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Informed Region Selection for Efficient UAV-based Object Detectors:

Altitude-aware Vehicle Detection with CyCAR Dataset
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Abstract— Deep Learning-based object detectors enhance the
capabilities of remote sensing platforms, such as Unmanned
Aerial Vehicles (UAVs), in a wide spectrum of machine vi-
sion applications. However, the integration of deep learning
introduces heavy computational requirements, preventing the
deployment of such algorithms in scenarios that impose low-
latency constraints during inference, in order to make mission-
critical decisions in real-time. In this paper, we address the
challenge of efficient deployment of region-based object detec-
tors in aerial imagery, by introducing an informed methodology
for extracting candidate detection regions (proposals). Our ap-
proach considers information from the UAV on-board sensors,
such as flying altitude and light-weight computer vision filters,
along with prior domain knowledge to intelligently decrease
the number of region proposals by eliminating false-positives
at an early stage of the computation, reducing significantly
the computational workload while sustaining the detection
accuracy. We apply and evaluate the proposed approach on
the task of vehicle detection. Our experiments demonstrate that
state-of-the-art detection models can achieve up to 2.6x faster
inference by employing our altitude-aware data-driven method-
ology. Alongside, we introduce and provide to the community
a novel vehicle-annotated and altitude-stamped dataset of real
UAV imagery, captured at numerous flying heights under a wide
span of traffic scenarios.

I. INTRODUCTION

Deep Learning has become a prominent technology in

many machine vision tasks, with Convolutional Neural Net-

works achieving state-of-the-art accuracy in image classi-

fication, object detection and semantic segmentation. This

advancement acts as an enabler for a wide range of emerging

applications related to autonomous systems, such as self-

driving cars [1] and Unmanned Aerial Vehicles (UAVs) [2].

In particular, Micro Aerial Vehicles (MAVs) are gaining

increasing attention, as a result of the extensive availability

and ease-of-use of commercially available low-cost quad-

copters. Being usually equipped with both a forward- and

a downward-looking camera, drones can act as a mobile

remote sensing platform for real-world applications including
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Fig. 1. (left): Output of a remote-sensing (UAV) based vehicle detector.
(right): Class-agnostic region proposals extracted by region-based detectors.
Video & Dataset: www.imperial.ac.uk/intelligent-digital-systems/cycar/

infrastructure inspection, emergency response, search and

rescue operations, surveillance and traffic monitoring, by ex-

ploiting computer vision algorithms to analyse the incoming

visual data captured from their on-board visual sensors.

Focusing on the case of traffic monitoring, UAVs con-

tribute towards “smart cities” by facilitating infrastructure-

free situational awareness, providing real-time traffic estima-

tion through vision-based vehicle detection. This can be used

for traffic regulation purposes or, for example, to aid the route

planning of emergency response vehicles etc. Moreover,

the wide field-of-view along with the enhanced mobility of

UAVs allow their rapid and facile deployment for remote

sensing in areas-of-interest (Fig. 1), eliminating the need for

expensive infrastructure in urban or rural environments, such

as fixed surveillance cameras or embedded car sensors [3].

CNN-based object detectors have experienced tremendous

progress through the last years, demonstrating impressive

accuracy. This advancement however, came at the cost of

increased computational workload, challenging their real-

world deployment. In some perception tasks, where one

or more UAVs are regularly deployed to collect data from

an area-of-interest, a cloud-based setup for performing the

analysis of data on remote base servers is applicable [4].

At the other end of the spectrum, UAV-based deep learning

models can be in-the-loop of mission critical decisions

including navigation and collision avoidance [5] [6]. In such

cases, low-latency requirements are imposed for inference,

making the cost of a wireless link between the drone and

the base station prohibitive. Moreover, when deployed in

remote areas such communication may not be possible to be

established [7]. Besides, communication poses an added se-

curity risk for intercepting and exposing sensitive data. Near-

sensor (edge) processing provides an alternative approach

for such scenarios. However, when on-board processing is



required, the deployment challenges are aggravated by the

limited computational resources and low-power restraints

necessitated by the low-payload capabilities of UAVs.

Returning to the task of vehicle detection, both cloud-

centric and near-sensor processing models are considered ap-

plicable [8]. Although mission-critical decisions for the UAV

itself are usually not based on the traffic information obtained

by analysing the captured video feed, in many applications

this information contributes to the decision-making process

of traffic regulation or emergency response. Hence, softer

near-real-time (NRT) requirements are frequently imposed.

