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Abstract—In this paper, the dynamics and control of a novel
class of aerial manipulator for the purpose of end effector full
pose trajectory tracking are investigated. The 6D pose of the
end effector is set as a part of the flat output, from which
the conditions that the system has the proposed flat output is
obtained. The control law for the end effector tracking purpose
is designed. The core part of the controller is an almost global
controller in the configuration space of the system. From the
transformation between the state space and the output space, the
tracking control of the end effector in SE(3) is also achieved.
The stability of the controlled system is analyzed. A numerical
example is presented to demonstrate the theoretical analysis.

I. INTRODUCTION

A. Background and Motivation

Recently, aerial manipulation has attracted great interests in
robotics research community [1]. Several groups demonstrated
aerial grasping using grippers attached to aerial manipulators
[2], [3], [4]. Kim et al. show cooperative aerial manipulators
grasping with unknown payload in environment with obstacles
[5], [6]. Paul Oh et al. demonstrate pick-place and peg-in-
hole tasks using quadrotor platform and dual arms attached in
the platform [7]. The EU 7-th Framework program funds sev-
eral projects on aerial manipulators, investigating the motion
planning and impedance control with aerial manipulator when
interacting with the environment [8], [9], [10]. A research
group in German Aerospace Center presents the potential
application of a 7 DOFs anthropomorphic arm attached to
a helicopter [11]. Delta-like mechanism [12] and parallel
manipulator [13] are also considered in aerial manipulators.
Such existing works present a prospective future of research
on aerial manipulation. However, compared to ground-based
manipulators, the tasks that aerial manipulators can achieve are
still in a very preliminary stage. This is due to many factors,
such as the end effector of the current aerial manipulators is
difficult to achieve 6D pose trajectory tracking.

B. Related Work

It has been shown that the aircraft itself is fully controllable
if it is actuated by 1D force and 3D torque. A typical example
of such aircraft is quadrotor. In [14], the mechanics and
control problem of the quadrotor with a rigidly attached tool
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effector has been considered. It is found that the 3D force-
position control of the quadrotor tool system is possible.
However, the end effector needs to be positioned carefully
to prevent the unstable internal dynamics induced by the
feedback linearization.

In aerial articulated manipulator, the added manipulator
joints may compensate for the unstable internal dynamics. By
reducing the 3D condition into a 2D condition, the planar
quadrotor manipulator presents some good properties [15],
[16], [17]. It was found that the end effector of planar aerial
manipulator can achieve trajectory tracking control in SFE(2).
However, the 3D conditions are different. Most of the previous
work on control of 3D aerial articulated manipulator is finished
in its configuration space [18]. A regulator for such system is
derived and the stability is proven using singular perturbation
theory [19]. However the aerial manipulator based on this kind
of aircraft is difficult to achieve 6D pose trajectory tracking
in task space, because of the dynamic coupling between the
position and the attitude of such type of aircraft [10]. Dongjun
Lee et al. propose a back stepping control for position tracking
of end effector of quadrotor-based aerial manipulator in [20],
where the torque of the aircraft and the joint torque should
satisfy dynamic constraints. This makes the joint position
difficult to be independently controlled. A method to allocate
the joint torque in order to independently control the joint
position is also proposed [20], but no proof of controllability
is provided.

It is believed that the traditional under-actuated aerial ve-
hicle is not ideal for aerial manipulation, some researchers
considered the fully actuated aerial platform-based manipula-
tor. The fully actuated aerial vehicle platform can track the
trajectory in SE(3) without any constraints. Franchi et al.
propose a fully actuated aerial vehicle where the actuated
force and torque is produced by 6 rotors that point to different
directions [21]. Other fully actuated aerial platform includes
tilting aerial vehicle [22], omni-directional aerial vehicles [23],
and aerial vehicles with extra actuators [24]. In summary,
the actuators of this class of aerial vehicle can produce 6D
independent force and torque. However, the extra actuators
also decrease the energy efficiency.

