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ABSTRACT
We develop a Bayesian method of analysing Sunyaev-Zel’dovich measurements of galaxy
clusters obtained from the Arcminute Microkelvin Imager (AMI) radio interferometer sys-
tem and from the Planck satellite, using a joint likelihood function for the data from both
instruments. Our method is applicable to any combination of Planck data with interferometric
data from one or more arrays. We apply the analysis to simulated clusters and find that when
the cluster pressure profile is known a-priori, the joint dataset provides precise and accurate
constraints on the cluster parameters, removing the need for external information to reduce
the parameter degeneracy. When the pressure profile deviates from that assumed for the fit,
the constraints become biased. Allowing the pressure profile shape parameters to vary in the
analysis allows an unbiased recovery of the integrated cluster signal and produces constraints
on some shape parameters, depending on the angular size of the cluster. When applied to real
data from Planck-detected cluster PSZ2 G063.80+11.42, our method resolves the discrepancy
between the AMI and PlanckY -estimates and usefully constrains the gas pressure profile shape
parameters at intermediate and large radii.

Keywords: methods: data analysis – galaxies: clusters: general – galaxies: clusters: individual:
PSZ2 G063.80+11.42 – galaxies: clusters: intracluster medium – cosmology: observations.

1 INTRODUCTION

With the advent of large Sunyaev-Zel’dovich (SZ) effect surveys
carried out by instruments such as Planck (Planck Collaboration et
al. 2016), the Atacama Cosmology Telescope (Hilton et al. 2018),
and the South Pole Telescope (Bleem et al. 2015), SZ observations
have the potential to become a powerful tool for constraining, for
example, cosmological properties via cluster number counts. Nu-
merical simulations show a tight, low-scatter correlation between
the SZ observable, the Compton-y parameter and cluster mass (e.g.
da Silva et al. 2004, Nagai 2006), but recent attempts to use SZ
cluster number counts for cosmological analysis have produced res-
ults in tension with other, more mature methods such as the Cosmic
Microwave Background (CMB) primary anisotropies (Planck Col-
laboration et al. 2016). One issue is the uncertain mass-observable
calibration, although another issue is the modelling of the observ-
able itself.

Perrott et al. (2015) (hereafter P15) compared properties of 99
galaxy clusters observed in SZ with Planck and the Arcminute Mi-
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crokelvin Imager (AMI) radio interferometer system. They showed
that the discrepancies between the cluster parameters as constrained
by AMI and Planck could be explained by the cluster gas pressure
profile deviating from the profile assumed for analysis. TheAMI ob-
servations were shown to be particularly sensitive to this effect when
attempting to constrain the total integrated Compton-y parameter
due to missing angular scales. It was noted in P15 that the com-
bination of the two instruments would be powerful for investigating
the gas pressure profiles of the clusters due to the complementary
angular scales measured. In this paper we explore this idea further
by developing a joint Bayesian analysis pipeline which combines
the data from the two instruments. We note that this pipeline could
also be used with other interferometric data, for example from the
Atacama LargeMillimeter/submillimeter Array (ALMA)which has
recently been used for SZ analysis (e.g. Kitayama et al. 2016) and in
the future for the Square Kilometre Array (SKA), which will be able
to observe the SZ effect in its highest frequency band (Grainge et al.
2015). The pipeline would also be easily extended to include data
from other single-dish instruments such as NIKA(2) (e.g. Adam et
al. 2014). This work joins a growing body of analysis combining SZ
data from different instruments, sensitive to different angular scales.
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Recent work such as Sayers et al. (2016), Ruppin et al. (2017), and
Di Mascolo et al. (2019) all combine Planck Modified Internal Lin-
ear Combination Algorithm (MILCA; Planck Collaboration et al.
2016) y-maps with SZ data from other instruments to jointly fit
the gas pressure profile, while Romero et al. (2018) use a Planck-
derived prior on the integrated Compton-y parameter; however to
our knowledge this is the first time that Planck frequency maps
(rather than y-maps) have been jointly analysed with other SZ data.

The paper is arranged as follows. In Section 2 we describe the
telescopes and data used in our analysis and in Section 3we describe
our analysis method. In Section 4 we describe our cluster model.
In Sections 5 and 6 we verify our method using simulated clusters
and in Section 7 we apply the method to a test case using real data.
We anticipate further work in Section 8 and conclude in Section 9.

2 PLANCK AND AMI TELESCOPES

2.1 Planck satellite

The combination of the Planck satellite’s low-frequency and high-
frequency instruments (LFI and HFI) provides nine frequency chan-
nels in the range 37GHz – 857GHz. The HFI, used for cluster
analysis, has angular resolutions of 10, 7.1, and 5.5 arcminutes at
100, 143, and 217 GHz and 5.0 arcminutes at each of 353, 545, and
857GHz. The Planck frequency bands correspond to two decre-
ments, the null, and three increments in the SZ spectrum, making
it particularly effective at the blind identification of galaxy clusters
despite its relatively low angular resolution. See e.g. Planck Collab-
oration et al. 2016 for further details.

