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22 Abstract

23 1. Testing the extent to which traits act alone or in combination with other traits to influence 

24 responses to fire informs the trade-off between increased generalisation using single-traits 

25 and increased predictive power using interactions. We asked: do four traits (body size, 

26 trophic group, dispersal ability and stratum of the ecosystem), alone, or in combination best 

27 explain changes in beetle occurrence with time since fire?

28 2. Our data from four years and 15 independent fires in southern Australia were analysed 

29 using generalised linear mixed models (GLMM). We also assessed whether detectability 

30 depends on time since fire using multi-year detection models because detectability has 

31 potential to confound occurrence patterns.

32 3. The best model included the three-way combination of size, flight and trophic level 

33 interacting with time since fire and with year.  The relationship of detectability with time 

34 since fire was similar to the occurrence relationship in six of the ten trait-combination groups, 

35 with flightless species generally showing reduced detection probability as time-since-fire 

36 increased.  Detectability did not confound occurrence responses for four trait groups, with 

37 three increasing with time since fire while one decreased.

38 4. Generalisation using main effects of traits risks oversimplifying animal responses to fire 

39 because combinations of traits influence the direction and magnitude of the response.  Also, 

40 taking detectability into account is critical to correctly interpret occupancy data. Three-way 

41 trait combinations that differ by just one trait, particularly dispersal ability, can result in either 

42 negligible effects of disturbance on detectability, or strong effects that influence observed 

43 occurrence.

44

45 Keywords. functional groups, detectability, dispersal ability, body size, trophic group, trait 

46 syndrome
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47 Introduction

48 Fire is a common disturbance in ecosystems around the world, and our understanding of how 

49 species respond to fire has been substantially advanced by applying a functional-trait 

50 approach (Syphard et al., 2013). Functional traits, which here refer to any characteristic that 

51 is genealisable across species and reflects variation in fitness or ecological function, offer a 

52 potentially valuable framework for understanding the responses of wildlife to fire (Kearney & 

53 Porter, 2009; McGill et al., 2006). For plants, the functional-trait approach has substantially 

54 advanced our ability to predict plant community composition given a particular fire regime 

55 (Keith, 2012; Pausas & Bradstock, 2007; Syphard et al., 2013).  Traits that predict fire 

56 responses for fauna are proving more elusive (Blaum et al., 2011; Moretti et al., 2013).  Work 

57 on beetles (Driscoll et al., 2010a), cockroaches (Arnold et al., 2017), spiders (Langlands et 

58 al., 2011), reptiles (Driscoll et al., 2012; Smith et al., 2013) and frogs (Westgate et al., 2012) 

59 found little evidence that traits were reliably associated with particular responses to fire.  

60 Based on reptile habitat use, Nimmo et al. (2012) predicted fire responses in nine of 17 

61 species, but most of these were not consistent across regions.  A general framework for using 

62 animal traits to predict responses to fire is emerging (Fountain-Jones et al., 2015; Fountain-

63 Jones et al., 2017; Koltz et al., 2018; Pausas & Parr, 2018; Smith, 2018; van Mantgem et al., 

64 2015) but is yet to provide predictive power across animal communities (Driscoll et al., 

65 2010b).

66

67 To hasten development of a predictive framework for fire ecology, research is needed that 

68 examines links between traits and the fire response of animals (Moretti et al., 2013).  There 

69 are grounds to expect that trophic level, body size, dispersal capacity and habitat stratum are 

70 expected to be useful traits to explore beetle responses to disturbance and there will influence 

71 how animals respond to major ecosystem changes caused by fire.  Trophic group can 
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72 influence animal responses to fire but the patterns are inconsistent. For example, herbivorous 

73 arthropods had high species richness and abundance shortly after fire in Mediterranean-type 

74 ecosystems (Kaynas & Gurkan, 2008; Parmenter et al., 2011; Pausas et al., 2018), but in a 

75 high rainfall ecosystem, herbivorous beetles were least common shortly after fire (Sasal et al., 

76 2015).  Increasing, decreasing, and no response to time since fire have all been reported for 

77 predatory arthropods (Bargmann et al., 2016; Parmenter et al., 2011; Sasal et al., 2015).  It is 

78 possible that predatory beetles have muted responses to disturbance compared with 

79 herbivores because predators tend to be generalist feeders (Wang et al., 2018).  Scavengers 

80 feeding on dead plant or animal material have shown no response to fire severity (Menz et al., 

81 2016; Sasal et al., 2015), had highest abundance shortly after fire when predator numbers 

82 were low (Hanula & Wade, 2003), or can increase with time since fire as dead wood 

83 accumulates (Moretti & Legg, 2009).

84

85 Disturbance may be more likely to disadvantage large-sized species because they can have 

86 small population sizes and lower reproductive rates (Brown, 1971), whereas small species 

87 with fast life histories can rapidly recover after disturbance (Koltz et al., 2018; Romiguier et 

88 al., 2014).  However, other mechanisms related to size have been reported. For example, cool 

89 temperatures in late successional habitat (Roe et al., 2017) might favour large body sizes 

90 (Horne et al., 2018).  Further, the type of disturbance interacts with size and taxonomic 

91 group, so large species are not always the most vulnerable to disturbance-driven declines 

92 (McKinney, 1997; Pedley & Dolman, 2014).  Indeed, empirical research on insects suggests 

93 that smaller species may increase as succession proceeds because these are better able to 

94 move through structurally complex habitats (Chown & Gaston, 2010), they are poorer 

95 colonisers than large species and are less able to survive dry conditions shortly after fire 

96 (Buckingham et al., 2019; Love & Cane, 2016).
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97

98 Behavioural traits are expected to have an important influence on animal responses to fire, 

99 including dispersal ability and the stratum of the environment in which the animal lives 

100 (Driscoll & Weir, 2005; Koltz et al., 2018; Love & Cane, 2016; Pausas & Parr, 2018; Smith 

101 et al., 2014).  Recovery after fire may depend on high dispersal, enabling escape from fire 

102 (Swengel, 2001) and subsequent rapid colonisation (Altermatt et al., 2011; Banks et al., 2011; 

103 Hutchinson, 1951; Pedley & Dolman, 2014; Tilman, 1988). Species that are common shortly 

104 after disturbance are often good dispersers (Moretti et al., 2004; Ribera et al., 2001), whereas 

105 poor dispersers become more common as time after the disturbance elapses (Buddle et al., 

106 2006; Holliday, 1991).  Through micro-habitat specialisation, some species will be more 

107 vulnerable to certain disturbances than others (Martin & Possingham, 2005; Swengel, 2001).  