Several researchers also investigated aerial manipulation
based on multiple aerial vehicles. It was shown that in 3D
space, three quadrotors could lift a rigid body moving in
SE(3) [25]. By using a similar principle, Dongjun Lee et
al. propose a structure for aerial manipulation using multiple
quadrotors as rotating thrust generators [26]. These multiple
quadrotors connect to the manipulator via spherical joints, the
manipulation platform therefore is capable to track a trajectory
in SE(3). Six et al. propose a flying parallel robot with three
quadrotors [27]. This aerial manipulator is composed of three
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Fig. 1. Configuration of an aerial manipulator. The first joint locates at the
COM of the aircraft base. Fp and 7o are expressed in the floating base fixed
frame. The pose of link-¢ of the manipulator is denoted as h; € SE(3). The
axis of joint-i expressed in based fixed frame is z; € S2. Note the COM of
the base is not the COM of the entire system.

quadrotors which connect to the end effector through light-
weight legs. The legs then connect the quadrotor via passive
spherical joints and the end effector via passive revolute joints.
The multiple aerial vehicle-based manipulator is a possible
solution for the 6D pose tracking control of an end effector,
though it may also be concluded that it needs a more complex
structure.

C. Contributions

In this paper, the trajectory tracking of the end effector in
SE(3) by a single 3D aerial manipulator is investigated. It
is well studied that differentially flat systems are input-state
feedback linearizable, and are thus controllable [28]. In order
to investigate the 6D pose tracking control problem using
aerial manipulator, in this paper we set the pose of the end
effector as the flat output. The conditions that the 6D pose of
the end effector is the flat output are derived and analyzed. It
does not need the aircraft base to be fully actuated. In order
to deal with the 6D pose trajectory tracking, the flat output
is transformed into the state. By designing the state feedback
controller, the 6D pose tracking for the end effector is thus
achieved. Considering the configuration space of the floating
base manipulator is non-Euclidean space, a hybrid controller
is designed in order to achieve almost global stability.

Overall, the main contribution of this paper can be sum-
marized as follows. 1) To the authors’ best of knowledge,
this paper proposes a new class of aerial manipulator for
6D pose task trajectory tracking for the first time. Unlike
the fully actuated aerial platform which usually needs three
linear actuation force, the proposed aerial platform needs only
two actuation force. 2) The fact that the task space of the
proposed aerial manipulator is 6D is proven from differential
flatness. 3) For the 6D pose task trajectory tracking purpose, a
control framework for the proposed class of aerial manipulator
is designed and analyzed.

This paper is organized as follows: The dynamics and the
analysis of the differential flatness of the system are presented
in Section II. In Section III, the controller for full pose
tracking in task space is designed and analyzed. In Section
IV, a numerical simulation for the proposed class of aerial
manipulator is demonstrated.

II. PROBLEM FORMULATION
A. System Modeling of Aerial Manipulator

1) Configuration, velocity and dynamics: As shown in
Fig. 1, for an aerial manipulator system composed with a
floating base and a n-joint manipulator, the configuration
of the system is denoted by ¢ = (hg,r) € SE(3) x R",
Ry po
0 1
r € R™ is the joint position. The system’s velocity is given by
¢ = (V,7) € RExR™, where V = (vg,wp) is the body velocity
of the aircraft base. The dynamic equation of the system can
thus be expressed in these notations as [1],

My(r)¢ + Cy(r, €)¢ + Gi(r, Ro) = u (D

where My (1), C¢(r, ), G¢(r, R) are the mass matrix, Coriolis
matrix, and gravity vector respectively, and u = (Fo, 79, 77-) is
the input of the system. The mass matrix M;(r) is symmetric
positive definite.

