
Supplementary Material

1 DETAILS OF THE ENCODER LAYER ALGORITHMIC IMPLEMENTATION
In this supplementary material we analyze the algorithmic formulation of the basic computational units of
the Encoder Layer (EL) (i.e. Cortical Columns (CCs) and cell units).
1.1 Proximal dendritic connections

In regards to proximal connections, each neural unit in a CC has the same set of proximal
connections to the Distributional Semantic (DS) constraints (i.e. word2vec). Such connections determine a
multidimensional space of real numbers. Each CC acquires the statistical distribution on a DS sub-space to
which such CC is connected. To that end our modelling approach uses a multidimensional Self Organizing
Map (SOM) in each cortical column (Alg. 1).

Algorithm 1 Plasticity in Proximal Synapses. Self Organizing Map (SOM) algorithm.
1: given an input vector, find the nearest unit to such input vector in the input space
2: move such unit towards the input vector in the input space (the magnitude of such movement

depends on the learning rate)
3: also move neighbor units to the nearest one towards the input vector (the magnitude of such

movement depends on the learning rate and on a neighborhood measure over the topology of the
network of units)

A SOM is an unsupervised clustering algorithm which distributes a continuous multidimensional
distribution in a discrete multidimensional distribution of units (Kohonen, 1989, 1982). Hence the algorithm
ends up with an array of units of m dimensions in which each unit represents a set of vectors from
the continuous distribution in an input space of n dimensions. Generally, m < n in order to reduce
the dimensionality in the discrete representation. We added such restriction in our columnar algorithm
(Dematties et al., 2019).

In our modelling apporach the SOM algorithm accounts for proximal lateral intra-column interaction,
Long-Term Potentiation (LTP) and Long-Term Depression (LTD). Yet more importantly, this algorithm
dissociates proximal dendritic inputs from distal dendrites, since it modifies proximal connections following
the statistical distribution from DS constraints independently of the activity developed by distal–lateral
and apical–dendrites which define the units that fire in such CC. This independence in the plasticity of the
proximal dendritic inputs is supported by the property found in cortical tissue by means of which there is
dendritic plasticity in the context of partial depolarization of the soma (Reiter and Stryker, 1988)–that is,
without an Action Potential (AP).

Spruston (2008) suggested that the mechanisms regulating different dendritic trees differ and that
the existence of dendritic domains in pyramidal neurons reflects distinct synaptic inputs, excitability,
modulation and plasticity. Hawkins and Ahmad (2016a); George and Hawkins (2009) and Guerguiev et al.
(2017) have already developed compelling modeling paradigms around this evidence.
1.2 Distal dendritic connections

Each CC in the EL receives incoming connections from other CCs by means of distal dendritic branches
inside the receptive fields–from the same EL and from another Cortical Layer (CL). Each link between
such CC and one of its neighboring CCs implies that each cell unit in the CC is linked with a different
subset of cell units in the neighbour CC.
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Such links account for dendritic branches in neural tissue and we call each connection in a dendrite
potential connection. Potential connections account for synapses in a dendritic branch. Only a reduced
percentage of CCs inside its receptive field are effectively linked to a CC. A cell unit inside its CC ends up
with as many dendritic branches as effectively linked CCs inside its receptive field. And each dendritic
branch holds a set of potential connections.

The term potential connection is used to describe a pair of neural units linked by its physical location
and dendritic and axonal disposition in cortical tissue. However, an effective connectivity between such
neurons will depend upon their sequential pattern of activation which will establish developed synapses
between them. If two neural units are linked by means of a distal potential connection such connection will
be strengthen only if there is a sequential activation of the cells linked, in two consecutive time steps. If
such phenomenon does not repeat itself over time, such synapse will decrease its strength with respect to
other synapses in the dendritic branch. A simultaneous activation in both neural units will decrease the
strength in such potential connection.

