in
rules TDef and TCall for recursive process definitions and calls. If a channel s[p]
is in Γ , with type tr(ρ), then Γ also contains ρ : {ρ 7→S} for some session type
S. The capability ρ might, or might not, be in C, to show whether or not the
channel can be used. If ρ is in C, then it occurs with the same session type:
{ρ 7→S}.

Rule TCap takes the type for a capability ρ from the capability set. TVar and
TVal are standard. TInact has a standard condition that all session types have
reached end, expressed as the capability set being terminated. TPar combines
the capability sets in a parallel composition. TSub is a standard subsumption rule
using 6S (Definition 5), the difference being the type in the capability set. TSel

(resp. TBr) states that the selection (resp. branching) on channel c[p] is well typed
if the capability associated with it is of compatible selection (resp. branching)
type and the continuations Pi,∀i ∈ I are well-typed with the continuation session
types. TSelP is similar to TSel, with the notable difference that an existential
package is created for the channel being sent, containing the channel and its
abstracted capability. Note that the actual capability to use the endpoint remains
with process P . TBrP is similar to TBr, with the difference that it unpackages
the channel received and binds its capability type in the continuation session
type (used to identify the correct capability when received later). TRes requires
the restricted environment Γ ′ and the associated capability set C ′ to be complete
(Definition 8). TDef takes account of capability sets as well as parameters, and
TCall similarly requires capability sets. The parameters of a defined process
include any necessary capabilities, which then also appear in the corresponding
Ci, because not all capabilities associated with the channel parameters need to
be present when the call is made.

12 A.L. Voinea, O.Dardha, S.J. Gay

TCap

Γ ` ρ : {ρ 7→S}; {ρ 7→S}

TVar

c : tr(ρ), ρ : {ρ 7→S} ∈ Γ
Γ ` c : tr(ρ); ∅

TVal

v ∈ B
Γ ` v :B; ∅

TInact

C terminated

∆;Γ ` 0;C

TPar

∆;Γ ` P ;C1 ∆;Γ `Q;C2

∆;Γ ` P |Q;C1⊗C2

TSub

∆;Γ ` P ;C⊗{ρ 7→U} U ′6SU

∆;Γ ` P ;C⊗{ρ 7→U ′}

TSel

Γ ` v : U ;C ∆;Γ ` P ;C′⊗{ρ 7→Sj} c : tr(ρ), ρ : {ρ 7→Sj} ∈ Γ j ∈ I
∆;Γ ` c[p]⊕〈lj(v)〉.P ;C⊗C′⊗{ρ 7→ p⊕i∈I !li(Ui).Si}

TBr

∆;Γ , xi : Ui ` Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ), ρ : {ρ 7→Si} ∈ Γ ∀i ∈ I
∆;Γ ` c[p]&i∈I{li(xi). Pi};C⊗{ρ 7→p&i∈I?li (Ui) .Si}

TSelP

Γ ` v : tr(ρ′); ∅ ∆;Γ ` P ;C⊗{ρ 7→ Sj , ρ
′ 7→ U} c : tr(ρ), ρ : {ρ 7→Sj} ∈ Γ j ∈ I

∆;Γ ` c[p]⊕〈lj(pack(ρ′, v))〉.P ;C⊗{ρ 7→ p⊕i∈I !li(∃[ρ′|{ρ′ 7→U}].tr(ρ′)).Si, ρ
′ 7→ U}

TBrP

∆;Γ , vi : tr(ρi), ρi : {ρi 7→Ui} ` Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ), ρ : {ρ 7→Si} ∈ Γ
∆;Γ ` c[p]&i∈I{li(pack(ρi, vi)). Pi};C⊗{ρ 7→p&i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

TRes

∆;Γ , Γ ′ ` P ;C⊗C′
(Γ ′= {s[p] : tr(ρp), ρp : {ρp 7→Sp}}p∈I , C′=⊗p∈I{ρp 7→Sp}) complete

∆;Γ ` (ν s : Γ ′)P ;C

TDef

∆,X :Ũ ; x̃:Ũ ` P ; C̃

∆,X :Ũ ;Γ `Q;C

∆;Γ ` defX〈x̃:Ũ〉 = P ; C̃ inQ;C

TCall

∀i ∈ {1..n} Γ ` vi :Ui;Ci

∆,X : U1, . . . , Un;Γ `X〈v1, . . . , vn〉;C1⊗. . .⊗Cn

Fig. 8. Typing rules

4 Case study: Producer-Consumer

We now expand on the producer-consumer scenario from § 1 by discussing the
process definitions and showing part of the typing derivation. To lighten the
notation, we present a set of mutually recursive definitions, instead of using the
formal syntax of def . . . in.