2) Passive decomposition of dynamics: The system equa-
tion (1) reveals the properties of underactuation and coupling.
In order to investigate the planning and control solution of
this system, we split the tangent space of (1) using the passive
decomposition method presented in [20] as

-tan e[ 2] 5

where hy = is the pose of the floating base,
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where 1 = (wg,7) € R3*™ bp is the linear velocity of
the center of mass (COM) of the entire system expressed
in floating base fixed frame, I represents the identity matrix,
Sp(r) € R3>*+3) §(r) € RH6)x(n+6)  Transforming the
body linear velocity ’p to spatial linear velocity p, we can thus
obtain the decoupled equation of motion (EOM) as [20],

p=v
locked system { b — % RoFy + ges

o=0fi
. T T0 | A

M(T)M+C(w)u—SEFo+{TJ =

3)
where 0 = (Rp,r) € SO(3) x R™, m is the total mass, g
is the acceleration due to gravity, e; denotes the canonical
basis vector in R®, e.g., e3 = (0,0,1)7, the operation
op = (ROTL?JOJ) represents the tangent map induced by the
left translation on SO(3) x R™. This decomposition partitions
the whole system into two subsystems: the locked system
describing the translational motion of the COM defined on
R3, and the shape system describing the rotational motion of
the whole system on SO(3) x R™. Note that in (3), p and
v are the position and velocity of COM of the entire system
expressed in Earth frame.

shape system

B. Flat Output Definition

In order to let the end effector be able to track the trajectory
in SE(3), and also to let the joint angles track the reference
trajectories, a natural selection of the flat output of the system

B } € SE(3) is the task space

is (h¢,r), where hy = 0 1



coordinate which is the pose of the end effector. However, this
choice needs the aircraft to be fully actuated. In this paper, we
consider the following flat output y; = (h¢, (ro, 73, - - ,rn))T.

Problem 1: Given the system dynamics (1) and the refer-
ence flat output y1 4 : t — y1(t) € SE(3) x R"!, design
control u such that y; — y; 4 along the trajectory defined by
(1).

Lemma 1: Given a constant z € S2, define the following
sets, Qp = {R € SO(3)|Rz # —=z}, §? = S?/(—2), and
Qr, = {R € SO(3)|R = exp(#2),0 € R}. Then there exists
a mapping f, : Qr — S? x Q R, Which is a diffeomorphism.

Proof: In the proof, first we will define smooth functions:
[ and its inverse f; !, then we will show f, is bijection.
(i) For all R € Qpg, one can define

2 = Rz “4)

And Vz, # —2z one can define a unique rotation matrix

|

where the ¥ € [0, 7] is the eigen-angle of Ry, it is defined as
the angle from z to 2

exp(9q), 2 # 2
I,z =2

= [r(R,2) S)

1
¥ =cos (1 — §Hz — %)
and the eigen-axis ¢ € S? of R; is defined by

z # 2

Z X 2

9= -
Iz % 2|’

Expanding the expression of exp(?§) we have,

I+ (zx Rz)+
_ 1 2
fRL(sz)_ m((ZXRZ)) ,Zb;éZ . (6)
I,z =2
Then we define
R, = R[R. @)
It is seen from (5)
Riz = z, = Rz. ®)

Then from (7) and (8) we have
R,z = 2. ©)]

Therefore the eigen-axis of R, is z, which means R, € {2 R,-
From (4) - (7) we have defined the smooth mapping f. : Qr >
R (2, Rp) € 5 x Qp,.

(ii) For any element (2, R,) € S2xQ R, One can calculate
R; € SO(3) from z, according to (5), then calculate R =
R;R, which is an element in . The smooth mapping f; ' :
(52 x Qr,) > (2, Ry) — R € Qg is therefore obtained.

(iii) Then we will show f, is bijection.

Consider Ry, Ry € SO(3), Ry # Ry. If R1z = Rsz, calcu-
late Ry, and Ry ; from R; and Ry according to (5), we have
RLP = R{lRl,RQJJ = R%—:ZRQ, it is seen Rl,l = RQJ, but
Ry, # Ra,, because Ry # Ry, therefore f,(R1) # f.(R2).
Else if Riz # Raz, it is obvious that f.(R1) # f.(Ra2).
Therefore f, is one-to-one.

Zx1,
q:
I'zxzll

R =exp(94)

R, =exp(02)

7, =Rz

Fig. 2. The attitude of a rigid body can be represented by the attitude of a
body-fixed axis, and the rotational motion around the body-fixed axis.