2.2 AMI

AMI (Zwart et al. 2008) is a dual-array interferometer designed for
SZ studies, which is situated near Cambridge, UK. AMI consists of
two arrays: the Small Array (SA), optimised for viewing arcminute-
scale features, having an angular resolution of ≈ 3 arcmin and sens-
itivity to structures up to ≈ 10 arcmin in scale; and the Large Array
(LA), with angular resolution of ≈ 30 arcsec, which is insensitive to
SA angular scales and is used to characterise and subtract confus-
ing radio-sources. Both arrays operate over the same frequency band
with a central frequency of≈ 15.5GHz and a bandwidth of≈ 5GHz;
in P15 this was divided into 6 channels but after a recent correlator
upgrade the band is now divided into 4096 channels (Hickish et
al. 2018), and binned down to 8 channels for analysis after radio-
frequency-interference excision and calibration. The simulated data
in this paper have the properties of the new correlator.

3 JOINT LIKELIHOOD ANALYSIS

3.1 Bayesian parameter estimation

For a model,M and a data vector,D, we can obtain the probability
distributions of model parameters (also known as input or sampling
parameters) Θ conditioned onM and D using Bayes’ theorem:

Pr (Θ |D,M) = Pr (D |Θ,M) Pr (Θ |M)
Pr (D |M) , (1)

where Pr(Θ |D,M) ≡ P(Θ) is the posterior distribution of the
model parameter set, Pr(D |Θ,M) ≡ L(Θ) is the likelihood func-
tion for the data, Pr(Θ |M) ≡ π(Θ) is the prior probability distri-
bution for the model parameter set, and Pr(D |M) ≡ Z(D) is the

Bayesian evidence of the data given amodelM. In this paperwewill
be interested in the posterior distributions of the sampling paramet-
ers rather than the evidence, which would be used for model com-
parison. We use the nested sampling algorithm MultiNest (Feroz
et al. 2009) to calculate our posteriors.

3.2 Model parameters

The model parameters can be split into two subsets (which are as-
sumed to be independent of one another): cluster parametersΘcl and
radio-source or ‘nuisance’ parameters Θrs. The cluster model para-
meters are relevant to both AMI and Planck data, and are detailed
with their associated priors π(Θcl) in Section 4. Θrs are relevant
only for AMI data, since they are used to model the radio-source
contamination of the SZ cluster signal recorded by the SA, based
on values measured with the LA. More information on the prior
distributions used for Θrs can be found in Section 4.3 of P15.

3.3 Joint likelihood function

If one has an AMI dataset dAMI and a Planck dataset dPl, then the
joint likelihood function for the data is given by

L(Θ) = L (dAMI, dPl |Θ,M) . (2)

In this analysis we treat dAMI and dPl as being independent (see
Section 5.3 for justification), and since the Planck predicted data
only rely on the cluster parameters we can write

L(Θ) = LAMI (dAMI |Θ,M)LPl (dPl |Θcl,M) . (3)

3.3.1 AMI likelihood function

The AMI likelihood calculation is detailed in Feroz et al.
(2009) (herafter F09). Briefly, the AMI likelihood function
LAMI (dAMI |Θ,M) ≡ LAMI(Θ) is given by

LAMI(Θ) =
1

ZD
e−

1
2 χ

2
AMI . (4)

Here χ2
AMI is a measure of the goodness-of-fit between the real and

modelled data and can be expressed as

χ2
AMI =

∑
ν,ν′

[
dAMI,ν − d

p
AMI,ν(Θ)

]T
C−1

AMI,ν,ν′×[
dAMI,ν′ − d

p
AMI,ν′(Θ)

]
.

(5)

In this expression dAMI,ν are the data observed byAMI at frequency
ν, and d

p
AMI,ν(Θ) are the predicted data generated by the model at

the same frequency. CAMI,ν,ν′ is the theoretical covariance matrix
for the AMI likelihood, which includes primordial CMB and source
confusion noise as described in Hobson and Maisinger (2002) and
F09 (Section 5.3). Source confusion noise allows for the remaining
radio-sources with flux densities below the flux limit Slim that the
LA can subtract down to. The instrumental noise is estimated from
the scatter of the visibility measurements within an observation. Re-
ferring back to equation 4, ZD is a normalisation constant given by
(2π)D/2 |CAMI |1/2 where D is the length of dAMI (i.e. the combined
vector of data from all frequencies).
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SZ profile fitting with joint AMI-Planck analysis 3