Recall that the example consists of three processes: the producer, the consumer,
and a one-place buffer (Fig. 1). The producer and the consumer communicate
with the buffer on a single shared channel. Each of the two must wait to receive
the capability to communicate on the channel before doing so.

The buffer B is parameterised by channel x and by the capability for it, ρx,
and alternately responds to add and request messages. At the end of the definition,

Resource Sharing via Capability-Based Multiparty Session Types 13

{ρx 7→Sb} shows the held capability and its session type.

B〈x:tr(ρx), ρx :{ρx 7→Sb}〉=x[q]&add(i).x[q]&request(r).x[p]⊕send(i).B〈x, ρx〉; {ρx 7→Sb}

The producer is represented by two process definitions: Produce and P. Produce
is a recursive process with several parameters. Channels x and y are used to
communicate with the consumer and the buffer, respectively. Their capabilities
are ρx and ρy. Finally, i is the value to be sent to the buffer. The process sends
a value to the buffer (add(i)), transfers the capability for the shared channel y
(turn(ρy)) and receives it back from the consumer. Process P is the entry point
for the producer. It has the same parameters as Produce, except for i. The only
action of P is to send the consumer a shared reference to the channel used for
communication with the buffer —x[c]⊕buffer(pack(ρy, y[b])).

Produce〈x : tr(ρx), y : tr(ρy), i : Int, ρx : {ρx 7→S′p}, ρy : {ρy 7→Sq}〉 = y[b]⊕add(i).
x[c]⊕turn(ρy). x[c]&turn(ρy). Produce〈x, y, i+1, ρx, ρy〉; {ρx 7→S′p}⊗{ρy 7→Sq}

P〈x : tr(ρx), y : tr(ρy), ρx : {ρx 7→Sp}, ρy : {ρy 7→Sq}〉 =
x[c]⊕buffer(pack(ρy, y[b])). Produce〈x, y, 0, ρx, ρy〉; {ρx 7→Sp}⊗{ρy 7→Sq}

In a similar way, the consumer is represented by Consume and C. The parame-
ters, however, are different. C has x and its capability ρx, for communication with
the producer, but it does not have y or ρy for communication with the buffer.
It receives y from the producer, as part of pack(ρy, y[b]), and y is passed as a
parameter to Consume. The capability ρy is not a parameter of Consume, but it
is received in a turn message from the producer.

Consume〈x : tr(ρx), y : tr(ρy), ρx : {ρx 7→S′c}〉 = x[p]&turn(ρy). y[b]⊕request(r).
y[b]&send(i). x[p]⊕turn(ρy). Consume〈x, y, ρx〉; {ρx 7→S′c}

C〈x : tr(ρx), ρx : {ρx 7→Sc}〉 =
x[p]&buffer(pack(ρy, y[b])). Consume〈x, y, ρx〉; {ρx 7→Sc}

The complete system consists of the producer, the consumer and the buffer in
parallel, with sessions s1 (roles p and c) and s2 (roles q and b) scoped to construct
a closed process.

(ν s1)((ν s2)(P〈s1[p], s2[q], ρp, ρq〉 | B〈s2[b], ρb〉) | C〈s1[c], ρc〉

The session types involved in these processes are projections of the global type G
(§3). They specify how each role is expected to use its channel endpoint. The roles
are b for the buffer, q for the combined role of the producer and the consumer as
they interact with the buffer, p for the producer, and c for the consumer.