We implemented distal dendritic synaptic plasticity mechanisms by means of Alg. 2. The learning
mechanisms implemented on such algorithm simulate neurophysiological phenomena such as Spike-timing
dependent plasticity (STDP), and homeostatic regulation plasticity in the synaptic strength regulation in
distal dendritic branches. This algorithm presents a completely different synaptic mechanism to the one
presented in Alg. 1.

Algorithm 2 Plasticity in Distal Synapses. This algorithm accounts for Spike-timing
dependent plasticity (STDP) and homeostatic regulation phenomenon in distal dendritic synapses.

1: for every active unit in this cortical column do
2: for every dendrite in this active unit do
3: increment all the synapses–in this dendrite–potentially connected to units which were active

in the last time step
4: end for
5: end for
6: for every active unit in this cortical column do
7: for every dendrite in this active unit do
8: decrement all the synapses–in this dendrite–potentially connected to units which are active

in this time step
9: end for

10: end for
11: if updated step reaches certain value then
12: for every unit in this cortical column do
13: for every dendrite in this unit do
14: if the sum of the synapses in this dendrite is greater than one then
15: normalize all synapses in this dendrite
16: end if
17: end for
18: end for
19: updated step = 0
20: end if
21: updated step++

Hence, in this model we segregate the integration of feedforward and feedback information since neurons
hold a more complicated morphological organization than the point neurons commonly utilized in prevalent
Machine Learning (ML) (Spruston, 2008; Hawkins and Ahmad, 2016a; George and Hawkins, 2009;
Guerguiev et al., 2017). Neural cells in cortical tissue have vastly a more complex structure, particularly
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when compared to artificial single-compartments-units. Different signals could be integrated at distinct
dendritic areas. As a matter of fact, areas in cortical tissue receive feedback from other areas which arrives
to the distal apical dendrites of pyramidal neurons (Manita et al., 2015; Budd, 1998; Spratling, 2002). Such
synapses are far remote–electrotonically speaking–from the basal dendrites where feedforward information
arrives (Larkum et al., 1999, 2007, 2009). Spratling (2002); Gris et al. (2017) and Spratling and Johnson
(2006) noted that the anatomy of pyramidal neurons may actually provide the segregation of feedforward
and feedback information.

Basically, Alg. 2 updates all distal axonal-dendritic synapses, incrementing them always that pre and
post-synaptic neural units become active in consecutive time steps, and decrementing them when they
become active at the same time step. Occasionally, all the synaptic weights belonging to the same dendrite
are normalized every certain number of time steps. This normalization is repeated for all neural units and
for all dendritic branches in each neural unit whose sum of synaptic weights is beyond unity.
1.3 Activation Rules in a Cortical Column

First a group of cell units in a CC is partially depolarized by distal connections among such neural units
and cell units activated in the previous time step in the EL or in a foreign cortical patch. That is, neural units
activated in time step t = 0 in the EL or in foreign patches will partially depolarize a set of neural units at
time step t = 1 in such CC, by means of distal–lateral and apical– dendritic branch synapses established by
their learning algorithm (Alg. 2).

Second, afferent proximal connections from DSs will tend to depolarize certain clusters of units in such
CC in time step t = 1. This tentative depolarization is produced by the inputs from the DSs (word2vec
inputs) with proximal synapses established by learning in the Alg. 1. A group of neural units is randomly
chosen from a discrete distribution whose probabilities are established by the state of excitation in afferent
inputs. Namely, the more excited is a cell unit by afferent synapses, the more chance has such unit of being
chosen.

If a sufficiently large number of partially depolarized units are in the set of afferently excited units,
such partially depolarized units will fire previously in the group. Those units–which fire before–prevent
neighboring units in the excited clusters from firing, hyperpolarizing them by means of lateral inhibitory
connections in the column.