3.3.2 Planck likelihood function

To calculate the Planck likelihood, we use a version of the Pow-
ellSnakes (PwS; Carvalho et al. 2009 and Carvalho et al. 2012)
Bayesian detection algorithm designed for detecting galaxy clusters
in Planck data, adapted to operate on a previously determined po-
sition rather than to conduct a blind search. PwS treats the data
observed by Planck as a superposition of background sky emission
(including foreground emission and primordial CMB) bν , instru-
mental noise nν , and signal from the (cluster) source sν . The model
for the predicted data vector is thus

d
p
Pl,ν(Θcl) = sν(Θcl) + bν + nν . (6)

PwS works with patches of sky sufficiently small such that it can
be assumed the noise contributions are statistically homogeneous.
In this limit it is more convenient to work in Fourier space, as
the Fourier modes are uncorrelated. It also assumes that the noise
contributions are Gaussian, which is very accurate in the case of
instrumental noise and the primordial CMB but may be more ques-
tionable for Galactic emission – the deviations from Gaussianity of
bν are discussed in Section 4.3 of Carvalho et al. 2012. Since PwS
is a detection algorithm, it calculates the ratio of the likelihood of
detecting a cluster parameterised by Θcl and the likelihood of the
data with no cluster signal (sν(Θcl,0) = 0). Thus the log-likelihood
ratio of the Fourier transformed quantities is

ln
[
LPl (Θcl)
LPl

(
Θcl,0

) ] =∑
ν,ν′

d̃
p
Pl,ν(Θcl)TC−1

Pl,ν,ν′ d̃Pl,ν(Θcl)

− 1
2
d̃

p
Pl,ν(Θcl)TC−1

Pl,ν,ν′ d̃
p
Pl,ν(Θcl),

(7)

where tildes denote the Fourier transform of a quantity, and CPl,ν,ν′
is the covariance matrix of the data in Fourier space.

3.3.3 Joint likelihood analysis hyperparameters

Ideally when making a joint inference from two different datasets,
likelihood hyperparameters would be used (see Lahav et al. 2000,
Hobson et al. 2002, and Ma and Berndsen 2014) so that the relative
weighting of the two likelihoods is treated in a Bayesian way. This
allowsmeaningful results to be extractedwhen the datasets are not in
good agreement, which could be due to, for example, systematic bias
or an incorrect model. However the log-ratio given by equation 7 is
not a probability density due to the fact that it is missing a norm-
alisation factor proportional to d̃Pl,ν(Θcl)TC−1

Pl,ν,ν′ d̃Pl,ν(Θcl). These
hyperparameters affect the normalisation factor of the likelihood (it
becomes a function of them), thus the PwS algorithm is incompat-
ible with their use as it does not include the normalisation term in
the likelihood calculations (a more detailed explanation is given in
Chapter 8 of Javid 2019).We therefore do not include likelihood hy-
perparameters in our analysis. This should not be problematic when
applying our method unless the data have been incorrectly analysed
or the cluster model used is not flexible enough to describe both of
the datasets.

4 CLUSTER MODEL

Since AMI and Planck observe the SZ effect caused by the electron
gas in clusters (see e.g. Birkinshaw 1999), both telescopes measure
signals proportional to the Comptonisation parameter y,

y =
σTkB
mec2

∫
Te(r)ne(r) dl, (8)

where kB is the Boltzmann constant, me is the rest mass of an
electron, c is the speed of light, and σT is the Thomson scattering
cross-section. Te(r) and ne(r) are respectively the electron temper-
ature and number density in the intra-cluster medium, as a function
of radius from the centre of the cluster (r), and the integral is over
the line of sight. If an ideal gas equation of state is assumed for
the electron gas then in terms of the electron pressure Pe(r), the
Comptonisation parameter is given by

y =
σT

mec2

∫
Pe(r) dl . (9)

The cluster model considered here is used to calculate a ‘map’ of y
by evaluating equation 9 at different points on the plane of the sky. It
assumes a spherically symmetric, generalised-Navarro-Frenk-White
(GNFW, Nagai et al. 2007) profile to model the electron pressure

Pe(r) =
Pei(

r
rp

)γ (
1 +

(
r
rp

)α)(β−γ)/α . (10)

Pei is an overall pressure normalisation factor and rp is a character-
istic radius.

The parameters α, β and γ describe the slope of the pressure
profile at r ≈ rp, r � rp and r � rp respectively. Our model para-
meterises a cluster in terms of observational (rather than physical)
quantities: θs, the characteristic angular scale corresponding to rp
(θs = rp/DA where DA is angular diameter distance) and Ytot, the
total integrated Comptonisation parameter of the cluster, given by

Ytot =
4πσT
mec2 PeiDAθ

3
s

Γ
(

3−γ
α

)
Γ

(
β−3
α

)
αΓ

(
β−γ
α

) (11)

where Γ is the gamma function.
Our model therefore has input parameters Θcl =

(x0, y0,Ytot, θs, α, β, γ), where x0 and y0 are the cluster centre offsets
from the designated central sky coordinate.

