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Abstract. In this work, a fully coupled six degree-of-freedom (DoF) nonlinear 

suboptimal control of a variable-pitch quadrotor is studied using a state-depend-

ent Riccati equation (SDRE) controller. The quadrotor control has been widely 

considered for attitude control; however, the position control is an uncontrollable 

problem with the common design of the SDRE. Due to the under-actuated nature 

of a quadrotor, the state-dependent coefficient (SDC) parameterization of state-

space representation of a nonlinear system leads to an uncontrollable SDC pair. 

The control law is divided into two sections of position and attitude control. The 

position control provides the main thrust. A virtual constraint is regarded to pro-

vide stabilization for the quadrotor in attitude control. Two methods were de-

signed for selection of a state vector or in other words, selection of feedback. The 

first one uses the position and orientation and their derivatives in global coordi-

nate. The second one uses position and orientation in global and their velocities 

in local coordinate. The dynamics of a variable-pitch propeller quadrotor was 

imported to the problem and compared with a fixed-pitch propeller system. The 

simulation of the systems shows that the SDRE is capable of controlling the sys-

tem with both fixed- and variable-pitch rotor dynamics. 

Keywords: Quadrotor; Nonlinear Optimal Control; SDRE; Virtual Constraint. 

1 Introduction 

The state-dependent Riccati equation was applied to quadrotors by Voos for the first 

time in 2006 [1]. The control problem was limited to attitude control of a system in a 

sub-control unit, and control of the velocity. So, the regulation was not possible since 

the quadrotor was moving in space with a constant velocity. The combination of the 

SDRE controller with the neural network was provided to control the velocity vector 

towards zero [2]. Navabi and Mirzaei presented  -D based nonlinear tracking control 

of a quadcopter using the state-dependent Riccati equation [3]. Due to under-actuation, 

only Z  direction was controlled. Babaie and Ehyaie proposed a robust SDRE, based 
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on sliding mode design [4]. The position control was addressed through Lyapunov cri-

teria for stabilization of sliding surfaces. Chipofya and Lee presented the position con-

trol of a quadrotor via SDRE controller employing a Kalman filter for estimation [5]. 

In the design, the planar motion of the quadrotor was not included in the simulation. 

This problem was visible in most control problems of quadrotors using the SDRE. 

At the beginning of the quadrotor control research, most of the cases used fixed-

pitch propeller systems to simplify the design, increase the stability of the quadcopter, 

and employ common methodology in the literature. Fixed-pitch propellers limited the 

inputs to angular velocities of rotors. The focus of this work is to explore the variable-

pitch propellers quadrotor control within the framework of the SDRE. The variable-

pitch design decreases stability; hence, a more agile maneuver could be expected. In-

verted flight and flip during the motion were also highlighted in the literature [6]. The 

use of variable-pitch blades in quadrotors was reported by Bristeau et al. [7], and later 

on by Cutler [6]. Fresk and Nikolakopoulos presented experimental model derivation 

and control of a variable pitch propeller for a quadrotor [8]. Sheng and Sun focused on 

the energy consumption of the variable pitch quadrotor control [9]. Panizza et al. pre-

sented data-driven attitude control of the system [10]. Chipade et al. presented control 

of variable pitch quadrotor for payload delivery with focus on mechanism design [11]. 

Rotor dynamic in variable pitch imposed a nonlinear algebraic equation which required 

control allocation [12], or other techniques to find a solution. Turning the nonlinear 

relation to a first-order differential equation was regarded to solve that issue [12]. An 

extra differential equation in addition to complex nonlinear dynamics of a multirotor 

enhances the complexity. 