With the aim of keeping our model simple, we do not implement inhibitory neurons as explicit individual
cells, and the function of inhibitory neurons are encoded in Alg. 3. As explained above, cells that fire before
prevent other cells in the same CC from firing. This computational hypothesis requires neurophysiological
evidence about fast inhibitory mechanisms among neighboring cells sustained by fast inhibitory neurons
processing stimulus-related information. Reyes-Puerta et al. (2015) actually showed such properties in the
brain and Hawkins and Ahmad (2016a) used them in their bio-inspired model.

Partial depolarization states put cell units in a predictive state generated by the activations produced in
the EL–and/or in foreign cortical patches–in previous time steps. That is, lateral and apical activation in
previous time steps constitute a context in which current afferent inputs are received.

From the group of units that tend to be depolarized by current afferent inputs from the DSs, only a
reduced sub-set of those units are likely to fire in the previous contextual firing history in the EL.

In case there is no context, that is, if not enough units depolarized by afferent inputs are partially
depolarized by previous–lateral and apical–activations, almost all units in the afferent excited clusters will
be in the same condition. In other words, there are not enough units favoured by its partial depolarization
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inside the clusters excited by afferent information. Since most of the units are in the same condition, all
become active, covering more hypotheses for next inputs. We call this phenomenon as Massive Firing
Event (MFE) in our model.

Such activation mechanism is depicted in Alg. 3. In Alg. 3 (Part 1) a ranking is established among neural
units–inside a CC–in terms of its afferent excitability, given the afferent inputs (lines 1 and 2). The number
of afferently excited units refers to the maximum number of units that can be activated by the afferent input
in a CC and minimum number of active units refers to the number of units that will be active in a CC if
a Sparse Distributed Representation (SDR) is achieved as a result of optimal prediction (lines 3 and 4
respectively).

Algorithm 3 Units activation (Part 1). This algorithm establishes the activation rules in a
Complex Self-Organizing Map (CSOM) object.

1: distances = given an input vector find the euclidean distance each unit has to such input in
the input space from proximal afferent synapses

2: ranking = sort indexes from the smallest to the largest distances
3: number of afferently excited units = proximal activation percentage*number of units
4: minimum number of active units = (1-sparsity)*number of units
5: if randomness is disabled then
6: excited units = gets the first number of afferently excited units elements from ranking
7: else
8: excited units = gets number of afferently excited units random indexes from distances with

probabilities determined by the relative reciprocal of the distances element values
9: end if

10: for unit = 0 to unit = number of units do
11: auxiliary = 0
12: for dendrite = 0 to dendrite = number of distal dendrites do
13: dendrite accumulator = 0
14: for active unit = 0 to active unit = number of linked active units do
15: potential index = find the first coincident index in potential

connections[dendrite][unit] with linking units[dendrite][active
unit]

16: if there exist coincidence then
17: dendrite accumulator += dynamic synapses[dendrite][unit][potential

index]
18: end if
19: end for
20: if dendrite accumulator > 100*DISTAL SYNAPTIC THRESHOLD then
21: auxiliary++
22: end if
23: end for
24: total responses[unit] += auxiliary
25: end for
26: updated distances = element wise quotient between distances and total responses
27: updated ranking = sort indexes from the smallest to the largest updated distances

If randomness is enabled, number of afferently excited units units are chosen at random by means of a
discrete distribution whose probabilities are the afferent excitation of each unit. If randomness is disabled,
number of afferently excited units first units are chosen from the ranking of afferently excited units (lines 5
to 9).
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From line 10 to 25 each neural unit accumulates distal–lateral and apical–excitation in order to determine
its partial depolarization from units which were active in the previous time step. For each neural unit in a
CC, for each distal dendrite in such unit and for each active unit in such distal dendrite the algorithm looks
for coincidences between some potential connection in such distal dendrite in the neural unit and the active
unit in such distal dendrite. That is, in line 15, the algorithm asks if there is coincidence between some
potential connection in this distal dendrite inside the unit and the neural unit activated in the previous time
step in the CC linked by such distal dendrite. If there is coincidence, the value of the synaptic weight in
such potential connection is accumulated in a dendrite accumulator. After all active units are examined
for this dendrite, if the dendrite accumulator is greater than certain threshold, such dendrite is considered
active and the total response of the unit is incremented in one.

