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ABSTRACT. — This paper is intended to give a characterization of the optimality case in Nash’s inequality, based on
methods of nonlinear analysis for elliptic equations and techniques of the calculus of variations. By embedding the
problem into a family of Gagliardo-Nirenberg inequalities, this approach reveals why optimal functions have compact
support and also why optimal constants are determined by a simple spectral problem.
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1. INTRODUCTION AND MAIN RESULT

Nash’s inequality [17] states that, for any u ∈ H1(Rd ), d ≥ 1,

‖u‖2+ 4
d

2 ≤CNash ‖u‖
4
d
1 ‖∇u‖2

2 , (1)

where we use the notation ‖v‖q = (∫
Rd |v |q d x

)1/q for any q ≥ 1. The optimal con-
stant CNash in (1) has been determined by E. Carlen and M. Loss. To state their
result, let us introduce ωd , the volume of the unit ball B1 in Rd , λ1, the principal
eigenvalue of the Laplacian with homogeneous Neumann boundary conditions,
and x 7→ϕ1(|x|) an eigenfunction associated with λ1, normalized by ϕ1(1) = 1.

THEOREM 1.1 ( [9]). Inequality (1) holds with optimal constant

CNash = (d +2)1+ 2
d

d λ1 (2ωd )
2
d

(2)

Moreover, there is equality in (1) if and only if, up to translation and scaling of x as
well as multiplication of u by a constant,

u(x) :=
{

1−ϕ1(|x|) for |x| ≤ 1,
0 for |x| > 1.

The compactness of the support of the optimizers in (1) can be understood by
deriving Nash’s inequality as a limiting case of a family of Gagliardo-Nirenberg in-
equalities [14, 18]

‖∇u‖
2 a

a+b
2 ‖u‖

2b
a+b
p ≥CGN(p) ‖u‖2

2 , (3)

for all u ∈ H1 ∩Lp (Rd ), where 1 < p < 2, a = a(p) = d (2− p), and b = b(p) = 2 p.
Nash’s inequality corresponds to the limit case as p → 1.

The inequality (3) is equivalent to the minimization of u 7→ ‖∇u‖2
2 +‖u‖2

p under

the constraint that ‖u‖2
2 is a given positive number: any minimizer solves, up to a

scaling and a multiplication by a constant, the Euler-Lagrange equation

−∆u = u −|u|p−2 u . (4)
∗Dedicated to the memory of Pr. Emilio Gagliardo whose results on functional inequalities have been a

constant source of inspiration.



In our main result, which follows, we use the notation of Theorem 1.1.

THEOREM 1.2. For any p ∈ (1,2), equality in (3), written with an optimal constant, is
obtained after a possible translation and scaling of x, and multiplication by a con-
stant, by the nonnegative radial solution up of (4). The support of up is a ball of

radius Rp > 0, such that limp→1+ Rp = R1 :=
√
λ1, and up converges, as p → 1+, to

u1 = u(·/R1) in H1 ∩L1(Rd ).

Our result is in the spirit of [9]. In their paper, E. Carlen and M. Loss estab-
lish the optimality case by direct estimates as chain of inequalities which become
equalities in the case of the optimal functions. Our contribution is to establish first
why the problem can be reduced to a problem on a ball involving only radial func-
tions, using the theory of nonlinear elliptic PDEs and methods of the calculus of
variations. Identifying the optimal case is then an issue of spectral theory.

Let us highlight a little bit why we insist on the compactness of the support of
the optimal function. The first application of Nash’s inequality by Nash himself
in [17] is the computation of the decay rate for parabolic equations. We consider a
solution u of the heat equation

∂u

∂t
=∆u , (5)

with initial datum u0 ∈ L1 ∩L2(Rd ). If u0 is nonnegative, so does u(t , ·), and mass is
conserved : ‖u(t , ·)‖1 = ‖u0‖1, for any t ≥ 0. For a general initial datum, ‖u(t , ·)‖1 ≤
‖u0‖1 for any t ≥ 0. By the estimate

d

d t
‖u(t , ·)‖2

2 =−2‖∇u(t , ·)‖2
2

and Nash’s inequality (1), y(t ) := ‖u(t , ·)‖2
2 can be estimated by

y ′ ≤−2C −1
Nash ‖u0‖−

4
d

1 y1+ 2
d ,

which, after integration, yields that the solution u of (5) satisfies the estimate

‖u(t , ·)‖2 ≤
(
‖u0‖−

4
d

2 + 4

d
C −1

Nash ‖u0‖−
4
d

1 t

)− d
4

, (6)

for all t ≥ 0. This estimate is optimal in the following sense: if we take u0 to be an
optimal function in (1) and differentiate (6) at t = 0, it is clear that CNash is the best
possible constant in the decay estimate (6).