The main contribution of this current research is to apply the state-dependent Riccati 

equation controller for a variable-pitch quadrotor, considering fully coupled six-DoF 

nonlinear dynamics. The main step of the SDRE control design is state-dependent co-

efficient parameterization of a nonlinear vector. The SDC matrices must be controllable 

and observable to guarantee a solution to the related SDRE. The equation of motion of 

a quadrotor in SDC form does not release a controllable pair of SDC matrices since 

there is only one actuator for translation control. To overcome this issue, the design of 

the translation control has been done assuming that three virtual inputs are available for 

XYZ  directions. Then, virtual constraints were designed to find the relations between 

thrust (actuator in Z ) and desired orientation angles. The three virtual inputs have been 

transformed into one input (thrust) capable of controlling position vector. The main 

contribution of this research is fully coupled six-DoF control of a variable-pitch quad-

rotor using state-dependent Riccati equation introducing virtual constraint; for both 

fixed- and variable pitch rotor design. 

Two sets of states were chosen to generate state-space representations for the system. 

The first one uses the position and orientation of the quadrotor in global coordinates 

and their velocities in local one. This point of view requires the assumption of small 

deviations in rotational movement which is common in regulation and tracking of a 

multirotor system. The second one uses all the position and orientation with their ve-

locities in global coordinate. Both methods were simulated and analyzed to assess the 

effect of different feedback selection. 
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2 The State-dependent Riccati Equation 

Consider a nonlinear system 

 ( ) ( ( )) ( ) ( ( )) ( ),t t t t t x A x x B x u  (1) 

where ( ) nt x  is a state vector and ( ) mt u  is an input vector. ( ( )) : n n nt A x  

and ( ( )) : n n mt B x  are state-dependent coefficient parameterization of a nonlinear 

system, consists of piecewise-continuous vector-valued functions that satisfy Lipschitz 

condition. 

The intention of optimal control is to minimize the cost functional integral [13]: 

  
0

1
( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) d ,

2

T TJ t t t t t t t



   x Q x x u R x u  

where ( ( )) : n n nt Q x  penalizes the states (symmetric positive semi-definite) and 

( ( )) : n m mt R x  penalizes the inputs (symmetric positive definite).  

Controllability condition: The pair of { ( ( )), ( ( ))}t tA x B x  is a completely controllable 

parameterization of a nonlinear system (1) with its condition [14]. 

Observability condition: The pair of 1/2{ ( ( )), ( ( ))}t tA x Q x  is a completely observable 

parameterization of a nonlinear system (1) with its condition [14].  

A standard form of the SDRE control law is  1( ) ( ) ( )( ),T u R x B x K x x  where the 

symmetric positive definite suboptimal gain 
2 2[ ( ( ))] n nt K x , is a solution to the state-

dependent Riccati equation [14]: 

 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .T T   A x K x K x A x K x B x R x B x K x Q x 0  

3 State-space Representation 

3.1 Global Position and Local Velocity 

The absolute linear position vector of a quadrotor in the inertial frame is 

1 c c c( ) [ ( ), ( ), ( )] ( )Tt x t y t z t mξ  in which subscript “c” stands for center-of-mass, the three 

Euler angles in an inertial frame, roll-pitch-yaw, are set in a vector 

2( ) [ ( ), ( ), ( )] (rad)Tt t t t  ξ , linear velocity vector in body frame is 

1( ) [ ( ), ( ), ( )] (m/s)Tt u t v t w tυ , and angular velocity vector in body frame is 

2( ) [ ( ), ( ), ( )] (rad/s)Tt p t q t r tυ , Fig. 1.  



4 

 

Fig. 1. Fixed and moving reference frame. 