Sb = G � b = µ t.q&?add(Int).q&?request(Str).q⊕!send(Int).t

Sq = G � q = µ t.b⊕!add(Int).b⊕!request(Str).b&?send(Int).t

Sp = G � p = c⊕!buffer(∃[ρq|{ρq 7→S′q}].tr(ρq)).µ t.

c⊕!turn({ρq 7→S′q}).c&?turn({ρq 7→Sq}).t
Sc = G � c = p&?buffer(∃[ρq|{ρq 7→S′q}].tr(ρq)).µ t.

p&?turn({ρq 7→S′q}).p⊕!turn({ρq 7→Sq}).t

14 A.L. Voinea, O.Dardha, S.J. Gay

Γ ` x : tr(ρx), y : tr(ρy), i : Int, ρx : {ρx 7→S′p}, ρy : {ρy 7→Sq}; {ρx 7→ S′p, ρy 7→ Sq}
∆;Γ ` Produce〈x, y, i+1, ρx, ρy〉; {ρx 7→ S′p, ρy 7→ Sq}

TCall

∆;Γ ` x[c]&{turn(ρy).Produce〈x, y, i+1, ρx, ρy〉}; {ρx 7→ c&?turn({ρq 7→Sq}).S′p}
TBr

······

TCap

Γ `ρq :{ρq 7→S′q}; {ρq 7→S′q} x : tr(ρx), ρx : {ρx 7→c&?turn({ρq 7→Sq}).S′p} ∈ Γ
∆;Γ ` x[c]⊕〈turn(ρq)〉.x[c]&{turn(ρy).Produce〈x, y, i+1, ρx, ρy〉}; {ρx 7→ S′p, ρy 7→ S′q}

TSel

······
i ∈ Int

Γ ` i : Int; ∅
TVal

y : tr(ρy), ρy : {ρy 7→S′q} ∈ Γ
∆;Γ ` y[b]⊕〈add(i)〉.x[c]⊕〈turn(ρq)〉.x[c]&{turn(ρq).Produce〈x, y, i+1, ρx, ρy〉};

{ρx 7→ S′p, ρy 7→ Sq}

TSel

Fig. 9. Typing derivation for Produce.

Γ ` x : tr(ρx), y : tr(ρy), ρx : {ρx 7→S′p}, ρy : {ρy 7→Sq}; {ρx 7→ S′p, ρy 7→ Sq}
∆;Γ ` Produce〈x, y, i, ρp, ρq〉; {ρx 7→ S′p, ρy 7→ Sq}

TCall

······
y : tr(ρy), ρy : {ρy 7→Sq}

Γ ` y : tr(ρy); ∅
TVar

x, ρx : {ρx 7→Sp} ∈ Γ
∆;Γ ` x[c]⊕〈buffer(pack(ρq, y[b]))〉.Produce〈x, y, i, ρx, ρy〉;

{ρy 7→ p⊕!l(∃[ρy|{ρy 7→Sq}].tr(ρy)).S
′
p, ρy 7→ Sq}

TSelP

Fig. 10. Typing derivation for P.

These types occur in the capabilities associated with each process. For example
process P〈s1[p], s2[q], ρp, ρq〉 has {ρq 7→Sq}⊗{ρp 7→Sp}, process B〈s2[b], ρb〉 has
{ρb 7→Sb}, and process C〈s1[c], ρc〉 has {ρc 7→Sc}.

To illustrate the typing rules, we show the typing derivation for the producer,
i.e. processes Produce (Fig. 9) and P (Fig. 10). Full derivations for all of the
processes are in the technical report. The derivations use the following definitions.

S′p = µ t.c⊕!turn({ρq 7→S′q}).c&?turn({ρq 7→Sq}).t
S′q = b⊕!request(Str).b&?send(Int).Sq

∆ = Produce : (tr(ρp), tr(ρq), Int, {ρp 7→Sp}, {ρq 7→Sq})
Γ = x : tr(ρp), y : tr(ρq), i : Int, ρp : {ρp 7→Sp}, ρq : {ρq 7→Sq}

Scenarios with multiple producers/consumers can be represented in a similar
way, the capabilities acting as a form of lock for the resource being shared. The
full typing derivation for producer consumer case study can be found in the
extended version of this paper [33].

5 Technical Results

Following standard practice in the MPST literature, we show type safety and
hence communication safety by proving a subject reduction theorem (Theorem 1).

Resource Sharing via Capability-Based Multiparty Session Types 15

In the usual way, session types evolve during reduction—in our system, this is
seen in both the Γ environment and the capability set C.