Single-shot detectors (SSD) are typically meeting this

requirements being positioned at the high-performance end

of the performance-accuracy pareto frontier, in contrast to the

computationally expensive region-proposal-based detectors

lying at the other end [9]. SSD-based approaches, however,

suffer from significant accuracy degradation in objects with

small spatial resolution, due to the small input receptive field

that acts as a prerequisite for maintaining low-latency [10].

In UAV-based visual sensing, where high flying altitudes1

are preferred as they provide larger ground coverage on

aerial imagery, this issue becomes extremely crucial since

combined with the wide filed-of-view of UAV cameras it

results to objects with very limited spatial resolution.

In this paper we adopt a region-proposal-based approach

and introduce a data-driven region selection methodology,

that incorporates application-specific domain knowledge and

considers additional information provided by the UAV’s on-

board sensors (altitude, GPS, video etc.), to optimise its

performance by discarding a large portion of unnecessary

computation at runtime. The proposed approach is agnostic

to the computation platform and enables the efficient deploy-

ment of state-of-the-art region-based detectors on real-time

UAV applications under either a cloud-based or an embedded

processing scenario. The main contributions of this work can

be summarised by the following:

• We introduce a novel region selection methodology

for UAV-based visual detection that evaluates candi-

date detection regions at runtime, leveraging additional

application-specific information to provide significant

latency speed-up by eliminating false positives and their

corresponding computational workload at an early stage

of the computation, preserving the detection accuracy.

• We created and released “CyCAR”, a dataset of high-

res altitude-stamped UAV images annotated for vehicle

detection in urban environments, capturing a diverse set

of traffic scenarios from multiple flying heights.

II. BACKGROUND AND RELATED WORK

A. Convolutional Object Detectors

CNN-based object detectors, aiming to localise instances

from a pre-specified set of classes in an image, have recently

demonstrated significant advancement achieving state-of-the-

art accuracy. We will focus on two main categories of

convolutional object detectors:

1In the context of this work, the terms flying height, altitude and level-above-ground

are used interchangeably, referring to the height above ground level (AGL).

Region-based Object Detectors Region-based detectors

consist of two separate stages. During the first stage, a large

number of class-agnostic candidate regions are extracted and

forwarded to the second stage that evaluates each region

proposal independently to predict class-specific detection

probabilities along with refined bounding boxes (Fig. 1).

Faster R-CNN [11] constitutes a representative example of

region-based object detectors, achieving remarkable accuracy

in various well-established datasets [12] [13]. In Faster R-

CNN, the input image is initially pushed through the Feature

Extractor part (FE) of a CNN, consisting of Convolutional

and Pooling layers. Subsequently, a Region-Proposal Net-

work (RPN) acts on the output feature maps of a selected

intermediate layer of the FE to identify a set of category-

independent candidate detection boxes (typically 300). These

are selected based on their predicted “objectness” probability,

out of a large set of refined box priors (called anchors) spread

across a wide range of spatial locations, scales and aspect

ratios, organised in a regular grid. In the succeeding second

stage, each of the selected region proposals is independently

pushed through a box predictor consecutively, after being

cropped from the activations of the same intermediate layer.

Single-Shot Object Detectors consist of a feed-forward

CNN that directly predicts the class probabilities and loca-

tions of multiple objects though a single pass of the input

image. Hence, their architecture can be considered similar to

the first stage of a region-based detector. However, in contrast

to the latter that requires consecutive passes of numerous

regions-of-interest through a second-stage classifier, in SSD

the output of the FE is directly fed to a series of Fully-

Connected layers. These are branched deeper in the network

to predict class probabilities and box coordinates for different

regions of the input image, all with a single pass, leading

to low computational complexity. YOLO [14] and Ssd [15]

form representative examples of this detector class.

B. Efficient Learning-based Detectors on UAVs

Recent literature has explored the performance-accuracy

trade-off on single-shot detectors for efficient real-time ve-

hicle detection on embedded platforms. In [16] the number

and size of filters and the input image resolution are exposed

to a neural architecture search methodology, whereas [17]

employs a novel automated filter-pruning approach along

with careful design choices, to find efficient network designs.

Application-specific customisation has also been proposed

for single-shot detectors, utilising prior domain knowledge

to adapt the model in a controlled manner that improves

performance, with minimum effect on accuracy. For example,

in [18] a single-shot detector is employed for gate detection

in drone racing. Considering the simple geometry of square

gates used in drone racing competitions, plenty of the unnec-

essary high-level feature layers are removed. Along the same

lines, in [19] a Markov Decision Process is used to adjust

all the tunable parameters of an object detection algorithm in

order to exploit the accuracy-execution time trade-off for sign

recognition on resource-constraint mobile robot platforms.