The following kinematics relations are held between inertial and body frame [15]: 

 
1 2 1( ) ,ZYXξ R ξ υ  (2) 

 
2 2 2( ) ,ξ T ξ υ  (3) 

where 
2( )ZYXR ξ  is found based on the multiplication of the three rotation matrices 

around three main axes: 

2( ) ,ZYX

c c s s c c s c s c s s

c s s s s c c c s s s c

s s c c c

           

           

    

  
 

   
  

R ξ 2

1

( ) 0 ,

0 / /

s t c t

c s

s c c c

   

 

   

 
 

  
 
 

T ξ  

in which e.g. cos( ( ))c t   and tan( ( ))t t  . There is one input force (thrust) 

B( ) (N),T t  acting in direction of w  on CoM of the quadrotor (local moving coordinate), 

and an input torque vector 
B( ) ( ) ( ) ( )  (N.m)

T

t t t t       τ , acting against three Eu-

ler angles { ( ), ( ), ( )}.t t t    
B( )T t  is defined in body frame and 

B( )tτ  is set on the inertial 

frame.  

In this point of view, the position and attitude of the quadrotor are considered and 

measured in the inertial frame, and the linear and angular velocity of that are measured 

in body frame. This consideration is valid through a simplification 
2 2( ) ( )t tξ υ  that 

holds for small angular motions [16], and 
1 1( ) ( )t tξ υ . This assumption leads to two 

more approximations 
1 1( ) ( )t tυ ξ  and 

2 2( ) ( )t tυ ξ . Based on that assumption, the 

state vector of the system is assembled as 

 
1 2 1 2 c c c( ) [ ( ), ( ), ( ), ( )] [ , , , , , , , , , , , ] .T T T T T Tt t t t t x y z u v w p q r   x ξ ξ υ υ  (4) 

Considering state-vector (4), the upper half of the state-space representation of the 

system uses kinematics relations (2) and (3); and the lower part of that extracts 
1ξ  and 

2ξ  from equation of motion: 

 

  

 

X Y 

ENU 

Z 

 
ψ 

ϕ 

θ 

v 
u 

w 

(xc,yc,zc) 

 

p 
q 

r 

ξ1 

 

f1, rotor 1 f4, rotor 4 

f3, rotor 3 

  

 f2, rotor 2 

 

 

ω3 
 

ω1 

ω2 

 
ω4 
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2 1
1

2 2
2

3 3 ,3 2 B 3 1
1

1
2 2 B 2 2 2

( )
( )

( )
( )

( ) ,
1 / ( )( )

( ) ( ) ( , )

ZYX

ZYX

t

t
t

m T mgt

t





  
  
            
        

R ξ υ
ξ

T ξ υ
ξ

x
I R ξ e Dξυ

υ J ξ τ C ξ ξ ξ

 (5) 

where 
,3 2( )ZYXR ξ  is the third column of 

2( )ZYXR ξ  and 
3 [0,0,1]Te , and 

2 2 2( ) ( ) ( )TJ ξ W ξ IW ξ , 
2( )W ξ  is the inverse of  

2( )T ξ  and vector 
2 2 2[ ( , ) ]C ξ ξ ξ  in-

cludes Coriolis and centrifugal terms. The aerodynamics effect is incorporated into the 

dynamics of the system thorough diag( , , ) (kg/s)x y zD D DD  matrix [17]. That is the 

result of drag force caused by air resistance in which , ,x y zD D D  are drag coefficients 

in ( , , )X Y Z  inertial frame. 

 

3.2 Global Position and Global Velocity 

In this section, the position and attitude of the quadrotor, and the linear and angular 

velocity of that are considered and measured in the inertial frame. This consideration 

does not need any assumption or approximation. So, the state vector of the system is 

assembled as 

 
1 2 1 2 c c c c c c( ) [ ( ), ( ), ( ), ( )] [ , , , , , , , , , , , ] .T T T T T Tt t t t t x y z x y z      x ξ ξ ξ ξ  (6) 

Considering state-vector (6), the modified representation of (5) is found: 

 

1
1

2
2

3 3 ,3 2 B 3 11

1
2 2 B 2 2 2

( )
( )

( )
( )

( ) .
1 / ( )( )

( ) ( ) ( , )

ZYX

t
t

t
t

t
m T mgt

t





 
 

 
 

 
          
 

         

ξ
ξ

ξ
ξ

x
I R ξ e Dξξ

ξ J ξ τ C ξ ξ ξ

 (7) 

The state-space representation in (7) is based on the measurement of all the states in 

the inertial frame; however, the representation in (5) computes the half of the states in 

body frame. So, the choice of state-space representations might be restricted to the sen-

sor selection or practical limitation. One should note that “global position and local 

velocity (GPLV)” representation has an approximation though “global position and 

global velocity (GPGV)” form was generated without any simplification or approxima-

tion. 