A set of ‘universal’ pressure profile (UPP) GNFW shape para-
meter values were derived in Arnaud et al. (2010) as the best fit to a
sample of clusters from REXCESS (observed with XMM-Newton,
Böhringer et al. 2007). These are (γ, α, β, c500) = (0.3081, 1.0510,
5.4905, 1.177) and are often used as a fixed standard cluster profile.
In this analysis we will not restrict our model profiles to the UPP
case.

The GNFW profile extends to infinity; in practice some cut-off
radius for the y-map must therefore be defined when implementing
this model. A frequent choice, used for example in the analysis of
Planck data, is to cut off at θ = 5θ500 = 5θsc500. For the case of the
UPP, this implies that a spherical integral to 5θ500 givesYsph,5θ500 =

0.96Ytot, or a cylindrical integral gives Ycyl,5θ500 = 0.97Ytot (with
the line-of-sight integral extending to infinity within a radius of
5θ500 on the sky). In the case of arbitrary values of (γ, α, β), this
fraction can change significantly; plus in the general case c500 is
not necessarily known so a different cut-off radius must be defined
which we denote θlim. We choose to define θlim for an arbitrary
profile by the radius at which Ysph,θlim = 0.95Ytot (found via a
numerical root-finder) by analogy with the UPP. For some profiles
which fall off more slowly with radius this becomes prohibitively
large and we therefore impose a maximum radius of 10 θs. We have
verified that in these cases the Comptonization parameter integrated
over the line-of-sight at 10 θs is < 0.1% of the value at the centre,
i.e. we are not cutting off substantial cluster signal in the outskirts.

We then translate the y-map to signal on the sky at each fre-
quency using the non-relativistic approximation (Zeldovich and

MNRAS 000, 1–15 (2019)
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Table 1. Cluster parameter prior distributions. N denotes a Gaussian dis-
tribution parameterised by its mean and standard deviation, U denotes a
uniform distribution, and δ is a Dirac delta function. In the cases where the
latter is used, the values used for the function’s argument will be stated when
the analyses are carried out.

Parameter Prior distribution(s)
x0 N(0′′, 300′′)
y0 N(0′′, 300′′)
Ytot U[0.00 arcmin2, 0.02 arcmin2]
θs U[1.3′, 15′]
α δ(αmodel) or U[0.1, 3.5]
β δ(βmodel) or U[3.5, 7.5]
γ δ(γmodel)

Sunyaev 1969). Recently it has been shown that relativistic cor-
rections may be significant for high-temperature clusters at Planck
frequencies (e.g. Remazeilles et al. 2019); we note that relativistic
effects reduce the Planck SZ signal, so if corrections were applied
the effect would be to increase the discrepancy between AMI and
Planck parameter constraints shown in P15.

4.1 Priors

In P15 we used a position prior based on the Planck position and
error, and a joint ellisoidal prior on Ytot and θs based on the pop-
ulation of clusters detected by Planck. Here we assign wide, non-
informative, independent priors to x0, y0,Ytot and θs (see Table 1), to
explore howmuch the combination of the two datasets can constrain
the parameters.

In the standard Planck analysis and for the AMI data analysed
in P15, theGNFWshape parameter valueswere fixed to theUPPval-
ues. In this analysis we will both simulate and analyse clusters with
non-UPP profiles and explore the constraints on α and β produced
by our joint dataset. The priors used for α and β vary throughout
our analysis (Table 1); they are either fixed at some specific value
(delta function priors) or allowed to vary uniformly (uniform priors
on a bounded domain).

5 CLUSTER SIMULATIONS

For all simulations the ymap of a single cluster is generated with ten
distinct noise realisations as follows. Firstly, ten CMB realisations
are created by sampling primordial CMB noise from an empirical
power-law distribution (Hinshaw et al. 2013) and distributing at
random positions on the sky. For each instrument, we add further
realisations of the relevant sources of noise, as follows.

5.1 Planck cluster simulations

We construct a Planck all-sky foreground and thermal noise map by
adding one noise realisation to the CO, FIRB, free-free, spinning
dust, synchrotron and thermal dust emission maps simulated using
the Planck sky model, all taken from the Planck Legacy Archive1

using the FFP8 release.We note that we do not include point sources
since as of this data release they were not separated into strong and
weak point source maps, and for cluster analysis on real data the
strong point sourceswould bemasked.We also choose not to add the

1 https://pla.esac.esa.int/#home

thermal and kinetic SZ emission maps as we wish to see how much
information can be extracted from the data in an ideal situation of a
single, isolated cluster.