Segregating neural computation in different compartments in our model transcends the coarse partitioning
of broad dendritic domains to determine the computation in individual dendrites. In this regard, layer II/III
pyramidal neurons can generate dendritic spikes which is a fundamental property of dendritic excitability
and control by inhibition (Larkum et al., 2007). Jadi et al. (2014) showed that dendrites generating local
spikes have their own nonlinear input-output curves and also have individual activation thresholds, different
from those of the neuron as a whole. There are studies showing that small compartments in the dendritic
arms of cortical neurons can each perform complicated operations (Payeur et al., 2019). Furthermore, in a
recent study Gidon et al. (2020) showed that individual dendritic compartments could make the computation
of the exclusive OR which was previously considered unattainable by single-neuron systems.

Each neural unit ends up with an excitation value due to its distal dendrites. The unit distances vector is
element- wise divided by distal dendritic excitations vector to get the updated distances and an updated
ranking of the units (lines 26 and 27). In this way, units with more distal excitation will decrease its distance
more and will be put in a more favorable place in the ranking in order to be activated.

In Alg. 3 (Part 2) the minimum updated distance is found in the group of afferently excited units. Then, a
set of units–inside the group of afferently excited units–is identified which have such minimum updated
distance. While the number of identified units is less than minimum number of active units, the next
minimum updated distance is found in the group of afferently excited units and a new set of units–inside
the group of afferently excited units–is identified which have such next minimum updated distance. This
new set is added to the previous one until the number of units in this accumulative set is greater than or
equal to the minimum number of active units.

The functional result of Alg. 3 is that there must be a sufficient amount of–partially and previously
depolarized–neural units inside the afferently activated cluster of units in order to get a SDR pattern of
activation. Otherwise, the CC will end up with a massive activation pattern, a Massive Firing Event (MFE)
in which more than a minimum number of active units will be active. In the case of the occurrence of a
MFE, the synaptic plasticity is modulated in order to form stronger synapses of those neural units activated
during such event.

Each neural unit in a CC establishes its state of partial depolarization based on the contribution from
distal dendritic branches from lateral and apical connections. A dendritic branch will contribute to the
partial depolarization of the soma in such cell only if such dendritic branch exceeds an activation threshold
by means of the contribution from its individual synapses in the context of the patterns of activation in the
previous time step.

This mechanism has compelling sequential properties Hawkins and Ahmad (2016b), which have already
been applied in the classification of artificially generated sequential data Cui et al. (2016). We apply
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Algorithm 3 Units activation (Part 2). This algorithm establishes the activation rules in a
CSOM object.

1: new distances = get the updated distances elements whose indexes are in excited units
2: new minimum distance = get the minimum element from new distances
3: minimum indexes = get indexes from updated distances vector whose values are equal to new

minimum distance
4: apt to be active = get the coincident indexes between excited units and minimum indexes
5: erase from new distances vector, all the elements whose value is equal to new minimum
distance

6: while number of elements in apt to be active vector < minimum number of active units and new
distances has at least one element do

7: new minimum distance = get the minimum element from new distances
8: minimum indexes = get indexes from updated distances vector whose values are equal to

new minimum distances
9: partial apt to be active = get the coincident indexes between excited units and minimum

indexes
10: incorporate partial apt to be active elements into apt to be active vector
11: erase from new distances vector, all the elements whose value is equal to new minimum

distance
12: end while
13: if ENABLE RANDOM BEHAVIOUR then
14: shuffle apt to be active vector
15: end if
16: for number = 0 to number = number of apt to be active elements do
17: incorporate to output the excited units[apt to be active[number]]
18: end for
19: return output

such mechanism in our algorithm by adding the contribution of synapses–in a dendritic branch–whose
connections are linked with cells that were active in the previous time step in the EL.
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