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Supplementary Material 

Wing Airfoil Selection. The flying wing design posed challenges in the airfoil selection process. Conventional aircraft achieve 

balanced flight in longitudinal direction through their horizontal tail (5). When conceptualizing the LisHawk, we had to select 

airfoils, which permitted balanced flight without horizontal stabilizer to allow a shift from a positive pitch stability to negative 

pitch stability. During this airfoil design process, we used XFLR5 (vortex lattice method) to evaluate relevant stability and 

balance characteristics of the entire wing. As seen in Fig. S1, the inner, the center and the outer section can be distinguished:  

The feathered outer section resembles a flat plate due to the flat nature of the artificial feathers used for the morphing. 

Hence, this section was modelled as a flat plate. Then, the center section had to accommodate the wrist cage and the wrist 

flexing mechanism. While avian airfoils would have induced a large negative pitching moment (birds use a large washout angle 

to compensate), we adapted the eagle airfoil from (56) by reducing the camber to 1.5%. No airfoil data for the northern goshawk 

wing was available. The camber adaption was necessary to limit the negative pitching moment inherent in positively cambered 

airfoil. Last, for the inner wing to counterbalance the negative pitching moment and to achieve balanced flight, we chose the 

JWL-065 airfoil with a reflex trailing edge.  

Finally, the used airfoils for the LisHawk wing (Fig. S2A) diverge significantly from the avian counterpart (Fig. S1B). This 

is due to design restrictions of the LIS Hawk robot. Large undercambered airfoils would not have sufficed for housing the 

folding mechanism and the lack of wing twisting would not have allowed achieving balanced flight (17).  

Derivation of Linear Acceleration in the Wind Axis. The linear accelerations acting on the aircraft’s center of gravity in the 

wind frame (��, see Fig. S2) with the basis vectors �⃗�, �⃗�, and �⃗� can be defined as  	⃗
� = �⏟����,�
 �⃗� + ���������������, 

 �⃗� + ��!����,"
 �⃗�, (1) 

 

with �  being the change in path velocity of the aircraft, ��  being the change in path azimuth angle in the lateral plane, and ��  being the change in heading angle in the longitudinal plane (8).  

Correspondingly, as commonly done in flight dynamics when analysing the flight path behavior (8), the point-mass model 

is considered. The relation between the resultant force vector &⃗ and the acting force vectors, such as thrust '(⃗ , lift )(⃗ =�(*+, , ,, … ), drag .((⃗ = �(*/, , ,, … ), and weight 0(((⃗ = �(1, 2, … ) can be shown and separated into the wind-fixed 

components so that  

&⃗ = '(⃗ + )(⃗ + .((⃗ + 0(((⃗  = (' ���3 − . − 0 �56�)�⃗� (2)  + (' �563 + ))�568 �⃗� − 9(' �563 + )) cos 8 − 0����=�⃗�. 
Here, the angle of climb is denoted with �, the bank angle with ?, and deviation angle of the thrust with respect to the flight 

path with 3. Zero sideslip angle is assumed. Combining Eq. 1 and Eq. 2 yields the so-called dynamic equation in the wind-

fixed frame based on the point-mass model (11), so that 

	⃗
� = @ ��������� A =
⎝
⎜⎜
⎛ '���3 − .1 − 2 �56�

− (' �563 + ))�56?1('�563 + ))���?1 − 2 ����⎠
⎟⎟
⎞ (3) 

As treated in the introduction, a large thrust force can evidently increase maneuverability, which is seen in Eq. 3. The thrust 

force affects the acceleration in every wind axis direction, however, the interest of this paper is in the leverage of aerodynamic 

forces on maneuverability, and hence gliding flight (2I) is assumed with = 0 , which simplifies Eq. 3 so that 

	⃗
�,KL = @MN
�ON
�PN
�
A = @ ��������� A =

⎝
⎜⎜
⎛ −.1 − 2 �56�

− ) �56?1) ���?1 − 2 ����⎠
⎟⎟
⎞ (4) 

Here, because calm wind conditions are assumed so that R = �, Eq. 4 simplifies to 

@MN
�ON
�PN
�
A =

⎝
⎜⎜
⎛ −.1 − 2 �56R

− ) �56?1) ���?1 − 2 ���R⎠
⎟⎟
⎞ (5) 

Hence, external the external variable that affects the linear acceleration in flight path direction MN  
� is the drag force ., while 

accelerations perpendicular to the flight path direction (ON
� and PN
�) are affected by the lift force ).  
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Derivation of Rotational Acceleration around the Body Fixed Axes. The dynamic aircraft equations of motion (49) define 

the rotational acceleration acting around the aircraft’s body fixed (bf) axes MT�, OT�, and PT� such that  