We then randomly select ten patch centres on the sky, with the
constraint that the patch centres are above δ = 0◦ (to satisfy AMI’s
observing limits) and that all of the 20◦ square patch is outside of
the Planck 20% Galactic plane mask (in which 20% of the sky is
masked).We cut patches from the all-sky foreground+ noise map at
these coordinates and add the resulting patch maps to the CMB and
cluster maps to produce the final Planck simulations. Each patch
map therefore contains different thermal noise, foreground emission
and CMB but the same cluster.

5.2 AMI cluster simulations

The AMI simulations are constructed by adding the cluster and
CMB maps to confusion noise realisations, created using the 10C
source counts given in AMI Consortium et al. (2011) up to a max-
imum flux density of 360 µJy (i.e. assuming sources above 4× a
typical AMI-LA noise limit of 90 µJy/beam have been detected and
removed). A ten-hour mock AMI-SA observation is performed at
the ten patch centres used for the Planck simulations, using the in-
house package Profile (see e.g. Grainge et al. 2002). Instrumental
noise is also added to the mock observations, giving a total noise
level of ≈ 120 µJy/beam on the map.

Similarly to the Planck simulations, each AMI simulation con-
tains different thermal noise, confusion noise andCMBand the same
cluster. Each AMI simulation corresponds directly to a Planck sim-
ulation which has the same observing centre and CMB realisation.

5.3 Testing the independence of the AMI and Planck datasets

In Section 3.3 we made the assumption that dp
AMI,ν and d

p
Pl,ν are

not correlated with each other, so that the likelihoods for the two
datasets can be separated. The instrumental noises associated with
each telescope can safely be assumed to be independent. Due to
the telescopes operating at different angular scales and frequencies,
the confusion noise present in AMI data and foreground emission
present in Planck data are assumed to be independent of one an-
other. A similar argument can be applied for primordial CMB noise,
nevertheless we carried out a simple test to see if this is the case. For
a given set of cluster parameters, we ran the joint analysis on Planck
and AMI datasets which had different CMB realisations to one an-
other. We found that the resultant parameter constraints were not
significantly different to the results obtained using AMI and Planck
data which had the same CMB realisations as one another (Fig-
ure 1). We thus concluded that the covariance between the datasets
introduced by the common CMB background was negligible.

6 CLUSTER SIMULATION RESULTS

In the following we apply the joint analysis to clusters simulated
as described in Section 5, and compare results with analyses which
use (the same) AMI or Planck data alone.

We consider simulations generated using three different sets of
profile shape parameters: the UPP, the parameters fitted to a stacked
Planck dataset in Planck Collaboration et al. (2013) (‘Planck In-
termediate Profile’, PIP), and the parameters fitted to the cluster
RXC J2319.6-7313 in Arnaud et al. (2010) which are the most
different in the sample to the UPP (‘REXCESS Extreme Profile’,
REP). These values are listed in Table 2. We consider a ‘low’

MNRAS 000, 1–15 (2019)
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SZ profile fitting with joint AMI-Planck analysis 5

Figure 1. Two-dimensional marginalised x0-y0 and Ytot-θs posterior distri-
butions for a high SNR (see Section 6) cluster simulation. The red contours
correspond to the posterior distribution associated with the AMI and Planck
datasets which had different CMB realisations to each other, while the black
ones correspond to datasets generated with the same realisation. The star
symbols indicate the values input when generating the simulations.

Table 2. Cluster simulation inputs using an observational model and three
different pressure profile shapes. x0 and y0 are always 0, i.e. the cluster is at
the simulated map centre.

Ytot θs γ α β

/ arcmin2 / arcmin

UPP low SNR 0.001 2 0.3081 1.0510 5.4905high SNR 0.007 8

PIP low SNR 0.001 2 0.31 1.33 4.13high SNR 0.007 8

REP low SNR 0.001 2 0.065 0.33 5.49high SNR 0.007 8

and a ‘high’ signal-to-noise ratio (SNR) cluster, which corres-
pond to input values of (Ytot, θs) = (0.001 arcmin2, 2 arcmin) and
(Ytot, θs) = (0.007 arcmin2, 8 arcmin) respectively. We note that
‘low’ and ‘high’ SNR are in relation to the Planck simulations
rather than the AMI simulations, where they are both well detected.
We then analyse the ten different noise realisations for each cluster
using the priors given in Table 1 and plot the resulting posterior
distributions using GetDist2.

6.1 Analysis with fixed profile parameters

We firstly analyse the high- and low-SNR UPP simulations using
(γ, α, β) fixed to the correct, input values. Figs. 2 and 3 show the
results of the simulation sets using AMI data only, Planck data only,
and the two datasets combined. Each two-dimensional marginalised
posterior distribution plot shows the 68% confidence contours for
the 10 different noise realisations, with the input values marked with
black stars.