4 Variable-pitch Rotor Dynamics 

Variable-pitch propeller quadrotors provide the option of additional inputs to the prob-

lem; hence, the angle of a blade could be considered as input. More maneuverability, 

upright or inverted flight, detach/attach equipment in out of reach positions and nega-

tive thrust deceleration could be listed as the advantages of the variable-pitch design. 



6 

The challenges are also complexity in rotor mechanism design, control approach and 

reducing the flight stability of the quadrotor. 

The blade is defined in terms of thrust coefficient as [12]: 
T T

l

6 ( ) ( )3
( ) ,

2 2

i i

i

C t C t
t

C





   

where 
i  and 

Ti
C  are blade angle and thrust coefficient of i-th rotor with respect, 

lC


 

is airfoil lift curve slope, 
bN c

R



  in which 

bN  is number of the blades in each rotor, 

 (m)c  is rotor’s chord length and  (m)R  is the radius of the rotor. Based on the structure 

of the quadrotor (plus shape), the thrust coefficient is related to force/moment inputs of 

a quadrotor [18]: 

   

 

4 2 3 1

1 2 3 4

4

B T T T T T

1

3/ 23/ 2 3/ 2 3/ 2

T T T T

( ) ( ),  ( ) ( ) ( ) ,   ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,
2

i

i

T t K C t t lK C t C t t lK C t C t

KR
t C t C t C t C t

 



    





    

    


 

where   is 1 for normal flight and -1 for inverted flight and 4 2

ssK R   in which 
3 (kg/m )  is air density and 

ss  (rad/s)  is a constant angular velocity of the rotors; 
ss  

is considered constant in variable-pitch flight mode. Considering variable    in K  is 

also possible and increases the flexibility and complexity of the system; in this work, 

constant angular velocity is chosen for the variable-pitch system. 

5 The State-dependent Coefficient Parameterization 

The transformation of the state-space representation of the dynamics into apparent (ex-

tended) linearization is called state-dependent coefficient parameterization. Since two 

representations were given for the dynamics of the quadrotor, two sets of SDC are gen-

erated. With regard to the state-space equation (5), the first point of view, GPLV, pro-

vides: 

 3 3 2

t

3 3 3 3

( )
( ) ,

1 /

ZYX

m



 

 
  

 

0 R ξ
A x

0 I D

3 3

t

3 3

,
1 / m





 
  
 

0
B

I
 (8) 

 3 3 2

o 1

3 3 2 2 2

( )
( ) ,

( ) ( , )







 
  

 

0 T ξ
A x

0 J ξ C ξ ξ

3 3

o 1

2

( ) ,
( )





 
  
 

0
B x

J ξ
 (9) 

where index “t” stands for translation and “o” for orientation. With regard to the state-

space equation (7), the second point of view, GPGV, provides: 

 3 3 3 3

t

3 3 3 3

,
1 / m

 

 

 
  

 

0 I
A

0 I D

3 3 3 3

o 1

3 3 2 2 2

( ) ,
( ) ( , )

 





 
  

 

0 I
A x

0 J ξ C ξ ξ
 

moreover, 
tB  and  

o ( )B x  are similar to (8) and (9). 
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Controllability: It can be easily checked that an arbitrary pair of n n n n

n n n n

 

 

 
  
 

0 I
A

0 0
 

and n n

n n





 
  
 

0
B

I
 is controllable and a pair of 1/2{ , }A Q , with 

n nQ I  is observable. 