U� = V + W��X� − YXZW�� − W��[ + W��UYW��  
 Y� = \ − XY(W�� − W��) − W��(U] − X])W�� (6) 
X� = _ + W��U� − UYZW�� − W��[ − W��YXW�� , 

where U� is the roll acceleration, Y�  is the pitch acceleration, X� is the yaw acceleration, U is the roll velocity, Y is the pitch velocity, X is the yaw velocity, V is the roll moment, \ is the pitch moment, _ is the yaw moment, and the elements of the moment of 

inertia tensor, such that  (see Fig. S2)  

W =  ` W�� W�� W��W��  W�� W��W�� W�� W��
a . (7) 

To estimate the effect of the external moments and the moment of inertia tensor on the LisHawk’s agility in the respective 

aircraft fixed axis, the pure rotational motion is developed by assuming the rotational velocities of the other axes are zero, as 

stated in (8). Thus, Eq. 6 reduces to the variables which can directly be influenced by the morphing wing and tail (V, \, _, and W), such that  

c(⃗ �defg =
⎝
⎜⎜⎜
⎛ VW��\W��_W�� ⎠

⎟⎟⎟
⎞ . (8) 

The tail’s effect on static pitch stability. The pitching stiffness is influenced by the location of the lifting surfaces, and can 

simplified (fuselage neglected, for small angles of attack) as  *i,j = − I
�
̅  *+
,j − ,lIl,
�
̅ ml*+l,jZ1 − no,j[ (10) 

where *+
,j is the lift slope of the main wing, *+l,j is the lift slope of the tail, I
 is the distance between the center of gravity 

and the center of lift, Il is the distance between the tail’s center of lift and the center of gravity,  ,
 is the main wing’s area, ,l 

is the area of the tail,  �
̅ is the mean chord of the main wing, ml is the efficiency of the tail dependent on the flow quality 

arriving the elevator, and no,j is the downwash angle of the flow arriving at the tail (8). Fig. S3 depicts the relations of the 

variables above in a schematic. To simplify Eq. 10, we assume mp = 1 and no,j = 0 so that     

*i,j = − I
�
̅  *+
,j − ,lIl,
�
̅ *+l,j . (11) 

The lift slopes, the wing planform areas, the distance Il (aft tail configuration) and the mean aerodynamic chord are always 

positive. The change in Il is small and it is hence assumed to be constant. From Eq. 11 it is accessible that the wing-tail 

combination is unconditionally stable if the center of gravity is in front of the center of lift, meaning that I
 > 0. For the 

LisHawk, shifting the wing into tucked wing increases I
 which increases longitudinal stability. A similar effect can be 

expected when the LisHawks tail area is increased. Contrarily, by sweeping the wing forward, I
 is reduced and can even 

become negative, hence becoming negative stable (unstable).  

Flight Model Dynamics. A three degrees-of-freedom nonlinear flight dynamics model is used to describe the longitudinal 

motion of the feathered drone as expressed by the list of equations below (8, 44). The state variables , R, �, Y, M and P 

correspond to the aircraft’s velocity, angle of attack, flight path angle, pitch rate, horizontal and vertical displacements 

respectively. r refers to the density while 2 indicates the gravitational acceleration. 1 and , describe the mass and reference 

wing area of the aircraft respectively. s� is the pitching moment about the aircraft’s center of gravity and W�� is the mass 

moment of inertia. 

� =  ' cos R − 12 sin � − 12 r],*/ZR, vg , vl, v�[ 1 (13) 

R� =  Y − ' sin R − 12 cos � + 12 r],*+ZR, vg , vl , v�[ 1 (14) 

�� =  ' sin R − 12 cos � + 12 r],*+ZR, vg , vl , v�[ 1 (15) 

Y� =  s�ZR, vg , vl , v�[W��Z v�[ (16) 
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M� =   cos � (17) P� =  − sin � (18) 

In identifying the aircraft’s optimum morphology for the lowest thrust requirement to sustain straight level flight condition 

(Fig. 6), the following zero-equality constraints are specified in the morphing shape optimization framework: s�ZR, vg , vl, v�[ = 0 (19) ' cos R − 12 sin � − 12 r],*/ZR, vg , vl, v�[ 1 = 0 (20) 

' sin R − 12 cos � + 12 r],*+ZR, vg , vl , v�[ 1 = 0 (21) 

� = 0 (22) Y = 0 (23) 