In the case of the positional parameters, it is clear that the
higher angular resolution of the AMI data means that it drives the
posterior inferences, although the addition of the Planck data does
improve the constraints slightly in the high-SNR case. This result is
consistent for all following analyses, and we do not consider the x0
and y0 constraints any further.

Both AMI and Planck constraints are degenerate in the θs/Ytot
plane and previous results based onAMI andPlanck data have relied

2 http://getdist.readthedocs.io/en/latest/.

on ancillary data to reduce this degeneracy. For AMI, a correlated
prior in θs and Ytot based on a simulated population of clusters
injected into and recovered from Planck data was used (see P15).
For Planck, a prior on θs has been used to ‘slice’ the θ500/Y (r500)
posterior constraint based on either an X-ray measurement or a
mass-observable scaling relationship (see, e.g. PlanckCollaboration
et al. 2016), both relying on the assumption of the ‘universal’ c500.
The combination of AMI and Planck data removes the need for
these ancillary priors and produces a much tighter constraint on
both θs andYtot since the degeneracy directions are different. This is
most striking in the case of the low SNR cluster, but is also evident
in the case of the high SNR cluster.

We next analyse the PIP and REP simulations keeping (γ, α, β)
fixed to the UPP values in the analysis, i.e. we now have a mis-
match between the cluster profiles used to produce and analyse the
simulations. The two-dimensional posterior constraints on Ytot and
θs in this case are shown in Figs. 4 and 5. In the case of the PIP
simulations, all of the constraints are offset from the true position;
although the direction of the offset is mostly in θs so that the one-
dimensional marginal constraint on Ytot is not too badly offset it
is clear that any method to reduce the degeneracy by slicing the
posterior will be problematic. In the case of the REP simulations,
the low-SNR cluster constraints are not too badly affected by the
profile mismatch; this is because the change is to the inner part
of the profile which is not well-resolved by either instrument. The
high-SNR constraints however are significantly biased both in the
two-dimensional plane and in the one-dimensional Ytot plane.

6.2 Variable shape parameter analysis

We next consider the same set of simulations described in Section 6,
but now allowing the GNFW shape parameters α and β to vary in
the analysis. We assign the uniform priors stated in Table 1 to α and
β.

Figs. 6 and 7 show two-dimensional posterior constraints for a
selection of parameter pairs for the UPP low- and high-SNR cluster
simulations respectively. The two sets of simulations share some
common features, as follows. The constraints on Ytot are mostly
driven by the Planck data, since the lower-resolution Planck data
are most suited to measuring the total cluster signal while the in-
terferometric AMI data relies on extrapolations to larger angular
scales than are measured; the joint constraints are generally tighter
than the Planck-only constraints and appear unbiased. There is a
large degeneracy between θs and β which is inherent to the GNFW
model, since decreasing βmakes the cluster amplitude fall off more
slowly with radius which can also be achieved by increasing θs.

In the case of the low SNR cluster, the joint analysis success-
fully constrains Ytot and puts an upper limit on θs and a lower limit
on β. α is fairly unconstrained since it affects the profile on the scale
of θs = 2 arcmin which is not well-resolved by either instrument.

In the case of the high SNR cluster, α can be constrained by
AMI alone. The joint analysis places a lower limit on θs but β is
unconstrained due to the θs/β degeneracy.

We do not show all of the constraints produced for the PIP and
REP simulations as they are qualitatively similar, with the following
exceptions. Since β is lower for the PIP it effectively makes the
cluster much more extended. The significance of the high SNR
AMI detection becomes much lower and with α and β allowed
to vary all of the parameters are essentially unconstrained, so the
joint constraints become driven by the Planck data. Ytot is well-
constrained; a lower limit can be put on θs and an upper limit on
β, while α is unconstrained. In the low SNR case, only Ytot is well-

MNRAS 000, 1–15 (2019)
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6 Y. C. Perrott et al.

Figure 2. Two-dimensional marginalised x0-y0 and Ytot-θs posterior distributions for the 10 UPP low SNR cluster simulations obtained from: AMI data (top
row), Planck data (middle row), and AMI and Planck data combined (bottom row). The contours in each plot represent the 68% confidence intervals of the
separate posterior distributions obtained from each of the 10 realisations. The star symbols indicate the values input when generating the simulations. Note the
different axis scales.
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Figure 3. Two-dimensional marginalised x0-y0 andYtot-θs posterior distributions for the 10 UPP high SNR cluster realisations. The Figure layout is as described
in Figure 2. Note the different axis scales in the x0-y0 plots.
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Figure 4. Two-dimensional marginalisedYtot-θs posterior distributions for the 10 PIP low SNR cluster simulations (top row) and high SNR cluster simulations
(bottom row). The posteriors plotted are, from left to right: AMI-only, Planck-only, and joint constraints. The contours and markers are as described in Figure 2.
Note the different axis scales in the low-SNR plots.

constrained since although the cluster is more extended it is also
much less bright so there is not enough signal-to-noise to constrain
α and β. We show the joint constraints for this case in Fig. 8 as a
‘worst-case’ scenario.