Definition 10 (Typing context reduction). The reduction (Γ ;C) −→ (Γ ′;C ′)
is:

(s[p] :tr(ρp), s[q] :tr(ρq), ρp :{ρp 7→Sp}, ρq :{ρq 7→Sq}; {ρp 7→ Sp, ρq 7→ Sq}) −→
(s[p] :tr(ρp), s[q] :tr(ρq), ρp :{ρp 7→Sk}, ρq :{ρq 7→S′k}; {ρp 7→ Sk, ρq 7→ S′k})

if

{
unf
(
Sp
)

= q⊕i∈I !li(Ui).Si k ∈ I
unf
(
Sq
)

= p &i∈I∪J ?li(U
′
i).S

′
i Uk 6S U

′
k

or if

{
unf
(
Sp
)

= q⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si k ∈ I
unf
(
Sq
)

= p &i∈I∪J ?li(∃[ρi|{ρi 7→U ′i}].tr(ρi)).S
′
i Uk 6S U

′
k

(Γ ,c :tr(ρ), ρ :{ρ 7→U};C⊗{ρ 7→U}) −→ (Γ ′,c :tr(ρ), ρ :{ρ 7→U ′};C ′⊗{ρ 7→U ′})
if (Γ ;C) −→ (Γ ′;C ′) and U6SU

′

Following [28] our Definition 10 also accommodates subtyping (6S) and our
iso-recursive type equivalence (hence, unfolds types explicitly).

Theorem 1 (Subject reduction). If ∆;Γ ` P ;C and P −→ P ′, then there
exist Γ ′ and C ′ such that ∆;Γ ′ ` P ′;C ′ and (Γ ;C) −→∗ (Γ ′;C ′).

The proof is by induction on the derivation of P −→ P ′, with an analysis of
the derivation of ∆;Γ ` P ;C. A key case is RRes, which requires preservation of
the condition in TRes that (Γ ,C) is consistent. This is because a communication
reduction consumes matching prefixes from a pair of dual partial session types,
which therefore remain dual. The full proof is in the extended version of this
paper [33].

6 Related Work, Conclusion and Future Work

From the beginning of session types, channel endpoints were treated as linear
resources so that each role in a protocol could be implemented by a unique agent.
This approach is reinforced by several connections between session types and other
linear type theories: the encodings of binary session types and multiparty session
types into linear π-calculus types [12,28]; the Curry-Howard correspondence
between binary session types and linear logic [6,34]; the connection between
multiparty session types and linear logic [7,8].

Some session type systems generalise linearity. Vasconcelos [32] allows a
session type to become non-linear, and sharable, when it reaches a state that is
invariant with every subsequent message. Mostrous and Vasconcelos [24] define
affine session types, in which each endpoint must be used at most once and can
be discarded with an explicit operator. In Fowler et al.’s [15] implementation
of session types for the Links web programming language, affine typing allows
sessions to be cancelled when exceptions (including dropped connections) occur.
Caires and Pérez [5] use monadic types to describe cancellation (i.e. affine sessions)

16 A.L. Voinea, O.Dardha, S.J. Gay

and non-determinism. Pruiksma and Pfenning [27] use adjoint logic to describe
session cancellation and other behaviours including multicast and replication.

Usually linearity spreads, because a data structure containing linear values
must also be linear. In the standard π-calculus, exceptions to this nature of
linearity have been studied by Kobayashi in his work on deadlock-freedom
Padovani [25] extends the linear π-calculus with composite regular types in such
a way that data containing linear values can be shared among several processes.
However, this sharing can occur only if there is no overlapping access to such
values, which differs from our work where we have full sharing of values. On the
other hand, we work directly with (multiparty) session types, whereas Padovani
works with linear π-calculus and obtains his results via the encoding of session
types into linear π-types [12].

Session types are related to the concept of typestate [29], especially in the
work of Kouzapas et al. [21,22] which defines a typestate system for Java based on
multiparty session types. Typestate systems require linear typing or some other
form of alias control, to avoid conflicting state changes via multiple references.
Approaches include the permission-based systems used in the Plural and Plaid
languages [4,30] and the fine-grained approach of Militão et al. [23]. Crafa and
Padovani [10] develop a “chemical” approach to concurrent typestate oriented
programming, allowing objects to be accessed and modified concurrently by several
processes, each potentially changing only part of their state. Our approach is
partly inspired by Fähndrich and DeLine’s “adoption and focus” system [14], in
which a shared stateful resource (in our case, a session channel) is separated from
the linear key (capability, in our system) that enables it to be used. In this way
the state changes of channels follow the standard session operations, channels
can be shared (for example, stored in shared data structures), and access can be
controlled by passing the capability around the system.