During the previous proof, it has shown that f, is onto,
since ¥(z, Rp) € (S% x Qg,), f (2, Rp) € Qp. Therefore
we can conclude that f, is bijection. This completes the proof.

|

Remark 1: The physical meaning of Lemma 1 is that the
attitude of a rigid body can be represented as the attitude of
a body-fixed axis, and a rotational angle around the axis, as
shown in Fig. 2. Considering an attitude trajectory of the rigid
body R(t) : R> 0 — Qpg. From Lemma 1, one can also obtain
the corresponding trajectory R;(t), R,(t) : R> 0 — (Qp, X
Qr, ), where Qp, C SO(3) denotes the set of R; defined in
(5). The smooth mapping f also induces the tangent mapping
fz,*R : R € TrQRr — sz(R)(SQ X QRp) = (Zb,Rp), where
2y = Rz, Rp = Rpéé, therefore we can express 0 as

0 = ((RyRp)",z) := f;(R,R) (10)
where (.,.) represents the inner product of two vectors.

Remark 2: In Lemma 1, Qp is a subset of SO(3). It should
be noticed that for R € Qs = {R € SO(3)|Rz = —z}, we
cannot define I, using Lemma 1, as R; calculated through
(5) has infinite possibilities. This singularity will not be
considered in this paper.

Proposition 1: Consider the aerial manipulation sys-
tem with configuration shown in Fig. 1 and dynam-
ics (1), suppose Rpz1 # —z1. Define variable y, =
(p, Roi,7r§,r2,73, -+ ,Tn), Where Ro; = fr,(Ro,21), r{ =
1+ ¢, and ¢ is determined from exp(¢21) = R{;Ro. Then
Q,, = {y1} is diffeomorphic to Q,, = {y2}.

Proof: It is seen that Q, and €, are both n + 5
dimensional. In order to prove this proposition, first we will
show that y, +— h; is smooth function, second we will show
that y; — p and y; — Ry are also smooth functions.

First we show the transformation from ys to y;. The attitude
of the first link of the manipulator is given by

Y

The attitude of the remaining links of the manipulator is
determined as

Ry = Ry, exp(r{z).

%
Ri:Rl Hexp(rjéj), i:2,-~- ,n.

=2

(12)



Because joint-1 locates in the COM of the base, the attitude
of the base has no effect on p, the position of the end effector
can thus be expressed as

bt = fpt(pleaRQv'” 7Rn)

Combining (11), (12), and (13), we conclude yo — hy is a
smooth function.

Then, we show the transformation from y; to ys. Given
y1, it is easy to solve hj. Therefore, p is expressed as
p = fp(h1,72,- -+ ,7y). Furthermore, from Lemma 1 we have
Roq = Riy = fr,(Ri,21), and 7§ = ((exp™ ! (R1,p))", 21).
The smooth map y; +— yo is thus achieved. Therefore the
diffeomorphism between €}, and €, is proven. u

Theorem 1: Consider the system dynamics (1), suppose
R()Zl 75 —Z1, and (p — geg) X (Rozl) 75 0. If {(T07TT)} =
R3+" and {Fy} = span(zy,2{), where zi € S? is s.t.
21 1 21, span(x) represents the space spanned by each column
of *, then y; is the flat output of the system (1).

Proof: First we prove that y, is the flat output of the
system.

For brevity, we write F; = mp, it is seen

13)

Fy = RoFy + mges (14)
where R can be expressed using Lemma 1 as
Ro = Ro, exp(¢21).
Therefore
exp(¢21)Fo = Roy" (Fy — mges). (15)

If Fy € span(zy, 2{), assuming ¢ is unbounded, then from
the flat output (R, P) we can always solve input F, along
2 and 21 as

(Fo, z1) = [(Fa — mges)" Ro121]

(Fo,21) = \/IIR&(Fd —mges)||? = [[(Fo, z0)[I*

(16)

We define R, = (21, 2" X z1,2i{), because z; = R.e; we
can rewrite the force allocation (15) as follows,