In the high SNR, REP case, α is very tightly constrained and
β is better-constrained by the AMI data alone. This is because the
lower α value of the profile causes it to fall off more sharply with
radius, putting more signal on AMI scales. In the low SNR, REP
case we obtain tight constraints on Ytot and α, a tight upper limit on
θs and a lower limit on β. We show the joint constraints for this case
in Fig. 8 as a ‘best-case’ scenario. We note that for the REP analysis
we are fixing γ to the incorrect, UPP value; we also varied α and β
while fixing γ to the correct, REP value which had little impact on
the parameter constraints.

Overall we conclude that where nothing is known a-priori
about the pressure profile of the cluster (other than that it follows
a GNFW shape), we can use the combination of AMI and Planck
data to successfully constrainYtot; often constrain α; and sometimes
put limits on β and θs depending on how well-resolved the cluster
is (which depends both on θs and on α and β).

7 APPLICATION OF JOINT ANALYSIS TO REAL
CLUSTER DATA

As a test case, we apply the joint analysis to PSZ2 G063.80+11.42
(z = 0.426; M500,SZ = 6.2 × 1014M�) from the P15 sample. The
cluster is well-detected by both Planck (PwS signal-to-noise-ratio =

6.5) and AMI (Bayesian detection significance = 3.8) and there is a
significant offset between the AMI and Planck posterior constraints
on Ytot and θs. The AMI radio-source environment is relatively
clean. We reobserved the cluster with AMI to benefit from the im-
proved performance of the new correlator, and use the DX11d data
release with strong point sources masked (Planck Collaboration,
priv. comm.) for the Planck data.

We firstly run the AMI and Planck analyses separately using
the priors given in Table 1 (assigning delta priors to the GNFW
shape parameters at UPP values), to confirm the discrepancy. For
comparison we also ran the AMI analysis with the P15 priors; these
three sets of posterior chains are shown in Fig. 9. We note that the
tighter positional constraint in the latter case is due to a degeneracy
with a radio source flux near one edge of the cluster; when the
wider positional prior is used the source flux is allowed to increase,
broadening the cluster decrement and shifting the position of the
cluster. This has little effect on the θs/Ytot constraint. We see that the
discrepancy is confirmed with the newer AMI data (and the AMI
Bayesian detection significance increases to 6.0); the Planck θs/Ytot
constraint lies significantly above that produced by AMI.

We now analyse the PSZ2 G063.80+11.42 data while allowing
α and β to vary. Figure 10 shows the resulting posterior distributions
for the AMI-only, Planck-only and joint analysis methods. Similarly
to the simulations, we see that Ytot is well constrained by the joint
analysis and the constraint is completely driven by the Planck data.
The addition of AMI data improves the constraint on θs from an
upper limit to a true constraint, and both α and β are constrained,
although not tightly. The one-dimensional parameter constraints are
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Figure 5. Two-dimensional marginalisedYtot-θs posterior distributions for the 10 REP low SNR cluster simulations (top row) and high SNR cluster simulations
(bottom row). The posteriors plotted are, from left to right: AMI-only, Planck-only, and joint constraints. The contours and markers are as described in Figure 2.
Note the different y-axis scales.

Table 3. Summary of parameter constraints for PSZ2 G063.80+11.42, vary-
ing α and β. The errors given are the 68% limits from the one-dimensional
marginalised parameter constraints.

AMI-only Planck-only AMI-Planck
x0/ arcsec −59+24

−18 −38+31
−26 −55 ± 14

y0/ arcsec −70+26
−14 −45 ± 31 −65 ± 15

Ytot/ (103 arcmin2) 6.9+2.3
−5.7 1.32+0.17

−0.38 1.40+0.23
−0.34

θs/ arcmin 8.9+3.9
−3.0 < 3.81 4.27+0.95

−1.4
α 0.77+0.10

−0.63 < 2.16 1.66+0.55
−0.74

β 4.79+0.42
−0.74 > 5.94 5.78+1.0

−0.87

summarized in Table 3; β agrees with the UPP value, while a higher
value of α is favoured but only at the ≈ 1σ level. We perform one
further analysis on the AMI data, fixing α to the fitted value from
the joint analysis, and leaving β fixed to the UPP value. The pos-
terior constraints on θs andYtot in this case are shown in comparison
with the AMI-only UPP analysis and the Planck analysis varying
α and β; it can be seen that the AMI posterior shifts in the correct
direction to overlap with Planck, confirming that this value of α
gives better agreement between the two instruments (Fig. 10, upper
right-hand corner). No X-ray observations of this cluster are avail-
able to compare X-ray-derived constraints on the profile parameters;
for our future AMI-Planck sample (see Section 8) comparison with
X-ray-derived parameters will be informative and complementary
across a different range of angular scales.