Although SSD models have almost met the accuracy of



region-based approaches for large objects, while providing

lower runtimes per image, they demonstrate significantly

poorer detection accuracy on small objects [9]. SSD models

can only target a fixed-resolution input image, conversely to

region-based, while their fast inference speed is conditioned

on handling low-resolution inputs [10] (typically between

200x200 and 600x600). Hence, high-res input images have to

be down-scaled to match the network’s receptive field suffer-

ing, as a side-effect, a reduction in detection accuracy. Recent

research has proposed pushing cropped overlapping tiles of

the input image through the CNN independently, without

degrading the initial resolution [20] [21] [22]. However, this

approach introduces notable computational overhead that can

only be partly alleviated by the use of attention and memory

mechanisms for selective tile processing [23].

This shortcoming of single-shot detectors on small-scaled

objects is particularly relevant in aerial imagery where dif-

ferent instances of similar objects appear in a vast variety of

different scales, accounting to the fact that objects appear in

a spatial resolution that is inversely proportional to the flying

altitude of the UAV. To address relevant scale ambiguities, in

the work of [24] two built-in sub-networks are incorporated

to account for the variability of scales in car detection,

acting as ensemble of models trained on disjoint scale ranges,

leading however to considerable computation overhead.

Nevertheless, in vehicle detection from aerial imagery,

high accuracy detectors supporting small spatial resolution of

objects are essential to permit high-altitude flights, resulting

to larger ground-area coverage [8]. Recent research has

shown that region-based detectors demonstrate remarkable

accuracy under such challenging conditions [25], at the

expense of increased computational payload. In the work of

[9], the speed-accuracy trade-off in convolutional detectors

is broadly discussed. Specifically for Faster R-CNN based

detectors, it is shown that the number of RPN’s candidate de-

tections pushed through the second-stage detector is affecting

the overall latency remarkably. Thus, reducing the number of

region proposals results to a noteworthy computation saving,

to the proportional detriment of detection accuracy.

In this work, we exploit UAV sensor measurements to

perform an informed application-specific online pruning of

RPN’s region proposals, reducing effectively the workload

of the second-stage box predictor through early identification

of false positives, while avoiding a compromise in accuracy.

This data-driven approach pushes the optimality frontier in

the accuracy-latency trade-off, by combining prior domain

knowledge with sensor information injected to the system at

runtime. Specific to the vehicle detection task of this work,

the utilised information comprises of: (i) the flying altitude

used to reason about the expected spatial size, shape and

density of vehicles on the input image, given the camera

configuration of the UAV and (ii) computer-vision filters

applied on the input frames to segment regions-of-interest

providing priors for the expected spatial location of vehicles.

Both sources contribute on identifying a variable-sized subset

of “meaningful” region proposals forwarded to the classifier.

III. THE CYCAR DATASET

To facilitate our experiments we have created ”CyCAR”,

a dataset of altitude-stamped high-resolution UAV imagery

targeted on the task of ground vehicle detection.

Context: The data collection process involved real UAV

flights above the city of Nicosia in Cyprus, in varying

altitudes, with the on-board camera’s pose being vertical

to the ground. The dataset is altitude-stamped based on

the (discretised) flying height estimated by the UAV’s air-

pressure sensor readings. A subset of the collected frames

is annotated by human experts with tight bounding boxes

enclosing all captured cars in the camera’s Field-of-View

(FoV). The annotated frames span from heavily congested

to clear traffic situations. CyCAR comprises a wide variety

of scenarios including: (i) a static UAV above an area-of-

interest, (ii) a moving UAV on a pre-specified path and (iii) a

moving UAV following a target vehicle on the ground. These

contexts facilitate a comprehensive set of traffic monitoring

scenarios, such as persistent monitoring of an area for traffic

regulation purposes, periodical data collection for extraction

of traffic statistics, and live traffic density estimation in

the surrounding area of a moving target (e.g. for assisting

emergency vehicle navigation), respectively.

UAV Altitude: A key feature of the introduced dataset is

the broad range of UAV flight altitudes that have been poured

into the data collection process. With a minimum level of

20m above ground, highly-detailed close-distance images of

vehicles and their surrounding environment are captured;

whereas the maximum flight-level of 500m above ground

provides enormous and challenging coverage of ground area

embracing a large number of vehicles and cluttered back-

ground in a single frame. A large portion of the captured

frames is focused on the range of [70m,130m] above ground,

that forms typical flying levels of commercially available

UAVs in urban environments [26].