108 Species that live in the stratum of the environment that is most impacted by disturbance 

109 should be most at risk of decline (Kelly et al., 2010; Moretti et al., 2006; Orgeas & Andersen, 

110 2001). For example, soil macrofauna in deep soil layers had better survival after fire than 

111 surface-dwelling species (Gongalsky & Persson, 2013), while beetles living underground 

112 were more vulnerable to agriculture than those able to use the canopy or on the ground 

113 (Driscoll & Weir, 2005).

114

115 Although traits like trophic group, size, dispersal and stratum can act independently, traits can 

116 also interact with one another (Driscoll & Weir, 2005). For example, Laughlin et al. (2017) 

117 and Hammill et al. (2016) predicted plant species distributions and fire responses, 

118 respectively, from combinations of three traits. Flying carnivorous arthropods were 

119 associated with recent fires while small arthropods feeding on dead wood were associated 

120 with unburnt sites (Moretti & Legg, 2009). Although greater predictive power may be 

121 obtained by considering interactions of traits, there is a trade-off in the breadth of 
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122 generalisation.  The extent to which multiple traits must be combined to explain animal 

123 responses to disturbance helps to define the limitations to generalisation.

124

125 In this study we used a four-year beetle data set from fire-prone woodlands in southern 

126 Australia to ask: what level of trait complexity best explains how beetle occurrence is 

127 influenced by time since fire, considering size, flight ability, trophic level, habitat stratum and 

128 their interactions? Given the range of reported insect responses to fire, we expect higher level 

129 interactions will best explain fire response.  However, the diversity of responses mean it is 

130 not possible to meaningfully predict how combinations of traits might respond to time since 

131 fire; hypotheses would be arbitrary and misrepresent the state of knowledge.  Because we 

132 used passive traps to survey beetles there was a risk that detectability might confound 

133 occurrence patterns if detectability was also affected by time since fire (Guillera-Arroita, 

134 2017; MacKenzie et al., 2002; Melbourne, 1999; Parmenter et al., 2011). We therefore also 

135 investigated if detectability of trait groups changed with time since fire.

136

137

138 Materials and Methods

139 Study region and survey design

140 The study region on South Australia's Eyre Peninsula consists of mallee woodland dominated 

141 by multi-stemmed Eucalyptus species and an understory of shrubs and spinifex (Triodia 

142 irritans) (Driscoll & Henderson, 2008; Driscoll et al., 2012).  Annual rainfall is within the 

143 range 300-400mm.  Parabolic and longitudinal sand dunes overlie a limestone-calcrete base 

144 across a relatively flat landscape (Twidale & Campbell, 1985).
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145 We sampled beetles from 23 transect and seven grid sites across four conservation reserves 

146 (Fig. 1).  Transect sites consisted of 11 pairs of 20 litre pitfall traps, each pair connected by a 

147 20m drift fence.  Trap pairs were spaced along the 400 m transect at 40 m intervals.  Grid 

148 sites included a 5 x 10 arrangement of individual 20 litre pitfall traps, each with a 10 m drift 

149 fence, with traps spaced at 25 m intervals.  Pitfalls were also used to trap vertebrates (Driscoll 

150 & Henderson, 2008; Driscoll et al., 2012) but this is unlikely to have substantially influenced 

151 the beetles in the dataset. Our observations were that beetles were often present in traps with 

152 vertebrates suggesting limited predation, whereas spider remains were sometimes observed 

153 when dasyurids (small predatory mammals) were trapped. The grids and transects were 

154 placed in 15 areas that were burnt by different fires in five different locations (Appendix S1, 

155 Fig. 1).  Six transects were burnt during the study and therefore had two different times since 

156 fire in the data (Appendix S1). Five of the grids straddled the edge of a burn for part or all of 

157 the study, and when this was the case, each half was analysed as a separate site with different 

158 times since fire (Appendix S1).  The proximity of burnt halves to each other was 

159 accommodated in analysis using random effects.

160 We surveyed beetles over four consecutive summers from December 2004–February 2005 

161 (referred to as 2004) to December 2007–February 2008 (2007). In each summer, we 

162 conducted three six-night sampling periods approximately monthly, except in the second 

163 summer when we sampled in two periods (December and February).  Sites were sampled for 

164 an average of 15.4 (SD = 4.0) nights per year and we accommodated unequal sampling in the 

165 analyses (see below).  Data from February 2006 at Pinkawillinie were excluded from year 

166 two due to a fire in December 2005 which changed the time since fire during the sampling 

167 year. Post-fire data from Hincks in December 2006 were excluded because inflated capture 

168 rates immediately after fire give a misleading impression of high abundance (Driscoll et al., 

169 2012).  After the fire, which occurred a few days before trapping began, invertebrates were 
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170 very active across the ground, presumably as animals seek new shelter. The pitfalls may have 

171 acted as an attractive shelter, leading to inflated counts. To avoid adding this additional 

172 source of variation into the models, we excluded this month of data.

173 Beetles were identified to species or morphospecies level using a photographic guide to 

174 common beetles that we prepared based on initial trapping, alongside a field-box of pinned 

175 specimens.  Species that were unambiguously identified were marked with a paint spot on the 

176 ventral surface and released 5-10 m from the point of capture. Recaptured animals were 

177 excluded from the data. Individuals that could not be identified in the field were assigned a 

178 morpho-species name, and were preserved for later identification at the South Australian 

179 Museum (Eric Matthews), or CSIRO Entomology (Tom Weir, Rolf Oberprieler). Beetles 

180 below 6 mm in length could not be reliably collected from 20 litre pitfall traps in a time-

181 efficient manner and were excluded from analysis, and we excluded species with fewer than 

182 five records as they were inadequate for analysis.  We refer to species and morphospecies as 

183 species throughout.

184

185 Traits and generalised linear mixed models

186 Four trait groups were used, flight (winged; not winged), size (big: range = 19-58mm, mean 

187 = 32.2mm, SD = 11.4 mm; small: range = 6-15 mm, mean = 10.9 mm, SD = 2.9 mm), trophic 

188 group (herbivore, carnivore, scavenger), and vegetation stratum position of adults (on ground, 

189 above ground, below ground, concealed (under bark or rocks)) (Driscoll & Weir, 2005). 

190 Trophic group was allocated based on expert knowledge (Tom Weir, CSIRO) of the family, 

191 or where there were sub-family differences, the tribe level of classification was used. 

192 Similarly, position was based on Tom Weir's expert opinion based on a lifetime studying 

193 beetles.  We acknowledge that our 'small' category does not include very small beetles 
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194 (<6mm), because these were not collected. Beetle sizes were based on measurement of one to 

195 five pinned specimens from our study. The break between big and small beetles coincided 

196 with the observed gap in lengths between 15 and 19 mm.  These traits were selected because 

197 they are expected to be influential (Fountain-Jones et al., 2015) and the information was 

198 available.