8 FUTUREWORK

Along with the sample of 99 clusters from P15, clusters which were
previously excluded from the AMI sample due to difficult radio
source environments are currently being reobserved with the new
correlator; the superior dynamic range of the new instrument allows
us to cope better with these environments and successfully extract
cluster parameters. We will analyse all AMI detections with the
joint pipeline, giving us a large cluster sample to probe deviations
from the UPP and consider the impact this may have on the Planck
cluster number counts.

We note that Javid et al. (2019) found that realistic radio source
environments could bias the recovery of cluster parameters from
AMI data. This issue and its effect on the recovery of the pres-
sure profile parameters will be investigated in conjunction with the
analysis of the larger AMI-Planck sample.

With the larger sample we will be able to compare our SZ-
derived profile parameters to X-ray-derived parameters. This will
allow us to test for any systematic differences and combine inform-
ation across a broader range of angular scales.

Our pipeline is also simply extensible to the use of any physical
model which uses a GNFW profile for the gas pressure, e.g. the
models proposed in Olamaie et al. (2012), Javid et al. (2018) and
Javid et al. (2019). We also plan to implement a non-parametric
model such as that proposed in Olamaie et al. (2018).
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Figure 6. Two-dimensional marginalised posterior distributions for four combinations of θs,Ytot, α and β, for the 10 UPP low SNR cluster simulations obtained
from: AMI data (top row), Planck data (middle row), and AMI and Planck data combined (bottom row).

9 CONCLUSIONS

(i) We have developed a joint likelihood function for SZ data
obtained from the Planck satellite and the Arcminute Microkelvin
Imager (AMI) radio interferometer system, in order to compare
inferences obtained using it with those from the individual likeli-
hoods. The method could apply to any combination of Planck and
interferometric data from one or more telescopes.
(ii) We generated simulations of clusters using an observational

model similar to the one used in Perrott et al. (2015), using gas
pressure profile shape parameter values taken from either the UPP
(Arnaud et al. 2010, ‘universal’ pressure profile) or two other real-
istic variations. We considered both a smaller angular size, fainter
cluster and a larger angular size, brighter cluster. From looking at
the resulting posterior distributions we found the following:

• When simulating and analysing the clusters using the model
with UPP parameters the joint analysis greatly reduced the de-
generacy in Ytot-θs shown in the individual AMI and Planck ana-
lyses, due to the different degeneracy directions for the individual
datasets. The improvement on the parameter constraints for the
joint analysis is particularly prominent in the small angular size
cases. Thus when the profile shape of a cluster is known a-priori,
the combination of the two datasets provides accurate, precise

constraints on the cluster parameters with no need for external
information to reduce the Ytot-θs degeneracy.
• When simulated clusters created using non-UPP profiles are

analysed with the profile shape assumed to be UPP, the Ytot-θs
constraints are biased away from the true value. This occurs in
the individual AMI and Planck datasets and is particularly prob-
lematic in the joint analysis, where a tight, significantly biased
constraint is produced.
• When allowing the shape parameters to vary in the Bayesian

analysis, we generally found that for all the clustersYtot was well-
constrained and unbiased; Planck drove the constraint and the
joint analyses improved the constraint slightly.
• Furthermore dependent on how well resolved the clusters

are, the shape parameter α can often be constrained. Due to the
strong β-θs degeneracy these parameters are more difficult to
constrain and it is usually only possible to place limits on them.

(iii) Finally, we applied the joint analysis to real data for the
cluster PSZ2 G063.80+11.42 which is part of the sample of 99
clusters considered in P15. We confirmed the discrepancy in Ytot
and θs estimates when using updated AMI data and resolved it by
allowing α and β to vary. Using the joint analysis we could constrain
Ytot and θs well and place loose constraints on α and β, finding that
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Figure 7. Two-dimensional marginalised posterior distributions for four combinations of θs, Ytot, α and β, for the 10 UPP high SNR cluster simulations
obtained from: AMI data (top row), Planck data (middle row), and AMI and Planck data combined (bottom row).

a slightly higher value of α than the UPP value was preferred, while
the constraint on β was consistent with the UPP value.
(iv) We plan to apply our method to all the 99 clusters of the

P15 sample, plus clusters currently being reobserved by AMI, to
investigate deviations from the UPP and possible impact on the
Planck cluster number counts. We also plan to extend our method
to incorporate different physical and non-parametric cluster models.
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