Annotation: Although we are actively extending our

dataset, at the moment of writing CyCAR already com-

prises more than 27 minutes of high-res (4K, 2.7K and

FullHD) real-flight video (translating to approximately 48K

frames), with a subset of 450 images containing more than

5.000 vehicle instances being annotated with tight Horizontal

Bounding Boxes (HBB), following the annotation format of

the Pascal VOC Dataset [12]. Altitude stamps indicating the

flying height of the UAV with respect to its take-off point at

the moment each frame was captured (discretised into 10m

segments) are also included in the annotation.

Existing datasets specific to top-view vehicle detection

mostly comprise of satellite [27] [28], or static surveillance

camera [29] imagery. UAV-based datasets are usually re-

stricted to specific scenes such as carparks [30] or incorporate

a limited range of flying altitudes, e.g. [31] features 5-25m

flights. UAVDT [32] and VisDrone2018 [33] comprise the

most diverse large-scale UAV benchmarks for detection and

tracking to date. Based on our literature review, UAVDT is

the only dataset labelling its frames according to the UAV

height, using however only 3 coarse classes (low, mid, high).
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Fig. 2. (left): The introduced informed region selection methodology, within the Faster R-CNN pipeline. Region proposals are filtered based on sensor
data and prior knowledge at runtime, resulting to early elimination of false-positive candidate detections and corresponding computation savings. (right):
Altitude-aware pruning of candidate detection regions based on their spatial scale, density and location based on the proposed altitude-specific density grid.

Hence, to the best of our knowledge, CyCAR is the

first UAV-based dataset for vehicle detection featuring fine-

grained flying altitude annotation (10m). This, in our opinion,

appoints CyCAR to a valuable complementary data source

for developing and benchmarking data-driven methodologies

(e.g. for traffic monitoring applications), such as the altitude-

aware vehicle detector introduced in Sec. IV.

IV. INFORMED UAV-BASED REGION PROPOSALS

Region-based object detectors select a fixed-cardinality set

of region proposals out of a much larger group of class-

agnostic candidate regions, based on their RPN-predicted

probability of objectness. Each selected region is then pro-

cessed independently by a box classifier, that predicts class

probabilities and a refined bounding box for each proposal.

To eliminate duplicate detections of the same object that

would hurt the overall detection accuracy of the model,

greedy Non-Maximum Suppression (NMS) is applied to the

final output of the detector, in a per-class manner. This way,

all detected regions that overlap considerably with a higher-

scoring detection window of the same class are rejected,

based on a tunable Intersection-Over-Union (IOU) threshold.

In recent literature, this post-processing step has been en-

hanced to utilise additional application-specific information,

in order to eliminate false-positive detections that downgrade

the model’s accuracy, such as bounding boxes with unex-

pected size and/or aspect ratio [25] [16]. However, since

these methods are only applied on the final output of the

predictor, they provide no improvement on its execution time.

Inspired by these works, the key idea of this paper is

to inject application-specific information in much earlier

stages of the detection pipeline, pushing the rejection of false

positives to a point that it results to significant computation

savings and thus improve the detection speed. We introduce

a data-driven region selection methodology for UAV-based

object detectors, that filters the original RPN’s region pro-

posals in an informed way, utilising additional data from the

UAV’s sensors along with prior domain knowledge. Only

candidate regions that meet the pre-specified criteria are

propagated to the computationally-expensive second-stage

predictor, improving the efficiency of the overall model and

achieving higher performance, without mitigating accuracy.

We choose to embody the proposed methodology in the

Faster R-CNN pipeline (Fig. 2), due to its state-of-the-art

detection accuracy. However, our approach is applicable on

any region-based detector with variable gains, depending

on its underlying workload breakdown between the two

detection stages. Furthermore, for the rest of this paper,

the discussion will be focused on the task of UAV-based

vehicle detection [34]. Again, it is noteworthy that with

appropriate adaptation of the region selection criteria, the

proposed approach can be applied on a wide range of UAV-

based detection tasks. Specific to vehicle detection, three

main region selection criteria are examined:

A. Candidate Region Scale (Size and Shape)

Since UAVs are equipped with a camera that has

fixed parameters (maximum resolution res={resx, resy}
and Field-of-View fov) and can fly on an outspread of

altitudes, cars on the ground appear on a wide spectrum

of different scales. Utilising the vehicle annotations from

the altitude-stamped CyCAR dataset D:(X(k), h(k),V(k)),
where X

(k)∈[0, 255]resx×resy×3 denotes the k-th im-

age, while its associated altitude-stamp is denoted by

h(k)∈{20, 30, ..., 500}m and its set of vehicle annotations

by V
(k):(x

k(i)

min, y
k(i)

min, x
k(i)
max, y

k(i)
max) with i∈{1, 2, ..., N (k)}

where N (k) denotes the number of vehicles in image k, a

polynomial model fD is built in order to extract and abridge

the encapsulated domain knowledge, by fitting the antici-

pated range of scales (size and shape) of vehicle bounding

boxes as a function of the UAV flying altitude h, given a set

of camera characteristics, in the form of:

[scale
(h)
min, scale

(h)
max] = fD(h, res, fov) (1)

The bounding box area in pixels2, diagonal, height and width

or smallSide (=min(height, width)) and largeSide in pixels,

the aspect-ratio or any combination of the above can be

effectively employed as metrics of scale, depending on the

application-specific prior knowledge that is incorporated.

By injecting that application-specific knowledge along

with the UAV’s flying altitude (estimated by its on-board

sensor readings) to the RPN’s post-processing, candidate

regions with scale outside of the expected range are rejected

at runtime, reducing the number of boxes that are pushed

through the second-stage classifier only to those with “mean-

ingful” size/shape. This altitude-aware optimisation results to
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Fig. 3. (a,b): Region proposals of the original method, for different IOU threshold values. (c): Output of the proposed informed region selection methodology.

a significant reduction of the evaluated box proposals, as the

attention of the original RPN is considerably attracted by

feature-rich areas on the input image (Fig. 3a,b), indepen-

dently of their scale and existence of vehicles.

Horizontal Bounding Boxes (HBB) of vehicles whose

orientation is not well-aligned with one of the image axes,

dissipate more area and demonstrate reduced aspect-ratio

compared to axis-aligned boxes captured from the same

height (Fig. 4). This results to extended variance in the

discussed metrics of vehicle scale, reducing the effectiveness

of the proposed region selection approach. Dealing with

this ambiguity is important, due to the exclusive support of

HBB by most deep learning frameworks. For this purpose,

the typical range of axis-aligned vehicles’ aspect-ratio is

extracted from a subset of D using the model of Eq.1.

Subsequently, an exponential model is developed to estimate

the “essential” scale (Fig. 4) of each of the RPN’s region

proposals. This model is predominantly affecting region pro-

posals corresponding to axis-unaligned vehicles, identified by

their deviation from the expected aspect-ratio, expressed as:

s̃c(i) = sc(i) − (r̂ − r)a · b · sc(i) , ∀i ∈ [1, N ] (2)

where s̃c(i) denotes the inferred essential scale for the

ith (out of N ) RPN’s region proposal with initial scale

sc(i)∈{area, diag, ...} and aspect ratio r, r̂ represents the

mean aspect ratio of axis-aligned vehicle detections in the

dataset, and a, b correspond to tunable parameters of the

exponential model. s̃c(i) can replace sc(i) in the region

proposal pruning, as it provides a scale-estimate of the

equivalent axis-aligned bounding box to the original HBB.

B. Candidate Region Density

Apart from the spatial resolution of objects, their max-

imum density in the original image is also affected by the

UAV flying altitude. Experiments demonstrated that although

NMS is applied on the RPN’s candidate boxes, there still

exists a notable number of partly overlapping region pro-

posals with similar size and small displacement, translating

to unnecessary computational workload for the second-stage

predictor (Fig. 3a). Solving this problem by selecting a more

greedy IOU threshold to the NMS to force the RPN to spread

its region proposals, also results to increased false negative

rate, especially in the case of HBB where the candidate

regions of vehicles frequently overlap in congested cases.

In this work we address this issue in an informed way,

considering the UAV’s altitude h to estimate the maximum

possible vehicle density. Thereafter, the spatial density of

the RPN’s proposals forwarded to the second-stage classifier

Fig. 4. Red: Horizontal Bound Box, Green: “Essential” Bounding Box

is restricted accordingly. In more detail, we firstly extract

the expected length of the smaller bounding-box side for

a given altitude minL=smallSide
(h)
min. A grid G(k) of

[minL/2,minL/2]-sized cells across each input image is

constructed and every candidate region is assigned to a cell

of that grid, based on the coordinates of its centre (Fig. 2).