With this result at hand, it comes a little bit as a surprise that the optimal func-
tion has nothing to do with the heat kernel

G(t , x) = 1

(4π t )
d
2

exp

(
− |x|2

4 t

)

2



and is even compactly supported. This can be explained by noting that (6) is an
optimal result for small times, but it can be improved concerning the long time
behavior. Estimation of the solution u(t , ·) = G(t , ·) ∗ u0 of the heat equation by
Young’s convolution inequality gives

‖u(t , ·)‖2 ≤ ‖G(t , ·)‖2 ‖u0‖1 = (8π t )−
d
4 ‖u0‖1 . (7)

The sharpness of this result (take u0 = G(ε, ·) for an arbitrary small ε > 0) and a
comparison with (6) imply

8π> 4

d CNash
. (8)

An estimate, which is optimal for both small and large times, is now obviously ob-
tained by taking the minimum of the right hand sides of (6) and of (7). The reader
interested in further consideration on Nash’s inequality and the heat kernel is in-
vited to refer to [12].

This paper is organized as follows. Theorem 1.1 can be seen as a consequence
of Theorem 1.2: see Section 2. Section 3 is devoted to the proof of Theorem 1.2.
In Section 4 we adopt a broader perspective and sketch the proof by E. Carlen and
M. Loss along with a review of several other methods for proving Nash’s inequality.

2. THEOREM 1.2 IMPLIES THEOREM 1.1

The optimal constant CGN(p) in (3) is obtained by minimizing the quotient

Qp [u] :=
‖∇u‖

2 a
a+b
2 ‖u‖

2b
a+b
p

‖u‖2
2

.

Except when d = 1, no explicit expression of CGN(p) is available to our knowledge.
Theorem 1.2 implies

Q1[u1] = lim
p→1+

Qp [up ] = (
CNash

) d
d+2 .

As a consequence, the support of u1 is the ball BR1 and on ∂BR1 3 x, u1(x) = 0 and
x ·∇u1(x) = 0. We also deduce from Theorem 1.2 that up uniformly converges to u1

using standard elliptic results of [15] or elementary ODE estimates. Moreover, since

limp→1+ up−1
p = 1, the optimal function u1 solves the Euler-Lagrange equation

−∆u1 = u1 −1.

This means that v1 := 1−u1(R1 ·) solves{
−∆v1 =λ1 v1 , x ∈ B1 ,

v1 = 1, x ·∇v1 = 0, x ∈ ∂B1 ,
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with λ1 = R2
1 . This implies v1 =ϕ1(| · |). We recall that λ1 is defined by

λ1 := inf
∫

B1

|∇ϕ|2 d x

where the infimum is taken on
{
ϕ ∈ H1(B1) :

∫
B1
ϕd x = 0 and

∫
B1

|ϕ|2 d x = 1
}

.

As observed in [5], λ1 can be computed in terms of the smallest positive zero
zd/2 of the Bessel function of the first kind Jd/2 using, for instance, [11, page 492,
Chapter VII, Section 8]. Indeed, solving the radial eigenvalue problem{

ϕ′′
1 + d−1

r ϕ′
1 +λ1ϕ1 = 0,

ϕ1(1) = 1, ϕ′
1(1) = 0, ϕ′

1(0) = 0,

is equivalent to finding the function J such that ϕ1 := r−α Jα
(√

λ1 ·
)

with α = (d −
2)/2 that solves

J ′′α+
1

r
J ′α+

(
1− α2

r 2

)
Jα = 0.

Hence Jα is a Bessel function of the first kind and the boundary conditionϕ′
1(1) = 0

is transformed into
√
λ1 J ′α

(√
λ1

)
−α Jα

(√
λ1

)
= 0. With the property

z J ′α (z)−α Jα (z)+ Jα+1 (z) = 0

of Bessel functions of the first kind (see, e.g., [27]), we obtain λ1 = z2
α+1 = z2

d/2.