199 To consider interactions between traits, factors representing all of the existing combinations 

200 of two or more traits were created.  This approach was taken to avoid complete separation 

201 which occurred because some groups were empty. For example, there were no flying-

202 concealed species so the interaction of flight with trophic-group main effects would have 

203 empty cells in the analysis. We created these trait-combination groups for all pairwise 

204 interactions of traits (6 possible 2-way combinations of the four traits) and all three-way 

205 interactions (4 combinations) (Appendix S2).  The four trait combination, the four-trait 

206 combination in interaction with year, and the interaction of size-position-trophic level with 

207 year could not be modelled effectively due to data limitations. Another consequence of some 

208 groups being empty for trait combinations was that most of the variation for one trait, 

209 position for example, would be taken up in a flight-position combination, with no extra 

210 variation to be explained by position in the trophic-position combination, leaving the model 

211 rank deficient.  It was not possible to estimate effects for rank-deficient models.  Therefore, 

212 we limited models to just a single "main" effect, where the "main" effect was one of the trait 

213 groups, or one of the two-way, or three-way combinations.  For example, we did not fit more 

214 than one two-way interaction in a model.  Because we defined trait combinations in this way, 

215 we used categorical classification of all traits rather than continuous variables.

216 We analysed the trait groups using generalised linear mixed models with a binomial 

217 distribution of errors and a logit-link function (Bolker et al., 2009) because these led to model 

218 residuals that were not over-dispersed and our data were binomial samples.  The response 
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219 variable was the number of weekly trap sessions in which a species was detected at a site 

220 within year (the 'successes' in the binomial response), with the 'failures' in the binomial 

221 response being the total number of weekly surveys in that year minus the number in which 

222 the species was observed.  This approach accounted for unequal sample effort among sites.

223 All models included three random effects: species-name, which accounted for clustering of 

224 responses within species; burn, which accounted for sites that were spatially grouped within 

225 the same fire event, and; site, which accounted for repeated measures of each site.  Grids that 

226 straddled the edge of a burn were given the same site name for this random effect, accounting 

227 for their spatial proximity.  The site random effect also accommodates any differences 

228 between grid and transect trap arrangements.  Phylogeny can impose non-random variation 

229 among species, but can be accommodated by fitting higher taxonomic levels as random 

230 effects in mixed models (Martinson & Raupp, 2013).  However, when we fitted genus nested 

231 in family as a random effect in the best model, no additional variation was accounted for 

232 (variance Family = 0, genus/family = 8 × 10-9) so this was omitted from analysis.

233 Our baseline model included location (a five-level factor), year (a four-level factor), and the 

234 continuous variable time since fire (TSF), which was standardised and centred for analysis.  

235 Exploratory data analysis revealed no convincing hump-shaped relationships between TSF 

236 and beetle occurrence, so polynomial versions of TSF were not used (Smith et al., 2013). A 

237 second model included an interaction between year and TSF.  To evaluate trait effects, we 

238 fitted each of the traits or trait-combinations in interaction with TSF, or in interaction with 

239 TSF and year giving 28 additional models (Appendix S2).

240 The models were ranked using Akaike Information Criteria adjusted for small sample size 

241 (AICc) (Burnham & Anderson, 2002). Where year interacted with trait groups, post-hoc 
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242 testing was used to compare among years within group using the least squares means 

243 methods with Tukey adjustment of P values (Lenth, 2019).

244 Analyses were completed in R 3.5.0 (R Core Team, 2018) using libraries lme4 (mixed 

245 models) (Bates et al., 2012); car (Anova function to provide P values for fixed effects in 

246 models) (Fox & Weisberg, 2011); effects (obtaining predicted values) (Fox, 2003); 

247 AICcmodavg (AICc calculation) (Mazerolle, 2012), and; emmeans (pairwise comparisons) 

248 (Lenth, 2019).

249

250 Probability of Detection

251 Detectability rates for trait groups might vary with time since fire which could confound 

252 interpretation of occurrence models.  Data limitations prevented us from including 

253 detectability in the occurrence models, so we examined detectability separately and 

254 conducted a post-hoc examination of detectability and occurrence, with the latter analysed 

255 using GLMM described above. When the response of detectability to time since fire was in 

256 the same direction as occurrence, we inferred that the occurrence pattern could in part be 

257 caused by variation in detectability.

258

259 Because we use four years of data, we fitted extinction-colonisation models (MacKenzie et 

260 al., 2003) with the colext function in the unmarked R package (Fiske et al., 2011). This model 

261 estimates parameters for extinction, colonisation, detection, and occupancy.  Our data set was 

262 inadequate to examine covariates for all of these parameters.  Our focus was on considering 

263 the relationship of detectability with TSF and month, where month represented the three 

264 sampling periods per year; December, January and February, the three summer months. 
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265 These two covariates were therefore only applied to the detection parameter to discover if 

266 detection of each trait group (levels of combinations of traits identified in the best mixed 

267 model) depended on time since fire or month. For each trait group, the response variable was 

268 occurrence at each site in each of the trapping weeks in each year, where occurrence was 

269 combined across the species that were in the trait group. We used the significance level of the 

270 model parameter estimate (P < 0.05) as the limit to which relationships between the response 

271 and TSF or month were plotted.  For each response we also fitted a null model with no 

272 predictor variables for comparison, using AIC, with models that included TSF and month as 

273 predictors of detectability.  

274

275 Results

276 We captured 10061 beetles from 161 species. Forty-six species had five or more records and 

277 had all four traits known – these were used in the analysis (total of 9623 beetles, years 2004-7 

278 had 2454, 1453, 2525, and 3191 individuals respectively) (Appendix S3).  All 46 species 

279 were identified to genus, but 13 of the species were not yet described and were given a 

280 morphospecies number.

281

282 In the single best model to explain beetle occurrence, the three-way combination of size, 

283 flight and trophic level interacted with time since fire and with year, but there was not a 

284 significant three-way interaction of time-since-fire, year and size-flight-trophic level (Table 

285 1, Appendix S4). In general there were strong negative effects of time since fire on 

286 herbivores, with the exception of small flying herbivores that had a positive relationship with 

287 time since fire (Fig. 2 a-d).  Occurrence of big flying scavengers and small flightless 

288 scavengers also increased with time since fire (Fig. 2 e, h).  The remaining two scavenger 

289 groups and carnivores showed weak declines with time since fire (Fig. 2 f, g, i, j).
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290

291 The probability of occurrence of size-flight-trophic trait groups also varied among years, with 

292 no systematic trends evident across trait groups (Appendix S5).