FOT,Zl
R.exp(¢é1)RTR, 0
F 21

= Ry, (Fy —mges) (17)

where exp(¢é1) = (e1, €24, €34) can be solved as,

RgRal(Fd - mgeg) - (FOT,21)61
F§ 2

and ezy = e34 x e1. Then, the attitude of the aircraft base can

be calculated as

€3¢ = JF 2 #0

Ro = Ry R, exp(¢é;)RY. (18)
The joint angle of the first joint is then solved as
rL=r1{ —¢. (19)

By now, we have shown that Ry and r; are algebraic
functions of p and Ry ;. Since Wy = Rg Ry, it is not difficult to
derive wy and 7 from §, Ro, P, Roy, and (72, -+ 7). And
since {(79,7.)} = R3*", the shape system is fully actuated,
therefore (79, 7,-) can also be derived from j, Ry, P, Ro,z, j2

Vi Py Locked
—» Transfor controller
mation ; * Fy
0ld » ' fd H
.| Transformation | ]
> e Dynamics of]

* Roa: e aerial
Shape | JI manipulator
controller

Fig. 3. Overall control strategy.

Ro,z, (o« -+ yTn), and (Fq,--- ,7,). For brevity the detailed
derivation is not presented here. The proof that y5 is the flat
output is thus finished.

Since 2,, and €, are diffeomorphic, once y, is the flat
output, y; is also the flat output. [ ]

Remark 3: {Fy} = span(z1, 2{) is possible to be realized
in physical systems. The approach includes adding tilting
actuators, or extra actuators on the aircraft base. As seen in
Theorem 1, the force acting on the aircraft body is restricted to
2D space. Therefore the aircraft platform is not a fully actuated
aerial vehicle which usually needs three independent forces,
thus is more efficient than the fully actuated aerial vehicle.

Remark 4: Another approach to contain h; € SFE(3) in
flat output space is to let {r;} = R? [29]. The proof can be
correspondingly derived. However, it is seen that this condition
is not easy to be realized in physical systems. Therefore, this
paper focuses on the aerial manipulator with conditions shown
in Theorem 1.

Remark 5: Both y; and y» contain the joint position
T9,+++ ,Tn. It is seen under the conditions in Theorem 1,
ro,--- ,T, is redundant for tracking h;. However, 7o, - , 1,
is useful for increasing the flexibility of the manipulation, e.g.,
it can increase the workspace of the end effector.

III. GLOBAL CONTROL DESIGN AND STABILITY
ANALYSIS

A. Control Strategy

Theorem 1 gives conditions for u, in order to solve Problem
1, we need to design the control law for u. To let hy — Ry 4,
one needs to express the system dynamics with respect to p;
and R,. It is seen that p, and R, are highly coupled with
the rotational part of the body dynamics, as well as the joint
position dynamics. The system dynamics with respect to Ay
thus is quite complex. To avoid the complex expressions,
the control strategy is to ensure y» — 2,4, then use the
diffeomorphism between €2, and €2, to let y; — y1,4. The
overall control strategy is shown in Fig. 3.

In order to achieve y2 — y2 4, a controller with a cascade
structure is designed. Given the smooth trajectory y2 4, Fo,q
can be calculated from the flatness of the system. The inner
loop control is to guarantee g — g 4 and 7y — 7 g, where
ry = (r¢,ra,-++ ,m,)7T, the outer loop control is to guarantee
p — pq. In this way, the controller is possible to stabilize the
entire 12 4+ 2n dimensional state.

First we write the dynamics of the shape system with respect
to r¢. Differentiate (19) and combine (10), we can obtain the



expression of r; as
i1 = 17§ — f3(Ro, Ro). (20)
Substituting (19) and (20) into (3), we can write the dy-

namics of the shape system with respect to 7 as,

M(r)pg + Cy(ry, Ro, pg)ps = 7g (1)

where 17 = (wp,7y) € R3T™ represents the velocity, and the
Coriolis part becomes:
0

£3(Ro, Ro)
0

C(ry, Ro, pug)py = C(r, p)p — M(r)

B. Definition of the Tracking Error for Shape System

The configuration space of the shape system is SO(3) x R™
which is a non-Euclidean space [30]. In order to achieve
almost global control at SO(3) x R", considering the topo-
logical structure of the manifold SO(3), we use exponential
coordinate to represent the attitude, and with the help of hybrid
system theory, we construct the hybrid formulation of the
dynamics. The reason why to use such a structure is that the
expression physically reveals the geometric properties of the
error on SO(3). The property can be seen in Lemma 1 in [31].