Balzer et al. [2,3] support sharing of binary session channels by allowing locks
to be acquired and released at points that are explicitly specified in the session
type. Our approach with multiparty sessions is not based on locks, so it doesn’t
require runtime mechanisms for managing blocked processes and notifying them
when locks are released.

We have presented a new system of multiparty session types with capabilities,
which allows sharing of resources in a way that generalises the strictly linear
or affine access control typical of session type systems. The key technical idea
is to separate a channel from the capability of using the channel. This allows
channels to be shared, while capabilities are linearly controlled. We use a form
of existential typing to maintain the link between a channel and its capability,
while both are transmitted in messages. We have proved communication safety,
formulated as a subject reduction theorem (Theorem 1). An area of future work is
to prove progress and deadlock-freedom properties along the lines of, for example,
Coppo et al. [9]. Another possibility is to apply our techniques to functional
languages with session types [17].

Resource Sharing via Capability-Based Multiparty Session Types 17

References

1. Ancona, D., et al.: Behavioral types in programming languages. Foun-
dations and Trends in Programming Languages 3(2–3), 95–230 (2016).
https://doi.org/10.1561/2500000031

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. PACMPL 1(ICFP),
37:1–37:29 (2017). https://doi.org/10.1145/3110281

3. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared
session types. In: ESOP. LNCS, vol. 11423, pp. 611–639. Springer (2019).
https://doi.org/10.1007/978-3-030-17184-1 22

4. Bierhoff, K., Aldrich, J.: PLURAL: checking protocol compliance un-
der aliasing. In: ICSE Companion. pp. 971–972. ACM Press (2008).
https://doi.org/http://doi.acm.org/10.1145/1370175.1370213

5. Caires, L., Pérez, J.A.: Linearity, control effects, and behavioral types. In: ESOP.
LNCS, vol. 10201, pp. 229–259. Springer (2017). https://doi.org/10.1007/978-3-
662-54434-1 9

6. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: CON-
CUR. LNCS, vol. 6269, pp. 222–236. Springer (2010). https://doi.org/10.1007/978-
3-642-15375-4 16

7. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence
generalises duality: A logical explanation of multiparty session types. In: CONCUR.
LIPIcs, vol. 59, pp. 33:1–33:15. Schloss Dagstuhl — Leibniz-Zentrum für Informatik
(2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

8. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. In: CONCUR. LIPIcs, vol. 42. Schloss Dagstuhl — Leibniz-
Zentrum für Informatik (2015). https://doi.org/10.4230/LIPIcs.CONCUR.2015.412

9. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science 26(2), 238–302 (2016). https://doi.org/10.1017/S0960129514000188

10. Crafa, S., Padovani, L.: The chemical approach to typestate-oriented programming.
ACM Transactions on Programming Languages and Systems 39(3), 13:1–13:45
(2017). https://doi.org/10.1145/3064849

11. Crary, K., Walker, D., Morrisett, G.: Typed memory management
in a calculus of capabilities. In: POPL. pp. 262–275. ACM (1999).
https://doi.org/10.1145/292540.292564

12. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: PPDP. ACM
(2012). https://doi.org/10.1145/2370776.2370794

13. Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session types.
Logical Methods in Computer Science 8(4) (2012). https://doi.org/10.2168/LMCS-
8(4:6)2012

14. Fähndrich, M., DeLine, R.: Adoption and focus: Practical linear
types for imperative programming. In: PLDI. pp. 13–24. ACM (2002).
https://doi.org/10.1145/512529.512532

15. Fowler, S., Lindley, S., Morris, J.G., Decova, S.: Exceptional asynchronous ses-
sion types: session types without tiers. PACMPL 3(POPL), 28:1–28:29 (2019).
https://doi.org/10.1145/3290341