293

294 Detection

295 Detection declined significantly with time since fire for big flightless herbivores, small 

296 flightless herbivores and small flightless carnivores (Fig. 3 c, d, j), the same trends observed 

297 for occurrence (Fig. 2). Small flying scavengers, big flightless scavengers, and big flightless 

298 carnivores had weak trends in detection with time since fire (Fig. 3 f, g, i) but these were 

299 similar to their weak occurrence response to time-since-fire (Fig. 2). In contrast with trait 

300 groups where detection could explain occurrence patterns, big and small flying herbivores, 

301 big flying scavengers and small flightless scavengers had very weak effects of detection 

302 covariates (Fig. 3 a, b, e, h) but relatively strong occurrence responses (Fig. 2).  All but two 

303 of the trait groups had a significant positive effect of month on detection, with detection 

304 being highest in the last month of summer in all cases (Fig. 3).

305

306 Discussion

307 When we tested the importance of single traits, two-way combinations and three-way 

308 combinations of traits, we found the three-way combination of traits best explained the 

309 occurrence of beetles across a time-since-fire gradient. Thus relatively fine-grained resolution 

310 of species characteristics are needed to describe beetle responses to fire. Needing multiple-

311 trait combinations to define fire responses places substantial constraints on how to further test 

312 and refine generalisations about animal responses to fire. Beetles are particularly speciose 

313 (Stork, 2018), but with our dataset of approximately 10,000 records, we had between one and 

314 ten species in each trait group (Fig. 1) and could not examine more than three traits at once. 
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315 Very large data sets for taxonomic groups with many species will be needed to further test the 

316 links between trait-group combinations and animal responses to fire, making arthropods 

317 particularly useful in this respect (Brousseau et al., 2018; Fountain-Jones et al., 2015; Stork, 

318 2018).  Some of our trait groups had few species in them, so could represent the response of 

319 individual species rather than the general response for beetles with those trait combinations, 

320 emphasising the need for very large sample sizes for identifying general trends.

321

322 Trait combinations that included being flightless generally showed reduced detection 

323 probability with time-since-fire, suggesting detection changes may reflect important 

324 ecological processes.  Reduced detection of flightless beetles as time since fire increases 

325 probably reflects highest activity shortly after fire. For example, in Canada, highest activity 

326 was observed after fire in the flightless beetle Calosoma frigidum, which may relate to 

327 increased hunting opportunities for these large predators (Jacobs et al., 2011).  Reduced 

328 detection with increasing time since fire may also relate to movement behaviour in different 

329 vegetation types. Movement can be physically impeded as time since fire and structural 

330 complexity increase (Chown & Gaston, 2010; Goodwin & Fahrig, 2002); the vegetation 

331 clutter hypothesis (Kaynas & Gurkan, 2008; Rainho et al., 2010).  Leaf-litter and structural 

332 complexity increase with time since fire in mallee (Haslem et al., 2011), which can inhibit 

333 animal movement (Smith et al., 2016).  There is also substantial turnover in plant species 

334 (Gosper et al., 2012) and invertebrate composition (Teasdale et al., 2013) in the decades after 

335 fire, which may alter non-consumptive effects on potential prey species (Buchanan et al., 

336 2017) and food availability (Smith, 2018), hence changing movement patterns and 

337 detectability.

338
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339 In addition to revealing ecological processes, detection differences across a time since 

340 disturbance gradient has important implications for researchers studying disturbance.  The 

341 responses of big flying and big flightless herbivores provide a particularly stark warning. 

342 Without considering detection, these groups have similar occurrence responses. However, the 

343 response of big flightless herbivores could be entirely due to differences in detection, while 

344 big flying herbivores have an actual change in occupancy. We reiterate that considering how 

345 detection may confound observed disturbance effects is important for understanding how 

346 species respond to disturbance (Driscoll et al., 2012; MacKenzie et al., 2003).

347

348 Four trait-combinations had occupancy responses to time since fire that were not confounded 

349 by detection. The trait-combinations represented all three positive responses to time since fire 

350 (small flying herbivores, big flying scavengers, small flightless scavengers) and one negative 

351 response (big flying herbivores).  Changes in occurrence could be directly related to changes 

352 in resources. For example, most of the scavengers were Tenebrionids, consuming dead plant 

353 material. The plant material in the litter layer changes with time since fire, with increasing 

354 depth, more bark, sticks and fewer leaves (Haslem et al., 2011; Travers & Eldridge, 2012). 

355 These changes in litter structure and composition may influence rates of population increase 

356 among different trait groups of scavengers at different times since fire. This type of response 

357 has been observed in other systems for an example of size effects in detritivores see: 

358 (Buckingham et al., 2015), and for an example of detritivore traits responding to time since 

359 disturbance see (Fountain-Jones et al., 2017)).

360

361 Occupancy can also be influenced by movement (Nathan et al., 2008; Pavlacky et al., 2012) 

362 which is affected by size and flying ability (De Bie et al., 2012; Doherty & Driscoll, 2018), 

363 and could interact with time since fire.  For example, flying species can be most abundant 

Page 15 of 52 Ecological Entomology



For Review Only

16

364 shortly after fire because they are rapid colonisers (Moretti et al., 2004; Podgaiski et al., 

365 2018; Ribera et al., 2001).  However, flight also offers the choice to move to preferred habitat 

366 (De Bie et al., 2012), and different species prefer different times-since-fire.  The capacity of a 

367 species to choose preferred habitat could depend on body size, because large species can 

368 disperse larger distances than small species with the same mode of locomotion (Jenkins et al., 

369 2007).  Conceivably, large flying beetles are able to choose their habitat at the scale of 

370 multiple fires, over kilometres (Chiari et al., 2013; Rink & Sinsch, 2007).  In our study, if 

371 large beetles are flying to choose preferred habitat, the particular time since fire they choose 

372 depends on trophic group, with scavengers preferring later times since fire, and herbivores 

373 preferring short times since fire.

374

375 With multiple traits combining to determine how beetles respond to time since fire, our 

376 results emphasise that it is probably too optimistic to expect that single ecological 

377 mechanisms linked to individual traits will have very useful predictive power.  For example, 

378 it is possible to predict that species with better dispersal are likely to be faster colonisers and 

379 therefore be more likely to use recently or frequently disturbed habitats (e.g. Pedley & 

380 Dolman, 2014; Simons et al., 2016).  However, our results suggest that single mechanisms 

381 must be conditioned by competing mechanisms linked to other traits including trophic group, 

382 which influences the resources that are attractive to the species, and size, which influences 

383 the capacity of the animal to move to find preferred resources (Lazarina et al., 2016).

384

385 The ecosystem strata occupied by the adult (on, above, below ground, concealed places) was 

386 not included in the best model. In contrast, strata, defined in the same way as we have used, 

387 was important for predicting beetle responses to agricultural disturbance (Driscoll & Weir, 

388 2005).  There is inadequate knowledge about life histories of Australian beetles so it is 
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389 difficult to evaluate how the timing and places occupied by different life history stages of 

390 each species might influence their fire response. For example if under-ground larvae are 

391 present during a fire, they may ensure population persistence, regardless of the strata used by 

392 the adults (Nunes et al., 2019). Further, the specific component of the strata that animals are 

393 able to use can influence survival through fire, such as whether animals use the apical 

394 meristem area of plants with tightly packed leaf bases, or other parts of plants that are 

395 exposed to higher temperatures (Brennan et al., 2011).  