The proposed method allows only a single proposal from

each cell to be forwarded for classification, considering the

RPN’s predicted objectness probability for each candidate

region to resolve conflicts. This is equivalent to parsing the

input image with a sliding window of size minL × minL
and stride minL/2 (Nyquist Sampling Rate), to extract a

single proposal per step, significantly sparsifying the number

of candidate detections, while maintaining a robust set of

meaningful proposals to be fed to the second stage (Fig. 3c).

C. Candidate Region Spatial Location

In previous work [35], output bounding boxes of the

detector are aligned with a visually extracted road mask, to

eliminate false positives by discarding detections outside of

the input image’s road segments. We adopt the key idea of

this methodology, pushing it however towards an earlier stage

of the detection pipeline, to exploit such application-specific

knowledge for alleviating further unnecessary computation.

Light-weight computer vision filters or GPS-aligned

(heat-)maps can be employed to identify regions-of-interest

on the input image. These regions are then projected to

the image cells of the altitude-specific grid G(k) based on

a minimum coverage threshold, adding a dimension to the

region selection methodology by only considering proposals

assigned on the subset of cells that have been identified as

regions-of-interest. This approach discards a greater expanse

of object proposals by incorporating prior knowledge regard-

ing their spatial location’s context on the input image.

In this work, a simple computer-vision method is em-

ployed to identify road segments in each input image,

based on per-pixel HSV thresholding. A smoothing moving-

window averaging filter is also applied on the output pixel-

mask in order to eliminate false-negative road regions, usu-

ally caused by vehicles on the road especially in low-altitude

flights. More advanced road-segmentation techniques from

the literature can also be applied at this stage [36] instead of



the proposed HSV-based filtering. However, our experiments

found this approach sufficient for this work, while being

immensely computation efficient due to its simplicity.

By combining the aforementioned criteria, an enhanced

region selection methodology is established, based on which

a candidate region is forwarded to the box classifier if it:

• features the expected scale, given the flying altitude,

• is the highest-scoring region proposal on its density cell,

• belongs to a cell that corresponds to a region-of-interest.

V. EVALUATION

A. Experimental Setup

In this section, the experimental evaluation of the proposed

methodology is discussed. Experiments have been conducted

in two different settings: (i) Cloud-based high-end processing

in which the MAV transmits the captured video stream

along with other sensor data to a remote on-the-ground

server, located in a base station, for processing on a high-

end GPU and (ii) On-board embedded processing where

all the computations are performed on-board the resource-

constrained UAV platform, on an embedded GPU device.

The server is equipped with an Intel Xeon E5-2630 CPU,

64GB RAM and a 2560 CUDA-Core Nvidia GTX1080

GPU (Pascal Architecture). For the embedded setting we use

an Nvidia Jetson TX2 board featuring a 256 CUDA-Core

embedded GPU (Pascal Architecture), 8GB of RAM and an

Quad ARM A57 CPU. The models have been developed and

trained using the Object Detection API [9] of Tensorflow

(v1.12) on the same server; the deployment on the TX2

platform resorted to Tensorflow v1.9. The UAV used in the

experiments is a DJI MAVIC 2 Enterprise, equipped with a

high-definition camera with Field-of-View of 82.6o.

B. Single-Shot vs Region-Based Detectors on UAV Imagery

A comparison between single-shot (SSD [15]) and region-

based (Faster R-CNN [11]) detectors on aerial imagery

is initially performed, employing the concept of meta-

architectures introduced in [9]. Meta-architectures provide

a level of abstraction by capturing the algorithmic body of

each detector family, while decoupling it from its original

implementation (i.e. allowing any CNN model to be used

for feature extraction and classification). A series of COCO-

pretrained models that have been identified as key points

on the performance-accuracy optimality frontier are selected,

featuring different choices of backbone CNN architectures.

We train all selected models on the DOTA multi-class dataset

of aerial imagery [22] until convergence. Subsequently, fine-

tuning of the models on the CyCAR Dataset is performed.

Various data augmentation techniques have been used on

both datasets, including: random horizontal flipping, image

re-scaling and adjustment of contrast and brightness. The

PascalVOC-established metric of mean-Average Precision

(mAP) [12] is reported across the Validation Set of each

dataset, summarising the shape of the precision-recall curve,

defined as the mean precision at a set of eleven equally-

spaced recall levels in the range of [0,1].