We rewrite the equation of rotational motion of a rigid body
with inertia tensor I,, € R3*3 in a hybrid form as,

€ = Jal)w
o { b= T (-l o G@IESe o
| §+:£__27T”%” » (Gw)eSp
w+ =w
with flow set S¢ and jump set Sp,
So={Ew el =r (&) >0} 5

So ={(§w): (§;w) ¢ Sp}
where £ is the exponential coordinates of R, and is restricted
inabal B, ={¢€R3: |[¢]| <rnm<a<2r}
Based on (22), the tracking error EOM of the shape system
with respect to 7y can be expressed as,

{ '3’@ = J('ye)uf,e . .
fife = P(TE, thf e, Yes Ro,as Ro,a, Ro,a
{ e =60 - ry)

Bhe= (70 7re)

) 7(7@7Mf,e) S SC

) (’Yea,ufe) € Sp

(24)
where &, is the attitude tracking error calculated from
exp(&) = R({dRo = Ro.e» Ve = (&,7¢.e) is the represen-
tation of configuration error, pre = (we,7f,e) is the velocity
Ja(€e) 0

0 I,

Considering in real-time systems, there are always noises,
which may make the hybrid system chatter frequently. There-
fore the definition of the set of &, is modified to,

Qe, = {& €R®: ||| < 7+ 0} 1= Brys

where § is a small positive constant to prevent frequent jump
due to the noises. Sp for &, is then revised to,

Sp = {ge € B‘IT+5 : ngH =7+, <W€v§e> > 0} .

tracking error, J(v.) =

(25)

(26)

C. Global Tracking Control of Shape System

Assumption 1: For every j = 1,--- ,n, the joint velocity
7; is bounded, and the Jacobian matrix J;(r) expressed in
aircraft base fixed frame is smooth function with respect to r.

Lemma 2: The eigenvalue of M (r) is bounded under As-
sumption 1.

Proof: The mass matrix M;(r) can be expressed as
My(r) = (moJdodvo + JoIrodwo) + Yi—y(m 5T +
JEjORjIT,jORjTij), where J,; and J,; represent the trans-
lational and rotational Jacobian matrix of link-j. If .J,; and
Jw; are smooth function of r and 7 is bounded, then Mtyl-j =
%7‘ is also bounded, where M, ;; is the (4,7) element
of M;(r). Similarly, we can also obtain that each element of
Sg(r) is bounded. This implies that ||M]|; is bounded. From
the equivalence of 1-norm and 2-norm, we can conclude the
boundedness of || M ||, which implies that (M) is bounded.

|

We denote A, (.) and Ajz(.) the min and max eigenvalue
function of a matrix. By defining the tracking error dynamics,
the global tracking control of shape system is the same to the
stabilization control of (24) at (v, tr.) = (0,0). For this
purpose, we design the following control law,

TE=— k’y'Ye - kuﬂf,e + C’fﬂf_
M Wo exp(—&e)wo,da — exp(—Ee)wo,d 27
Tt
where k. and k,, are positive constants s.t.
1 :
ku > 5Au (M). (28)

Theorem 2: Consider the tracking error system expressed
by (24), the control input 7 is given by (27), suppose the
positive definite constants k., k,, s.t. (28). Then the equilib-
rium point (7e, ftr..) = (0,0) is the only equilibrium point,
and it is exponentially stable (ES) on (B4 s x R") x R3t™,

Proof: Substituting the control law (27) into (24) obtains
the following closed loop equation for the shape system,

Ye = J('Ye)/‘f,e

. 29
Mﬂf,e = _k'y')/e - 29)

Kppig,e

" Since the attitude error is defined in a compact set, J(7.)

is always non-singular, therefore J(ve)ufe = 0,—kyve —
kupg.e = 0 has only one solution (v, itf,e) = (0,0).