396

397 While we are able to point towards a set of possible mechanisms that need to be examined in 

398 further research, we do not expect the same mechanisms to necessarily apply across trait 

399 groups or taxonomic groups. Pedley and Dolman (2014) found that small and flying Carabids 

400 were most abundant after disturbance because they have high rates of population increase and 

401 good dispersal, however, larger spider species were more common after disturbance because 

402 open areas favour active hunting. It therefore seems likely that different mechanisms will 

403 apply to different trait combinations in different taxonomic groups.

404

405 Conclusions

406 We found that detection varied with time since fire for over half of the trait combinations, 

407 and this confounded occurrence.  It is very useful to take detection into account when 

408 comparing occupancy or abundance across habitats with contrasting structure or resources 

409 (MacKenzie et al., 2002). If detection cannot be accounted for, then detection remains a 

410 possible interpretation of occurrence or abundance differences across environmental 

411 gradients, particularly for flightless species.  However, detection is not just a nuisance 

412 variable to be statistically removed, but raises new questions.  For example, if low detection 

413 reflects inactivity, does this also influence the species' functional role in the ecosystem? 
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414 Further, what drives inactivity, with possible mechanisms including non-consumptive effects 

415 of predators (Buchanan et al., 2017; Hossie et al., 2017) or prey availability (Lai et al., 2017)?  

416 If high detection is caused by increased movement linked to reduced food availability, does 

417 abundance subsequently decline, and does increased movement have new impacts on prey 

418 species (e.g. Christy et al., 2017)?

419

420 Trait groups have proven useful for describing how animals respond to fire in some study 

421 systems. For example, animals that decline after fire include bees that nest above-ground 

422 (Williams et al., 2010), mammals and reptiles that live in flammable vegetation (Kelly et al., 

423 2010), wood-feeding beetles (Moretti et al., 2010) and nectarivorous birds (Chalmandrier et 

424 al., 2013).  However, we found that a combination of three traits provided the best 

425 explanation of how beetles respond to time since fire, where the effects of any one trait is 

426 dependent on the interaction with two others.  Large data sets and comparisons across 

427 taxonomic groups are now needed to further address the challenge of building trait-based 

428 predictions about animal responses to disturbance.

429
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757 Table 1. Analysis of Deviance Table of the best model sfty (Type II Wald Chi-square tests).  

758 Trait abbreviations when included in combinations as effects: flt: flight; pos: position; trop: 

759 trophic group; y = year; TSF = time since fire.

760
Effect Chisq Df Pr(>Chisq)

location 32.0 4 <0.0001

year 1.7 3 0.645

TSF 1.0 1 0.322

sizeflttrop 9.2 9 0.419

year:TSFscale 14.9 3 0.002

year:sizeflttrop 193.2 27 <0.0001

TSF:sizeflttrop 38.4 9 <0.0001

year:TSF:sizeflttrop 20.2 27 0.823

761
762
763
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764 Figure 1. Location of 30 sites where beetles were sampled in four conservation reserves, 

765 southern Australia. Exact fire dates for each site are in Appendix S1 including details of sites 

766 burnt during the study. North is towards the top of the page in all panels.

767

768 Figure 2. Predicted occurrence and 95 % confidence intervals across the range of observed 

769 times since fire for each year for each trait group in the three-way interaction between size, 

770 flight and trophic group.  The number of species (no.sp.) and number of non-zero data points 

771 (N) contributing to each trait group is indicated.  a-d: herbivores; e-h: scavengers; i-j: 

772 carnivores.  Note that the maximum Y axis values vary among panels.

773

774 Figure 3. Predicted values illustrating the influence of time since fire and month of survey on 

775 the probability of detection for size-flight-trophic trait groups.  Month 1 = December, 2 = 

776 January, 3 = February.  P TSF = time since fire effect p value; P month = month effect p 

777 value. The null model was the best model for big flying herbivores and big flying scavengers, 

778 although delta AIC was < 1 (a, e, Appendix S6).  The null model was worse than the model 

779 with TSF and month in all other trait groups (delta AIC > 13, Appendix S6). P = 0 indicates P 

780 < 0.0001.

781
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782 Figure 1.
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785 Figure 2.

786

787
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788

789 Figure 3.

790
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1 Appendix S1. Time since fire for each site (t = transect, g = grid) and survey year. Burn No. is the label assigned to individual fires; some fires 

2 spanned more than one site, and labels refer to the most recent fire in which a site occurs.  Some sites were burnt during the study so were 

3 sampled in two different fires.  Dash indicates that the site was not surveyed in that year. Four sites with unknown most recent fire had not been 

4 burnt within the 30 years preceding the study at least, and were allocated the same age as the oldest known time since fire at other sites (39), 

5 justified by similar tree size (Lazzari et al. 2015).  Grid sites with a lower case a or b indicate that each half (25 traps in 1ha) had a different time 

6 since fire.  Grid I6 was burnt during the study so is listed as I6 when entirely within burn number 4, and I6a and I6b after half of that grid was 

7 burnt by fire 5. Grid site A6 was not burnt during the study (despite attempted planned burns). Grid site P6 was entirely burnt in an unplanned 

8 fire, so was replaced with P9a and P9b at the edge of the unplanned burn in 2006.