Aerodynamic Coefficients. Plots of lift coefficient (*+), drag coefficient (*/), pitching moment coefficient (*i), rolling 

moment coefficient (*L), and yawing moment coefficient (*x) are based on the formulas from (5), which are shown below. ) 

is the lift force in N, . is the drag force in N, \ is the pitching moment in Nm, V is the roll moment, _ is the yawing moment,  is the velocity in m/s, , is the wing area in m2, r is the air density in kg/m3, � is the mean aerodynamic chord in m, and y is 

the wingspan in m (Fig. S2). 

lift coefficient drag coefficient pitch coefficient Roll coefficient yaw coefficient C{ = 2 LρSV] C� = 2 DρSV] C� = 2QρScV] C� = 2PρSbV] C� = 2RρSbV] 
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Supplementary Figures 

 

Fig. S1. Airfoil selection of the LisHawk compared to a bird’s wing. (A) The outer wing constitutes of overlapping artificial feathers which 

was modelled as a flat plate, for the center wing an adapted eagle profile is used, and for the inner wing the JWL-065 with a reflex trailing 

edge is considered. Airfoils presented are the ones used in the XFLR5 simulation process. (B) Undercambered airfoils and variable twist 

configuration of a bird’s wing (56). 

 
Fig. S2. Coordinate systems and variables used for describing the agility and maneuverability metrics used in this paper. The red/white filled 

circle is the center of gravity. (A) Side view: Variables describing the side view are the x-axis in the body fixed frame MT�, the z-axis in the 

body fixed frame PT� (perpendicular to MT�), the wind frame x-axis M
�, the wind frame z-axis P
� (perpendicular to M
�), the angle of attack R, the flight velocity , the lift ), the rag ., the pitching moment \, and the pitching acceleration Y� . (B) Front view: Variables describing the 

front view are the y-axis in the body fixed frame OT� (perpendicular to MT� and PT�), the y-axis in the wind fixed frame O
� (perpendicular to M
� and P
�), the bank angle ?, the roll moment V, and the roll acceleration U�. (C) Top view: Variables describing the top view are yawing 

moment _ and the yawing acceleration X�. The sideslip angle is assumed to be small and hence the wind fixed axes are equal to the body fixed 

axes.    

 

Fig. S3. Physical parameters that influence the pitch stability and their relation with the LisHawk platform. Two lifting surfaces influencing 

the pitching stiffness can be distinguished: (i) The pitching moment caused by the main wing at a certain angle of attack R is influenced by the 

lift force )
 and the drag force .
 (perpendicular to )
 and parallel to the path velocity acting on the wing 
) and the lever arm I
. (ii) The 

tail’s contribution is a function of the tail’s lever arm Il, the tail’s lift )l and the tail’s drag .l. The drag force is again parallel to the incoming 

airflow l, which is different from R due to the downwash generated by the main wing.   

 

A B C 
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Fig. S4. Standard deviation and measured points of the lift and drag plots. The shaded areas indicate the standard deviation and the markers 

(x) indicate the measured pints. (A) Drag coefficient with respect to the angle of attack, as seen in Fig. 3B to D. (B) Lift coefficient with respect 

to the angle of attack, as seen in Fig. 3B to D.   

 
Fig. S5. Standard deviation and measured points of the pitch moment and roll moment plots. The shaded areas indicate the standard 

deviation and the markers indicate the measured pints for an elevator deflection vg of 0° (x) and -20° (square). (A) Pitch coefficient with 

respect to the angle of attack, as seen in Fig. 5B to D. (B) Pitch coefficient resulting from an elevator deflection (-20°, upward) with respect 

to the angle of attack, as seen in Fig. 4A to D. (C) Roll coefficient resulting from two different asymmetric wing sweep angles (45° and 85°) 

with respect to the angle of attack, as seen in Fig. 4F.  
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Supplementary Movies 

Mov. S1. Morphing wing fabrication. This movie shows each assembly step of the wing morphing mechanism and provides 

information on the materials used.  

Mov. S2. Morphing tail fabrication. This movie shows the assembly steps of the tail mechanism and the materials used.  

Mov. S3. Morphing control surfaces. This movie shows the LisHawk’s morphing capabilities.  

Mov. S4. Flight test. This video shows the LisHawk in flight in different morphing configurations and flight regimes and its 

behaviour during aggressive and cruising flight.  

Mov. S5. Pull up maneuver. Pull up maneuver for all three cases of tucked wing and tail, tucked wing and extended tail, and 

extended wing and tail to show increased agility and maneuverability due to morphing.   

 