16. Gay, S.J., Ravara, A. (eds.): Behavioural Types: From Theory to Tools. River
Publishers (2017). https://doi.org/10.13052/rp-9788793519817

17. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous ses-
sion types. Journal of Functional Programming 20(1), 19–50 (2010).
https://doi.org/10.1017/S0956796809990268

https://doi.org/10.1561/2500000031
https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/http://doi.acm.org/10.1145/1370175.1370213
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2015.412
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1145/3064849
https://doi.org/10.1145/292540.292564
https://doi.org/10.1145/2370776.2370794
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1145/512529.512532
https://doi.org/10.1145/3290341
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1017/S0956796809990268

18 A.L. Voinea, O.Dardha, S.J. Gay

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL. pp. 273–284. ACM Press (2008). https://doi.org/10.1145/1328438.1328472

19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: ESOP. LNCS, vol. 1381, pp.
122–138. Springer (1998). https://doi.org/10.1007/BFb0053567

20. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Computing Surveys 49(1) (2016). https://doi.org/10.1145/2873052

21. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking proto-
cols with Mungo and StMungo. In: PPDP. pp. 146–159. ACM (2016).
https://doi.org/10.1145/2967973.2968595

22. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo: a session type toolchain for Java. Science of Computer
Programming 155, 52–75 (2018). https://doi.org/10.1016/j.scico.2017.10.006

23. Militão, F., Aldrich, J., Caires, L.: Aliasing control with view-based typestate. In:
FTFJP. pp. 7:1–7:7. ACM (2010). https://doi.org/10.1145/1924520.1924527

24. Mostrous, D., Vasconcelos, V.T.: Affine sessions. Logical Methods in Computer
Science 14(4) (2018). https://doi.org/10.23638/LMCS-14(4:14)2018

25. Padovani, L.: Type reconstruction for the linear π-calculus with compos-
ite regular types. Logical Methods in Computer Science 11(4) (2015).
https://doi.org/10.2168/LMCS-11(4:13)2015

26. Pierce, B.C.: Types and programming languages. MIT Press (2002)
27. Pruiksma, K., Pfenning, F.: A message-passing interpretation of adjoint logic. In:

PLACES. Electronic Proceedings in Theoretical Computer Science, vol. 291, pp.
60–79. Open Publishing Association (2019). https://doi.org/10.4204/EPTCS.291.6

28. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multi-
party sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74,
pp. 24:1–24:31. Schloss Dagstuhl — Leibniz-Zentrum für Informatik (2017).
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

29. Strom, R.E., Yemini, S.: Typestate: A programming language concept for en-
hancing software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986).
https://doi.org/10.1109/TSE.1986.6312929

30. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, É.: First-
class state change in Plaid. In: OOPSLA. pp. 713–732. ACM (2011).
https://doi.org/10.1145/2048066.2048122

31. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE. Springer LNCS, vol. 817, pp. 398–413 (1994)

32. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012).
https://doi.org/10.1016/j.ic.2012.05.002

33. Voinea, A.L., Dardha, O., Gay, S.J.: Resource sharing via capability-based multi-
party session types. Tech. rep., School of Computing Science, University of Glasgow
(2019), http://www.dcs.gla.ac.uk/∼ornela/publications/VDG19-Extended.pdf

34. Wadler, P.: Propositions as sessions. In: ICFP. pp. 273–286. ACM (2012).
https://doi.org/10.1145/2364527.2364568

35. Walker, D., Morrisett, J.G.: Alias types for recursive data structures. In: TIC. pp.
177–206. LNCS, Springer (2000)

36. Yoshida, N., Deniélou, P., Bejleri, A., Hu, R.: Parameterised multiparty session
types. In: FOSSACS (2010). https://doi.org/doi:10.1007/978-3-642-12032-9 10

https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/1924520.1924527
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.2168/LMCS-11(4:13)2015
https://doi.org/10.4204/EPTCS.291.6
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2048066.2048122
https://doi.org/10.1016/j.ic.2012.05.002
http://www.dcs.gla.ac.uk/~ornela/publications/VDG19-Extended.pdf
https://doi.org/10.1145/2364527.2364568
https://doi.org/doi:10.1007/978-3-642-12032-9_10

	Resource Sharing via Capability-Based Multiparty Session Types