9
Burn Time Since fire Date of most Date of fire Fire type

Site Location No. 2004 2005 2006 2007 Recent fire during study during study Latitude Longitude
A1 (t) Hambidge 1 4 5 6 7 11/01/2000 -33.4382 135.8696
A2 (t) Hambidge 1 4 5 6 7 11/01/2000 -33.4251 135.8479
A3 (t) Hambidge 2 39 40 41 42 29/10/1965 -33.4593 135.8676
A4 (t) Hambidge 2 39 40 41 42 29/10/1965 -33.4261 135.8236
A5a (g) Hambidge 2 39 40 41 42 29/10/1965 -33.4187 135.8202
A5b (g) Hambidge 1 4 5 6 7 11/01/2000 -33.4187 135.8202
A6 (g) Hambidge 2 39 40 41 42 29/10/1965 -33.4242 135.8098
I1 (t) Hincks 3 5 6 7 8 4/01/1999 -33.7633 136.0797
I2 (t) Hincks 3 5 6 - - 4/01/1999 -33.7897 136.1405
I3 (t) Hincks 4, 5 27 28 0 1 31/12/1977 10/04/2006 planned -33.7632 136.0593
I4 (t) Hincks 4, 6 27 28 0 1 31/12/1977 30/11/2006 unplanned -33.8093 136.1451
I5a (g) Hincks 4, 5 27 28 0 1 31/12/1977 10/04/2006 planned -33.7707 136.0706
I5b (g) Hincks 3 5 6 7 8 4/01/1999 -33.7707 136.0706
I6 (g) Hincks 4 27 28 - - 31/12/1977 -33.7599 136.0395
I6a (g) Hincks 5 - - 0 1 31/12/1977 -33.7599 136.0395
I6b (g) Hincks 4 - - 29 30 31/12/1977 -33.7599 136.0395
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I7 (t) Hincks 3 - - 7 8 31/12/1977 -33.7548 136.0343
N1 (t) Heggarton N 7 7 8 9 10 24/11/1997 -33.3659 136.5425
N2 (t) Heggarton N 7 7 8 - - 24/11/1997 -33.3539 136.5463
N3 (t) Heggarton N 8 39 40 41 42 unknown -33.3685 136.5271
N4 (t) Heggarton N 8, 9 39 40 0 1 unknown 26/04/2006 planned -33.3646 136.5349
P1 (t) Pinkawillinie 10 3 4 5 6 22/10/2001 -32.9001 135.8779
P2 (t) Pinkawillinie 10 3 4 5 6 22/10/2001 -32.9057 135.8785
P3 (t) Pinkawillinie 11, 12 18 19 1 2 22/10/2001 27/12/2005 unplanned -32.91 135.867
P4 (t) Pinkawillinie 11, 12 18 19 1 2 20/11/1986 27/12/2005 unplanned -32.9142 135.8709
P5a (g) Pinkawillinie 11, 12 18 19 1 2 20/11/1986 27/12/2005 unplanned -32.91 135.8157
P5b (g) Pinkawillinie 10 3 4 5 6 22/10/2001 -32.91 135.8157
P6 (g) Pinkawillinie 11 18 19 - - 20/11/1986 -32.902 135.789
P7 (t) Pinkawillinie 11 - - 20 21 20/11/1986 -32.9048 135.8703
P8 (t) Pinkawillinie 11 - - 20 21 20/11/1986 -32.9071 135.8522
P9a (g) Pinkawillinie 12 - - 1 2 20/11/1986 27/12/2005 unplanned -32.9064 135.8365
P9b (g) Pinkawillinie 11 - - 20 21 20/11/1986 -32.9064 135.8365
S1 (t) Heggarton S 13 4 5 - - 24/01/2001 -33.4114 136.5227
S2 (t) Heggarton S 13 4 5 6 7 24/01/2001 -33.4134 136.5285
S3 (t) Heggarton S 14 39 40 41 42 unknown -33.4067 136.5172
S4 (t) Heggarton S 14, 15 39 40 0 1 unknown 26/04/2006 planned -33.408 136.5274

10
11 Reference
12 Lazzari, J., Yoon, H.-J., Keith, D.A. & Driscoll, D.A. (2015) Local environmental covariates are important for predicting fire history from tree 
13 stem diameters. Journal of Wildland Fire, 24, 871-882.
14
15
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16 Appendix S2. Models fitted.  The Effects column lists the effects and their interactions that were available for including in models. The effects 

17 included in each of the 30 models are indicated by 1. Trait abbreviations when included in combinations as effects: flt: flight; pos: position; trop: 

18 trophic group.  Model name abbreviations: s: size; f: flight; p: position; t: trophic group; y: year.  TSF: time since fire. Models spty could not be 

19 estimated, hence a total of 29 models were included in results.

20

Effects nu
ll

nu
ll.

ye
ar

s f p t sy fy py ty sf sp st fp ft pt sf
y

sp
y

st
y

fp
y

ft
y

pt
y

sf
p

sf
t

sp
t

fp
t

sf
py

sf
ty

sp
ty

fp
ty

Location 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TSF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
size 1 1
flightless 1 1
position 1 1
trophic 1 1
year:TSF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
year:size 1
year:flightless 1
year:position 1
year:trophic 1
TSF:size 1 1
TSF:flightless 1 1
TSF:position 1 1
TSF:trophic 1 1
year:TSF:size 1
year:TSF:flightless 1
year:TSF:position 1
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year:TSF:trophic 1
sizeflt 1 1
sizepos 1 1
sizetrop 1 1
fltpos 1 1
flttrop 1 1
postrop 1 1
year:sizeflt 1
year:sizepos 1
year:sizetrop 1
year:fltpos 1
year:flttrop 1
year:postrop 1
TSF:sizeflt 1 1
TSF:sizepos 1 1
TSF:sizetrop 1 1
TSF:fltpos 1 1
TSF:flttrop 1 1
TSF:postrop 1 1
year:TSF:sizeflt 1
year:TSF:sizepos 1
year:TSF:sizetrop 1
year:TSF:fltpos 1
year:TSF:flttrop 1
year:TSF:postrop 1
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sizefltpos 1 1
sizeflttrop 1 1
sizepostrop 1 1
fltpostrop 1 1
year:sizefltpos 1
year:sizeflttrop 1
year:sizepostrop 1
year:fltpostrop 1
TSF:sizefltpos 1 1
TSF:sizeflttrop 1 1
TSF:sizepostrop 1 1
TSF:fltpostrop 1 1
year:TSF:sizefltpos 1
year:TSF:sizeflttrop 1
year:TSF:sizepostrop 1
year:TSF:fltpostrop 1
sizefltpostrop
year:sizefltpostrop
TSF:sizefltpostrop
year:TSF:sizefltpostrop
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Appendix S3. The number of positive records (No. non-zero), trait states and family of the 46 species used in the analyses.