Looking at the Euler-Lagrange equation was precisely the way how E. Carlen
and M. Loss realized that the optimizers must have compact support, [8]. This in-
formation heavily influenced the shape of the proof in [9]. The observations of this
section point in the very same direction. For p ∈ (1,2), the compact support prin-
ciple gives a very simple intuition of why the optimal function for (3) has compact
support, and then it is natural to take the limit in the Euler-Lagrange equation (4).
As we shall see in the next section, symmetrization can be avoided and replaced by
the moving plane method, which also puts the focus on (4).

3. PROOF OF THEOREM 1.2

For readability, we divide the proof into a list of simple statements. Some of these
statements are classical and are not fully detailed. Our goal here is to prove that
the optimal function up is supported in a ball with finite radius and investigate the
limit of up as p → 1+.

1. The non-optimal inequality and the optimal constant. It is elementary to prove
that (1) holds for some positive constant CNash and without loss of generality, we
can consider the best possible one. See Section 4 for various proofs of such a state-
ment.
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2. Scalings and Gagliardo-Nirenberg inequalities. Inequality (3) is equivalent to

‖∇u‖2
2 +λ ‖u‖2

p ≥KGN(p,λ) ‖u‖2
2 , (9)

for all u ∈ H1(Rd )∩Lp (Rd ). A scaling argument relates KGN(p,λ) and CGN(p). In-
deed, take any u ∈ H1(Rd )∩Lp (Rd ), then so does uσ = u(σ·) for any σ > 0, and we
have

KGN(p,λ) ≤
‖∇uσ‖2

2 +λ ‖uσ‖2
p

‖uσ‖2
2

=
σ2 ‖∇u‖2

2 +λ ‖u‖2
p σ

−2 a
b

‖u‖2
2

.

where a = d (2− p), and b = 2 p as in (3). From this, we may deduce two things.

First, choosing σ2 =λ b
a+b and optimising on u yields

KGN(p,λ) =KGN(p,1)λ
b

a+b .

Second, an optimization on σ> 0 shows that

KGN(p,λ) ≤ a +b

a
a

a+b b
b

a+b

λ
b

a+b Qp [u]

so that optimizing on u yields

KGN(p,λ) = a +b

a
a

a+b b
b

a+b

λ
b

a+b CGN(p) . (10)

Throughout this paper we assume that CGN(p) and KGN(p,λ) are the optimal con-
stants respectively in (3) and (9).

3. Comparison of the optimal constants. By taking the limit in Qp [u] as p → 1+ for
an arbitrary smooth function u and arguing by density, one gets that p 7→CGN(p) is
lower semi-continuous and(

CNash
) d

d+2 =CGN(1) ≤ lim
p→1+

CGN(p) .

On the other hand, since ‖u‖p
p ≤ ‖u‖2−p

1 ‖u‖2(p−1)
2 by Hölder’s inequality, we find

that

CGN(p) ≤ (
CNash

) a(p)
a(p)+b(p)

p→1+−→ (
CNash

) d
d+2 ,

from which we conclude that(
CNash

) d
d+2 = lim

p→1+
CGN(p) .

4. Nonnegative optimal functions. We look for optimal functions in (3) by min-
imizing Qp . The existence of a minimizer is a classical result in the calculus of
variations: see for instance [7]. Without loss of generality, we can consider only
nonnegative solutions of (4) because Qp [u] =Qp

[|u|].
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5. Support and regularity. According to [10], as a special case of the compact sup-
port principle (see [20, 21]), nonnegative solutions of (4) have compact support. By
convexity of the function t 7→ t 2/p , we can consider solutions which have only one
connected component in their support. For each p, we can pick one such solu-
tion and denote it by up . The standard elliptic theory (see for instance [15]) shows
that the solution is continuous and smooth in the interior of its support, which is a
connected, closed set in Rd .

6. Symmetry by moving planes. According to [10], the solution up is radially sym-
metric and supported in a ball of radius Rp . The proof relies on moving plane tech-
niques and applies to nonlinearities such as u 7→ u −up−1 with p ∈ (1,2). Up to
a translation we can assume that the support is a centered ball. The solution is
unique according to [10, Theorem 1.1] and [19, Theorem 3].

7. Limit as p → 1+. This is the point of the proof which requires some care. As
p → 1+, up converges to a nonnegative solution u1 of−∆u1 = u1 −1 on BR1 ,

x
|x| ·∇u1 = 0, u1 = 0 on ∂BR1 .