Table I summarises the results of this comparison. As

expected, the single-shot architecture based on MobileNet

TABLE I

COMPARISON OF PARETO OPTIMAL (SPEED/ACCURACY) DETECTORS

Detector Model Performance (Latency) mAP

Meta-Arch Feature Extractor GTX1080 TX2 DOTA CyCAR

SSD MobileNet V2 36.31ms 150.81ms 36.23% 46.63%

Faster R-CNN ResNet50 166.51ms 1070.43ms 50.56% 64.82%

Faster R-CNN Inception-ResNet-v2 573.05ms - 60.22% 76.31%

V2, achieves the lowest latency both on the high-end and the

embedded device. This comes at the expense of a significant

accuracy compromise of approximately 24 and 30 percentage

points (p.p.) in the validation sets of DOTA and CyCAR

dataset respectively, compared to the highly-accurate Faster

R-CNN-based detector (built on Inception-ResNet-v2). The

small input receptive field of the SSD detector is mainly

responsible for its poor classification accuracy, especially in

aerial imagery were a large portion of objects frequently

appear in (very) limited spatial resolution.

The high-accuracy region-based detector however, requires

over 15x more computation time on the high-end GPU

(achieving up to 1.75fps) compared to the SDD model,

while the embedded platform’s memory resources could

not accommodate its execution. The Faster R-CNN detec-

tor employing ResNet50 as its feature extractor, provides

a controlled trade-off between performance and accuracy,

suffering an accuracy drop of 10.5 p.p. on average, while

being 3.4x faster than the accuracy-optimised region-based

detector, being able to perform detection at up to 6fps on the

server and slightly under 1fps on the embedded GPU device.

In order to improve the SSD accuracy, multiple separate

runs covering different windows of the input image have been

proposed [21]. Indicatively, in our experiments we managed

to match the accuracy of Faster R-CNN with ResNet50 using

a 4x4 grid of overlapping windows, which however results

to a prohibitive increase in execution time. Moreover, the

accuracy of the Inception-ResNet-v2-based Faster R-CNN

could not be matched by any grid configuration, conceivably

due to the use of a weaker FE model on SSD.

C. Efficient Region Selection Methodology

In this section, the effect of the proposed region selection

methodology in the accuracy and speed of the detection

models is evaluated. We select the high-accuracy Faster R-

CNN instance (with Inception-ResNet-v2) for the cloud-

processing scenario, as well as the ResNet50-based detector

for our on-board processing experiments.

1) Baseline: Figures 5 and 6 demonstrate the speed-

accuracy trade-off that arises by imposing a fixed (off-

line tuned) constraint on the number of region proposals

propagating through the second-stage classifier. Although

pronounced performance gains can be achieved by reducing

the region proposal number, it is evident that when no ad-

ditional information is used during the pruning of candidate

detections a significant undesired accuracy drop is provoked.

2) Quantitative Results: Instead of employing a constant

reduced number of proposals, the introduced methodology

utilises UAV sensor data and prior domain knowledge to se-

lect a variable-cardinality set of proposals at runtime, tailored

for each input image, after evaluating the RPN’s candidate
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Fig. 5. Speed-accuracy trade-off in Faster R-CNN (Inception-ResNet-v2),
as a function of region proposals being evaluated on the second-stage.
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Fig. 6. Speed-accuracy trade-off in Faster R-CNN (ResNet50), as a function
of region proposals being evaluated on the second-stage.

regions with respect to altitude-aware scale, density and

position criteria (Sec. IV). This informed way to boost the

performance of region-based detectors is also preserving the

detection accuracy at the level of the original model.

Table II demonstrates the effectiveness of the proposed

approach in the task of vehicle detection. Our method

achieves a significant reduction in the average number of

selected proposals, as a result of exploiting additional in-

formation to intelligently prune the region proposals of

the RPN. Detection Accuracy along with its constitutive

components are reported to concede a better understanding

of the impact of each configuration, namely: absolute number

of True-Positive (TP), False-Positive (FP) and False-Negative

(FN) detections, across a previously unseen CyCAR test-

(a) (b)

(c)

Fig. 7. (a) A false-positive detection of the original model, corrected by
the proposed methodology. (b) A false-negative detection of the proposed
methodology, caused by extremely strict thresholding of the expected vehicle
size. (c) False-negative region proposal after baseline pruning (50 boxes).