Species

No. 
non-
zero Size Flying Position Tropic Family

Julodimorpha bakewelli 15 big flying above herbivore Buprestidae
Themognatha yarrelli 20 big flying above herbivore Buprestidae
Adotela apicalis 41 big not flying on carnivore Carabidae
Adotela frenchi 6 big not flying on carnivore Carabidae
Broscini sp1 11 small not flying on carnivore Carabidae
Carenum elegans 108 big not flying below carnivore Carabidae
Conopterum gagatinum 50 big not flying below carnivore Carabidae
Epilectus fortis 14 big not flying below carnivore Carabidae
Euryscaphus obesus 71 big not flying below carnivore Carabidae
Gnathoxys sp 66 small not flying below carnivore Carabidae
Neocarenum blackburni 6 big not flying below carnivore Carabidae
Neocarenum elongatum 65 big not flying below carnivore Carabidae
Philoscaphus costalis 105 big not flying above carnivore Carabidae
Scaraphites lenaeus 47 big not flying below carnivore Carabidae
Elaptus sp 17 big flying above herbivore Cerambycidae
Microtragus mormon 79 small not flying above herbivore Cerambycidae
Acantholophus franklinensis 73 big not flying above herbivore Curculionidae
Catasarcus armatus 12 small not flying above herbivore Curculionidae
Oophthalmus sp 42 small not flying above herbivore Curculionidae
Polyphrades fortis 12 small not flying above herbivore Curculionidae
Polyphrades sp 18 small not flying above herbivore Curculionidae
Talaurinus sp1 19 small not flying on herbivore Curculionidae
Talaurinus sp2 26 big not flying on herbivore Curculionidae
Talaurinus sp3 10 small not flying on herbivore Curculionidae
Byrrhomorpha basicollis 17 small flying above herbivore Scarabaeidae
Heteronyx sp 65 small flying above herbivore Scarabaeidae
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Maechidius crenaticollis 17 small flying above herbivore Scarabaeidae
Metallesthes metallescens 15 big flying above herbivore Scarabaeidae
Semanopterus angustatus 15 small flying below herbivore Scarabaeidae
Adelium lindense 35 small not flying concealed places/nocturnal scavenger Tenebrionidae
Agasthenes westwoodi 40 big not flying concealed places/nocturnal scavenger Tenebrionidae
Blaps polychresta 11 big not flying on scavenger Tenebrionidae
Celibe australis 48 small not flying on scavenger Tenebrionidae
Chalcopteroides sp1 15 big flying on scavenger Tenebrionidae
Helea haagi 69 small not flying concealed places/nocturnal scavenger Tenebrionidae
Helea intermedia 25 big not flying concealed places/nocturnal scavenger Tenebrionidae
Helea monilifera 113 big not flying above scavenger Tenebrionidae
Helea sp 26 small not flying concealed places/nocturnal scavenger Tenebrionidae
Hypaulax orcus 36 big not flying on scavenger Tenebrionidae
Isopteron brevis 30 small not flying concealed places/nocturnal scavenger Tenebrionidae
Metistete ebenina 73 small flying on scavenger Tenebrionidae
Metistete sp 19 small flying on scavenger Tenebrionidae
Nyctozoilus sp 32 big not flying concealed places/nocturnal scavenger Tenebrionidae
Saragus frenchi 10 small not flying concealed places/nocturnal scavenger Tenebrionidae
Saragus pascoei 82 big not flying concealed places/nocturnal scavenger Tenebrionidae
Omorgus elderi 25 small not flying on scavenger Trogidae
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Appendix S4.  (A) Models ranked by AICc fitting traits and combinations of traits to beetle 

occurrence data.  The best fitting model has the lowest AICc and highest weight (see 

Burnham and Anderson [, 2002 #10187] for formulas for AICc and Weights). Model names 

in the Model column equate with the column names in Appendix S2. 

A.
Model LogLik df AICc deltaAICc Weights
sfty -3709 87 7513 0 1
sfpy -3668 111 7551 38 0
sty -3740 55 7591 78 0
fty -3754 47 7603 90 0
fpty -3662 95 7612 99 0
spy -3740 71 7625 112 0
fpy -3751 63 7629 116 0
ty -3785 31 7632 119 0
pty -3739 79 7638 125 0
py -3790 39 7658 145 0
sfp -3794 36 7660 147 0
sft -3802 30 7665 152 0
sfy -3795 39 7668 155 0
fpt -3802 32 7669 156 0
ft -3818 20 7676 163 0
fy -3815 23 7677 164 0
fp -3815 24 7678 165 0
null.year -3826 15 7681 168 0
st -3820 22 7684 171 0
spt -3802 40 7684 171 0
pt -3814 28 7684 172 0
sy -3820 23 7686 174 0
s -3830 14 7688 175 0
t -3828 16 7688 176 0
sf -3826 18 7689 176 0
f -3831 14 7690 178 0
null -3833 12 7691 178 0
sp -3821 26 7694 182 0
p -3829 18 7695 182 0

Commented [DD1]:  update refs

Page 44 of 52Ecological Entomology



For Review Only

Appendix S5. Estimated occurrence and 95 % confidence intervals for each year for each trait group in the 

three-way interaction between size, flight and trophic group. Different letters within panels indicate 

significant differences at the 0.05 level.  a-d: herbivores; e-h: scavengers; i-j: carnivores.  Note that the 

maximum Y axis values vary among panels.
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Appendix S6.  Null models and models fitting time since fire (tsf) and month as detection 

covariates. A: Models ranked by AIC within trait group (negLogLike = negative log 

likelihood), nPars = number of parameters in the model, n = number of sites, AIC = Akaike 

Information Criterion, delta = change in AIC from the best model, AICwt = model weight.  

B: Intercepts (Int) and standard errors (SE) for colonisation (col), extinction (ext), initial 

occupancy (psi) and detection (p), and effects of month (p (month)) and time since fire (p 

(tsf)) on detection.

A. 
Trait Group formula negLogLike nPars n AIC delta AICwt
b f herbivore ~1 ~ 1 ~ 1 ~ 1 159 4 35 325.35 0.00 0.51
b f herbivore ~1 ~ 1 ~ 1 ~ tsf + month 157 6 35 325.45 0.10 0.49
b f scavenger ~1 ~ 1 ~ 1 ~ 1 69 4 35 146.24 0.00 0.60
b f scavenger ~1 ~ 1 ~ 1 ~ tsf + month 68 6 35 147.01 0.77 0.40
b nf carnivore ~1 ~ 1 ~ 1 ~ tsf + month 149 6 35 310.35 0.00 1.00
b nf carnivore ~1 ~ 1 ~ 1 ~ 1 174 4 35 356.30 45.95 0.00
b nf herbivore ~1 ~ 1 ~ 1 ~ tsf + month 166 6 35 344.21 0.00 1.00
b nf herbivore ~1 ~ 1 ~ 1 ~ 1 206 4 35 420.09 75.89 0.00
b nf scavenger ~1 ~ 1 ~ 1 ~ tsf + month 140 6 35 292.71 0.00 1.00
b nf scavenger ~1 ~ 1 ~ 1 ~ 1 169 4 35 345.98 53.26 0.00
s f herbivore ~1 ~ 1 ~ 1 ~ tsf + month 200 6 35 412.46 0.00 1.00
s f herbivore ~1 ~ 1 ~ 1 ~ 1 217 4 35 441.91 29.45 0.00
s f scavenger ~1 ~ 1 ~ 1 ~ tsf + month 200 6 35 412.15 0.00 1.00
s f scavenger ~1 ~ 1 ~ 1 ~ 1 210 4 35 428.80 16.65 0.00
s nf carnivore ~1 ~ 1 ~ 1 ~ tsf + month 182 6 35 376.92 0.00 1.00
s nf carnivore ~1 ~ 1 ~ 1 ~ 1 191 4 35 390.54 13.62 0.00
s nf herbivore ~1 ~ 1 ~ 1 ~ tsf + month 167 6 35 345.66 0.00 1.00
s nf herbivore ~1 ~ 1 ~ 1 ~ 1 228 4 35 463.61 117.95 0.00
s nf scavenger ~1 ~ 1 ~ 1 ~ tsf + month 192 6 35 395.01 0.00 1.00
s nf scavenger ~1 ~ 1 ~ 1 ~ 1 223 4 35 454.75 59.74 0.00
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B. 