(11)

Let us give some details. For any p ∈ (1,2), the solution up of (4) satisfies the two
identities∥∥∇up

∥∥2
2 +

∥∥up
∥∥p

p = ∥∥up
∥∥2

2 ,
d −2

2d

∥∥∇up
∥∥2

2 +
1

p

∥∥up
∥∥p

p = 1

2

∥∥up
∥∥2

2 ,

obtained by testing (4) respectively by up and by x ·∇up (Pohozaev’s method). The

first identity is rewritten as
∥∥∇up

∥∥2
2 +λp

∥∥up
∥∥2

p = ∥∥up
∥∥2

2 with λp := ∥∥up
∥∥p−2

p . As a

consequence, we have that

1 =KGN(p,λp ) = a +b

a
a

a+b b
b

a+b

λ
b

a+b
p CGN(p)

because of (10). As a consequence we have that limp→1+ λp = λ1. The two identi-
ties and the definition of λp provide an explicit expression of

∥∥∇up
∥∥

2,
∥∥up

∥∥
p and∥∥up

∥∥
2 in terms of λp . This proves the strong convergence of up to some u1 in

H1∩L1(Rd ) and, as a consequence, this proves that equality in (1) is achieved by u1

which solves (11).

8. Convergence of the support. By adapting the results of [4, 13], it is possible to
prove that limp→1+ Rp =: R1 ∈ (0,∞). Let us give an elementary argument. The
dynamical system

U ′ =V , V ′ = 1−U − d −1

r
V

has smooth solutions such that, if initial data coincide, then U (r ) = u1(r ) and V =
u′

1(r ) on the support of u1. As a limit of up , we know that u1 is nonnegative. Since
the sequence (rn)n∈N of the zeros of V , with the convention r0 = 0, is such that
the sequence

(
(−1)n U (rn)

)
n∈N is monotone decaying, u1 has compact support and

R1 = r1. This completes the proof of Theorem 1.2.
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4. OTHER PROOFS OF NASH’S INEQUALITIES

This section is devoted to a brief review of various methods that have been used to
derive Nash’s inequality and estimate the optimal constant CNash. The method of
E. Carlen and M. Loss is the only one which provides the optimal value of CNash. A
comparison of the various results is summarized in Fig. 1.

4.1. Interpolation with Sobolev’s inequality

In dimension d ≥ 3, it follows from Hölder’s inequality that

‖u‖2
2 ≤ ‖u‖

4
d+2
1 ‖u‖

2d
d+2
2∗

with 2∗ = 2d
d−2 , and from Sobolev’s inequality that

‖u‖2
2∗ ≤ Sd ‖∇u‖2

2

where

Sd = 1

d (d −2)π

(
Γ(d)

Γ(d/2)

) 2
d

is the optimal constant in Sobolev’s inequality [1, 22, 24], so that CNash ≤ Sd .

4.2. Nash’s inequality and the logarithmic Sobolev inequality are equivalent

In the interpolation strategy, we can replace Sobolev’s inequality by the logarith-
mic Sobolev inequality. The equivalence of Nash’s inequality and the logarithmic
Sobolev inequality is a well known fact, in which optimality of the constants is not
preserved: see for instance [2]. In [5], W. Beckner made the following observation:
Jensen’s inequality applied to the convex function σ(u) := log(1/u) and the proba-
bility measure ‖u‖−2

2 |u|2 d x shows that

log

(‖u‖2
2

‖u‖1

)
=σ

(
‖u‖1

‖u‖2
2

)
=σ

(∫
Rd

1

|u|
|u|2 d x

‖u‖2
2

)

≤
∫
Rd
σ

(
1

|u|
) |u|2 d x

‖u‖2
2

=
∫
Rd

log |u| |u|
2 d x

‖u‖2
2

and can be combined with the logarithmic Sobolev inequality in scale invariant
form of [23, 28], that is,∫

Rd
log |u| |u|

2 d x

‖u‖2
2

≤ log‖u‖2 +
d

4
log

(
2

πd e

‖∇u‖2
2

‖u‖2
2

)

to prove (1) with the estimate

CNash ≤ 2

πd e
:=C1(d) .
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According to [5], this estimate is asymptotically sharp as d →∞, which can be ver-
ified by using classical results on the zeroes of Bessel functions [27]. Notice that
an information-theoretic proof of Nash’s inequality based on Costa’s method of en-
tropy powers can be used to directly prove this inequality (see for instance [26], with
application to Nash’s inequality in [25, Section 4]).