Consider the following Lyapunov candidate with a positive
constant c,

1 1
V= §<Nf,ea leff,e> + §k7<"/8176> + C<’}/e, ,Uff,e>' (30)

In order to investigate the positive definite property of
V, construct the positive definite matrix candidate W; =
1 1

5k < 1k _c
2.7 2 and Wy = | 277 2 , The
S (M) } ? —5  3Am(M) }
boundedness of V' can be expressed as,
eSTWges <V < elees 31

T
where e; = (|||l ||,Uf,e||) .



The stability analysis is finished in two steps. First, we dif-
ferentiate (30) to investigate V in S¢. Because (£, &) = (w, &),
we have,

V= <Nf,e7Mﬂf,e> + <k'y'Ye7"Ye> + <C;Yenuf,8>+

. 1 .
<C'Yea ,Uf,e> +§<,uf,ea M.uf,e>

= — ({cYe, M kyye) + (cYe, M kppige)) +

1 .
- <<Mf,e> Eupige) — (eI (Ye)tfe, thf.e) — S {Hse, Muf,e>) .
)

3
We also construct a matrix Ws,

ck, ck,
A (M) 2N (M)
W3 = cky

(0 P Cfgleag 17 (ve)ll2 — %)\IVI(M)

Then we have '
V < —efWsey. (33)

If ¢ satisfies

X2 M)k, (K = 320 (AT))
X (M) a1 () la+ £ Ans ()RE [

(34)
and let k,,k, s.t. (28), theq W1, Ws, W3 are all positive
definite matrix. Then V and V satisfy

V>0, V<O0.

c¢<min { koA (M)

(35)

In order to show the equnential stability, define @ =

;AWIE‘S/V?)), it can be found that V' during the flow map further

satisfies

V < —aV. (36)

The second step is to investigate the flow of V' during the
jump map. From the definition of Sp in (24) we have,

1 1
VvtV = 5kv<7377§> — 3k 0ve )+

(37
AN R C T
Considering the jump conditions, it is concluded
vVt <V~ (38)

is always found for any jump of (e, ftf,e)-

Combining (35), (36), (38), from the stability of hybrid sys-
tems [32], the ES of the system (22) on (B, 15 x R?) x R3*"
is achieved. u

Remark 6: Considering the properties of exponential map,
the ES at (ve,ire) = (0,0) is the same as the global
exponential stability (GES) of (Ro.c, T f,e, tbf,e) = (I,0,0) on
(SO(3) x R™) x R3*™,

D. Tracking Control of End Effector

In order to let yo — y2 4, we design the locked controller
to ensure p — py. For this purpose, design the control law for
Fy

Fy = m(—kre; + pa), (39)

where ¢; = [pL, pI17, p. = p—pa, and ky = (k, k,,) € R3*6
is composed of positive definite diagonal matrix k, and k.

Theorem 3: Consider the system dynamics (1), given
smooth reference trajectory yo ¢ = (pd, Ro,1,4,7f,4), the con-
trol law is designed from (27) and (39), Ry q is transformed
from (Ro .4, Fq) using (18), Fy and Ry q satisfies Rg 421 #
—z1 and (Fd — mgeg) X (Ro’dzl) 75 0. Then Y2 — Y2.d
asymptotically.

Proof: By considering the tracking error Ry, the position
tracking error dynamics of the COM can be expressed as,

F
ézz[g é]el+[?}(£—ﬁd)+{£p}. (40)

Once Ry — Ry 4 exponentially, the boundedness of A, can
be proven [31]. Then system (40) is stable at e; = 0. From the
stability of the system in cascade, it is shown p — pgq, Ry —
Ry 4,75 — ryq asymptotically for the entire system. [ ]

Remark 7: Because €, is diffeomorphic to €2,,. From the
fact that y» — y2 ¢ asymptotically, we can also conclude that
Y1 — 1,4 asymptotically. Problem 1 is therefore solved. This
controller is stable except at (Fy —mges) X (Ro 42z1) =0, or
Rozl = —Z21.