Trait Group formula col(Int)
SEcol
(Int) ext(Int)

SEext
(Int) p(Int)

SEp
(Int)

p
(month)

SEp
(month) p(tsf)

SEp
(tsf)

psi
(Int)

SEpsi
(Int)

b f herbivore ~1 ~ 1 ~ 1 ~ 1 8.09 24.88 -0.59 0.71 -0.97 0.21 NA NA NA NA 0.17 0.60
b f herbivore ~1 ~ 1 ~ 1 ~ tsf + month 6.66 11.81 -0.46 0.62 -1.50 0.41 0.29 0.19 -0.21 0.17 0.07 0.56
b f scavenger ~1 ~ 1 ~ 1 ~ 1 -1.01 0.67 0.10 1.05 -1.30 0.56 NA NA NA NA -1.87 0.90
b f scavenger ~1 ~ 1 ~ 1 ~ tsf + month -0.82 0.76 0.38 0.88 -2.35 0.84 0.51 0.36 0.37 0.32 -1.98 0.86
b nf carnivore ~1 ~ 1 ~ 1 ~ tsf + month 0.62 105.01 -11.77 41.19 -0.99 0.36 1.34 0.22 -0.22 0.14 10.69 37.22
b nf carnivore ~1 ~ 1 ~ 1 ~ 1 0.72 96.47 -11.20 32.71 1.25 0.13 NA NA NA NA 10.56 34.83
b nf herbivore ~1 ~ 1 ~ 1 ~ tsf + month -8.29 33.58 -2.98 0.66 -2.55 0.40 1.27 0.20 -1.02 0.17 2.63 0.72
b nf herbivore ~1 ~ 1 ~ 1 ~ 1 -1.18 0.70 -2.21 0.63 0.16 0.15 NA NA NA NA 1.51 0.52
b nf scavenger ~1 ~ 1 ~ 1 ~ tsf + month 0.62 106.89 -12.05 48.11 -1.15 0.38 1.51 0.24 -0.26 0.15 10.70 37.39
b nf scavenger ~1 ~ 1 ~ 1 ~ 1 0.81 97.63 -11.32 35.33 1.33 0.14 NA NA NA NA 10.68 36.99
s f herbivore ~1 ~ 1 ~ 1 ~ tsf + month 7.69 33.59 -1.31 0.55 -1.92 0.35 0.84 0.17 0.13 0.14 8.00 34.31
s f herbivore ~1 ~ 1 ~ 1 ~ 1 4.90 139.00 -12.24 NA -0.53 0.11 NA NA NA NA 10.58 58.48
s f scavenger ~1 ~ 1 ~ 1 ~ tsf + month 8.60 32.03 -1.47 0.62 -1.47 0.35 0.69 0.17 -0.22 0.16 0.50 0.47
s f scavenger ~1 ~ 1 ~ 1 ~ 1 6.57 21.04 -1.33 0.58 -0.13 0.16 NA NA NA NA 0.55 0.48
s nf carnivore ~1 ~ 1 ~ 1 ~ tsf + month -6.40 10.19 -1.93 0.47 -1.61 0.37 0.59 0.17 -0.33 0.15 2.48 0.84
s nf carnivore ~1 ~ 1 ~ 1 ~ 1 -8.17 29.23 -1.91 0.48 -0.51 0.15 NA NA NA NA 2.73 1.11
s nf herbivore ~1 ~ 1 ~ 1 ~ tsf + month 1.05 26.64 -6.60 NA -3.41 0.39 1.74 0.17 -0.52 0.14 8.99 16.23
s nf herbivore ~1 ~ 1 ~ 1 ~ 1 1.03 NA -9.03 NA -0.08 0.11 NA NA NA NA 9.96 26.12
s nf scavenger ~1 ~ 1 ~ 1 ~ tsf + month 0.03 0.81 -2.67 0.56 -2.09 0.36 1.37 0.20 0.08 0.15 2.63 0.95
s nf scavenger ~1 ~ 1 ~ 1 ~ 1 -1.89 4.65 -3.32 1.00 0.28 0.13 NA NA NA NA 8.81 18.83

Page 47 of 52 Ecological Entomology



For Review Only

4 km4 km

4 km100 km

Last fire:
< 1970
1977-1991
1997-2001
2005-2006
Outside reserve  
Grid site  
Transect site

Pinkawillinie

Hambidge Hincks
Heggaton

2 km

4 km

Page 48 of 52Ecological Entomology



For Review Only

0 10 20 30 40
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Time since fire

O
cc

ur
re

nc
e

a, big flying herbivore
no.sp. = 4, N = 67

0 10 20 30 40
0.00
0.02
0.04
0.06
0.08
0.10
0.12

Time since fire

b, small flying herbivore
no.sp. = 4, N = 114

0 10 20 30 40
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Time since fire

c, big flightless herbivore
no.sp. = 2, N = 99

0 10 20 30 40
0.00

0.02

0.04

0.06

0.08

Time since fire

d, small flightless herbivore
no.sp. = 7, N = 192

0 10 20 30 40

0.00
0.02
0.04
0.06
0.08
0.10
0.12

Time since fire

O
cc

ur
re

nc
e

e, big flying scavenger
no.sp. = 1, N = 15

0 10 20 30 40

0.00

0.05

0.10

0.15

0.20

Time since fire

f, small flying scavenger
no.sp. = 2, N = 92
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i, big flightless carnivore
no.sp. = 10, N = 513
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j, small flightless carnivore
no.sp. = 2, N = 77
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e, big flying scavenger

P TSF = 0.253, P month = 0.151
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P TSF = 0.076, P month = 0
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h, small flightless scavenger

P TSF = 0.6, P month = 0
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j, small flightless carnivore

P TSF = 0.025, P month = 0.001
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The three-way combination of size, flight and trophic level best explained beetle responses to 

time since fire, suggesting that generalisation using main effects of traits risks 

oversimplifying animal responses to fire.

The relationship of detectability with time since fire was similar to the occurrence 

relationship in the majority of response variables, so taking detectability into account is 

critical to correctly interpret occupancy data.

Three-way trait combinations that differ by just one trait, particularly dispersal ability, can 

result in either negligible effects of disturbance on detectability, or strong effects that 

influence observed occurrence.
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