Reciprocally, let us consider Hölder’s inequality ‖u‖q ≤ ‖u‖αp ‖u‖1−α
s with α =

p
q

s−q
s−p , p ≤ q ≤ s, and let us take the logarithm of both sides. Then we obtain

log

(‖u‖q

‖u‖p

)
+ (α−1) log

(‖u‖p

‖u‖s

)
≤ 0.

This inequality becomes an equality when q = p. We may differentiate it with re-
spect to q at q = p and∫

Rd
up log

( |u|
‖u‖p

)
d x ≤ s

s −p
‖u‖p log

(‖u‖s

‖u‖s

)
. (12)

immediately follows.
The equivalence of Nash’s inequality and the logarithmic Sobolev inequality (al-

though with non-optimal constants) is a well known fact that has been exploited in
various related problems. See for instance [6, 3].

4.3. The original proof by J. Nash

It is a very simple argument based on Fourier analysis, due originally to E.M. Stein
according to J. Nash himself (see [17, page 935]). Let us denote by û the Fourier
transform of u defined as

û(ξ) = (2π)−
d
2

∫
Rd

e i x ξu(x)d x ,

so that by Plancherel’s formula

‖u‖2
2 =

∫
Rd

|û(ξ)|2 dξ≤ ‖û‖2
∞

∫
|ξ|≤R

dξ+ 1

R2

∫
Rd

|ξ|2 |û(ξ)|2 dξ

≤ (2π)−d ωd Rd ‖u‖2
1 +

1

R2
‖∇u‖2

2

for any R > 0. By optimizing the right hand side with respect to R, we obtain the
estimate

CNash ≤ 1

4π

(
d +2

d

)1+ 2
d

Γ

(
d

2

)− 2
d =: C2(d) .

4.4. The method of E. Carlen and M. Loss

Without loss of generality, we can assume that the function u is nonnegative. If u?

denotes the spherically non-increasing rearrangement of a function u, then [16]∥∥u?
∥∥

q = ‖u‖q and
∥∥∇u?

∥∥
2 ≤ ‖∇u‖2 ,
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so we can consider nonnegative radial non-increasing functions without loss of
generality. For any R > 0, let

uR := u 1BR .

We observe that

u −uR ≤ u(R) ≤ uR := ‖uR‖1

|BR |
because u is radial non-increasing, so that

‖u −uR‖2
2 ≤ uR ‖u −uR‖1 =

‖uR‖1

Rd ωd
‖u −uR‖1 . (13)

On the other hand, using

‖uR‖2
2 =

∥∥uR −uR
∥∥2

2 +
∥∥uR 1BR

∥∥2
2 ,

we deduce from the Poincaré inequality∫
BR

|v |2 d x ≤ R2

λ1

∫
BR

|∇v |2 d x,

for all v ∈ H1(Rd ) such that
∫

BR
v d x = 0 and from the definition of uR that

‖uR‖2
2 ≤

R2

λ1
‖∇u‖2

2 +
‖uR‖2

1

Rd ωd
, (14)

using ‖∇uR‖2 ≤ ‖∇u‖2. By definition of uR , we also know that

‖u‖2
2 = ‖uR‖2

2 +‖u −uR‖2
2 .

After summing (13) and (14), we arrive at

‖u‖2
2 ≤

R2

λ1
‖∇u‖2

2 +
‖uR‖1

Rd ωd

(‖uR‖1 +‖u −uR‖1
)

and notice that

‖uR‖1
(‖uR‖1 +‖u −uR‖1

)= ‖uR‖1 ‖u‖1 ≤ ‖u‖2
1 . (15)

Altogether, this means that

‖u‖2
2 ≤

R2

λ1
‖∇u‖2

2 +
‖u‖2

1

Rd ωd
.

An optimization on R > 0 determines a unique optimal value R = R? and provides
the expression of CNash. Equality is achieved by functions meeting equalities in
all previous inequalities, that is functions such that u = uR? and uR? is an optimal
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Figure 1: With d ≥ 1 considered as a real parameter, plots of d 7→ Sd and d 7→C1(d)
corresponding respectively to an interpolation with Sobolev’s inequality (only for
d > 2) and to an interpolation with the logarithmic Sobolev inequality are shown as
dashed curves. The dotted curve is the estimate d 7→ C2(d) of J. Nash in [17]. The
optimal value d 7→ CNash(d) is the plain curve and it is numerically well approxi-
mated from below by d 7→ 1/(2πd) deduced from (8).

function for the Poincaré inequality above. This is u(x) = 1−ϕ1(|x|/R?) on BR? ,
extended by u ≡ 0 to Rd \ BR? .
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