Remark 8: Theorem 3 does not consider the external per-
turbations. However, it can be proven that for bounded regular
perturbations, the tracking error of the closed loop system can
be kept in an invariant set containing origin [33]. Moreover,
there are some methodologies which enable us to add adaptive
control law on (27) and (39) to force the tracking error to
converge to origin at the presence of bounded perturbations
[31], [34]. The details are not discussed here due to the fact
that it is not the focus of this paper.

IV. NUMERICAL EXAMPLE

In the simulation, an aerial manipulator system with a two-
joint manipulator is adopted as an example. The inertial tensors
of the system are

I, o = diag(0.0294853,0.0636259, 0.0809362)
I, 1 = diag(0.00001992, 0.00022247, 0.0002224)
I, » = diag(0.00001868, 0.00040523,0.00041661)
with unit of kg - m3. The force F, is on the plane

span(eqg, —e3). The joint axes are all set to es. In the sim-
ulation, the system’s initial configuration is given by

1
1 oo
1= 0
0 1

,[~0.5,0.5]

The desired pose of the end effector is given by p; g =
(2cos(v/2t) — 2,2sin(v/2t),t). which is a screw-like tra-
jectory. The desired attitude of the end effector is R, q =
exp ((v2t + 7)a), where a = (0,0.5,1)T/§. The desired
position of the second joint is 73 4 = 0.2 rad.

Equation (1) is adopted as the plant EOM in the simulation.
In order to test the robustness of the controller, the following
factors are added in the simulation.

1) 20% uncertainties are added to the inertial parameters
used in the controller.
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Fig. 4. The 3D snapshots from 5 s to 6 s. The cyan, green, and blue color
line represent Roe1, Rpez2, and Rpes respectively. The red and black line
represent link-1 and link-2 of the manipulator.

2) Random external disturbances with maximum absolute
value of d,,, = (2,2,2,0.2,0.2,0.2,0.1,0.1)T is added on Fj
and 79, with units in SI.

3) The following first-order plus delay system is added
between the output of the controller and the input of the plant,

— #e—o.oows.

14 0.041s

In the global controller, we use the method presented in [31]
to calculate &, from Ry .. Simulation results of this example
are presented in Figs. 4-9. The results show that the end
effector tracks the 6D pose trajectory well. From Figs. 7-8,
it is seen that the position and attitude of the end effector can
be tracked separately, which cannot be realized in a general
quadrotor-based aerial manipulator. The two elements of Fj
are shown in Fig. 9. In this example, (Fp,es) is still the
primary force, as there should exists force which is needed
to compensate for the gravity. Because of big initial tracking
error, (Fy, es) is also big at initial stage. Figure 8 shows the
evolution of the attitude error of the end effector. The attitude
error is stabilized from biggest value. It is noted that because
of the complex uncertainties, the attitude error is actually
bounded, e.g., it converges to a small set containing origin but
not zero. This numerical example demonstrates the theoretical
analysis.

G(s)

V. CONCLUSIONS

This paper has investigated the dynamics and control of
a class of aerial manipulator for the purpose of 6D pose
trajectory of the end effector. The differential flatness of the
system has been analyzed. The conditions of the system with
the proposed flat output have been obtained. It has been shown
that it requires the aircraft platform to have a 2D actuation
force. Although such a class of aircraft platform differs from
the traditional under-actuated aerial vehicle. It is believed that
the proposed kind of aircraft is still more efficient than the
fully actuated aerial vehicle. A cascade structure controller has
been designed. It has been proven that this controller archives
independent 6D pose trajectory tracking for the end effector. It
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Fig. 5. Tracking profile of r;. Dot-dashed line represents 7 4.
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Fig. 7. Tracking profile of the end effector position.

has also been shown that the proposed controller can stabilize
all the states of the system, thus no unstable internal dynamics
is induced. The proposed work provides a control framework
for possible advanced tasks using aerial manipulators.

Future work can be conducted in several directions. First,
real time implementation of the proposed aerial manipulator
on a physical prototype is of interests. This will be a work in
the area of mechatronics. Second, the trajectory planning and
the force control using the proposed aerial manipulator can be
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Fig. 9. The force acting on the aircraft base.

further investigated.
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