TABLE II

COMPARISON OF THE PROPOSED APPROACH WITH BASELINES

Approach NumProposals Latency (GTX/TX2) Accuracy TP FP FN

Inception-ResNet-v2

Original 300 562.65ms / - 90.05% 190 4 17

This Work 4 - 40 278.41ms / - 89.90% 187 1 20

Matching Acc. 190 462.14ms / - 89.05% 187 3 20

Matching Perf. 10 278.01ms / - 63.64% 133 2 74

ResNet50

Original 300 143.28ms / 1160.6ms 79.72% 169 5 38

This Work 3 - 54 54.11ms / 439.7ms 78.95% 165 2 42

Matching Acc. 210 110.40ms / 904.2ms 78.20% 165 4 42

Matching Perf. 10 54.28ms / 440.0ms 69.19% 146 4 61

set, comprising of 30 images with 207 cars in total. Our

approach is compared with an original implementation of

the corresponding detector, as well as two oracle baselines

that employ a constant reduced number of proposals, hand-

tuned to match the achieved performance and accuracy of the

proposed methodology on the specific test-set respectively.

In the case of the Inc.-ResNet-v2-based model, the original

implementation extracting 300 candidate regions, achieves

high accuracy (90.05%) by detecting 190/207 cars and suf-

fering four false-positive detections, at a consistent latency

of 562.65ms per image (1.77fps). Our methodology achieves

a similar accuracy of 89.90% by detecting 187/207 cars and

also reducing the number of false positives, while requiring

more than 2x less computation time (3.6fps) on average.

Experiments also indicate that the oracle baseline employing

a fixed reduced number of proposals (being hand-tuned

aware of the expected output), requires 4.75x more proposals

to achieve similar accuracy to our approach, leading to a

66% increase in computation time. Accordingly, a baseline

model with constant proposals’ number constraint in the

same latency budget could only reach an accuracy of 63.64%

(translating to an increase of 3.7x in missed detections).

Applying the proposed methodology to the ResNet50-

based detector provides a speed-up of 2.64x on the high-end

GPU achieving a frame-rate of 18.5fps compared to the rate

of 7fps of the original model, while the accuracy difference is

preserved within 1p.p. Near real-time processing (reaching

2.3fps) is also enabled by our approach on the embedded

platform, being 2.67x faster than the original model.

3) Qualitative Discussion: Employing runtime-adjustable

number of region proposals for each image, the proposed

methodology pushes the speed-accuracy optimality frontier

by achieving remarkable speed-up with little to no compro-

mise in accuracy. This is achieved by the effective utilisation

of the additional UAV sensor information to select the most

meaningful proposals for evaluation and eliminate outlier

candidate detections on an early stage of the computation.

In our experiments we noticed a consistent reduction in

false-positive detections by the proposed approach. This is

accounted to duplicate detections of the original model that

were not captured by the NMS post-processing due to large

difference in their relative spatial resolution (e.g. Fig. 7a),

and were eliminated by the scale and density criteria of the

proposed methodology.

At the other end, it has been noticed that aggressive

thresholding on the expected scale of vehicles for a particular



flying level-above-ground may increase the number of false-

negatives, when outliers are present in the input image. For

example, in the case of Fig. 7b, a light truck with larger

scale than the rest of the vehicles in the frame, was not

detected by the proposed approach. Adopting a less tight

range of expected scales in each altitude resolves this issue,

with marginal effect on the computational workload.

Finally, it is noteworthy that the baseline approach em-

ploying a fixed reduced number of region proposals requires

a much larger-cardinality set of candidate regions in order

to match the accuracy of the proposed approach. This

is accounted to two reasons: (i) Some frames, especially

on high-altitude flights or above congested areas, capture

a large number of vehicles easily surpassing small pre-

specified threshold values in proposals’ number. (ii) Even in

less congested frames, the original method retains a fixed-

cardinality set of proposals that achieve the highest “object-

ness” probability values. Frequently, when a small number

of proposals is selected, multiple candidate detections of

the same vehicle (in different scales and aspect ratios) may

surpass the “objectness” probability of vehicles in more

challenging regions of the input image (such as shadowed

areas). This may result to accuracy degradation, even when

a surplus is achieved on the proposal threshold compared to

the actual number of vehicles in the frame (e.g. Fig. 7c). The

proposed approach, effectively handles the above cases, by

jointly considering the spatial resolution, density and location

of candidate regions in the image, to dynamically adjust the

number of proposals for every frame at runtime.

VI. CONCLUSION

We have presented a novel region selection methodol-

ogy for region-based object detection in UAV imagery.

By exploiting additional sensor information and lightweight

computer vision filters along with prior application-specific

knowledge, our approach can significantly reduce the infer-

ence time of state-of-the-art object detection models without

mitigating accuracy; extending their applicability on near

real-time applications, such as UAV-based traffic monitoring.

A new dataset of real UAV imagery annotated for the

task of vehicle detection and altitude-stamped to support

the development of data-driven methods is also introduced,

featuring a variety of flying heights and traffic scenarios.
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