Considering that the diagonal elements of 
2( )ZYXR ξ , 

2( )T ξ  and 1

2( )
J ξ  possess multi-

plication of “cosine” functions, they hardly meet zero. So, the controllability and ob-

servability of the proposed SDC parameterization are guaranteed, except for 

( ( ), ( ), ( )) (2 1) / 2,   t t t k k      . The orientation of ( ), ( ), ( )t t t    is not supposed 

to reach / 2  due to stability of the quadrotor for normal flight; in case of inverted 

flight, GPGV must be used. 

Note: It should be noted that 
tB  in (8) should have been a 3 1  vector since the 

thrust input is a scalar value. However, the SDC design based on  t 3 1
B , will result in 

an uncontrollable system. So, the design of (8) was done assuming a fully-actuated 

system. In Section 6, the necessary modification to incorporate 3 virtual inputs to one 

actual thrust 
BT  will be established. 

6 Virtual Constraint Under-actuation Compensation 

A quadrotor is an under-actuated system, possessing six-DoF motion in space and four 

input actuators. One could divide the six-DoF system into two subsystems, three trans-

lational motion 
c c c( , , )x y z , and three rotational one ( , , )   . The contribution of the 

input 
B( )tτ  in the lower sets of state-space equation (5) or (7) provides a stable control-

ler. However, the contribution of input thrust 
B( )T t  through 

,3 2( )ZYXR ξ  in the upper sets 

of the system (5) or (7) only controls cz  direction. In order to control c c,x y  directions, 

additional constraints should be provided to link the motions in a meaningful manner. 

The error of the state vector is defined as 
des( ) ( )t t e x x . A stable control law is pro-

posed (assuming the system is not under-actuated): 

 1

t t t t( ) ( ) ( ) ,T U R x B x K x e  (10) 

where 6 3 3

t ( ) : R x  is the weighting matrix for inputs, t 1 1,des 1 1,des,
T

T T T T    e ξ ξ υ ξ  

(GPLV) or t 1 1,des 1 1,des,
T

T T T T    e ξ ξ ξ ξ  (GPGV) is an error vector including translational 

states, 6 6 6

t ( ) : K x  is the symmetric positive definite solution to the SDRE (ded-

icated for translational control): 

 1

t t t t t t t t t t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .T T   A x K x K x A x K x B x R x B x K x Q x 0  

Replacing 
1ξ  from the equation of motion with U results in [15]: 
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0

0 .B

c s c s s
T

c s s s c
m

g c c

    

    

 

  
  

    
     

U  (11) 

Changing (11) to    1 2 3 2( ) 0 0 / ,
T T

ZYX BU U U g T m R ξ  and multiplying 

2( )T

ZYXR ξ  from left side provides (
2( )ZYXR ξ  is orthogonal): 

    2 1 2 3( ) 0 0 / .
T TT

ZYX BU U U g T m R ξ  (12) 

From Eq. (12), two relations could be found as constraints for determining desired 

values for   and   [15]: 

 1 1 des 2 des
des

3

cos sin
( ) tan ,

U U
t

U g

 
 

 
  

 

 (13) 

 
1 1 des 2 des

des
2 2 2

1 2 3

sin cos
( ) sin .

( )

U U
t

U U U g

 
 

 
 
    

 (14) 

Equations (13) and (14) are found based on cascade design [15]. So, the desired 

vector 
2,des ( )tξ , is defined as 

  2,des des des des( ) ( ) ( ) ( ) ,
T

t t t t  ξ  (15) 

where desired 
des ( )t , in (13)-(15), could be independently set. Consequently, the prob-

lem of under-actuation is solved and the thrust is in the form of: 

 
 B ,3 2 1 ,3 2 2 ,3 2 31 2 3

1 2 3

( ) ( ) ( ) ( ) ( )

        ( ) ( ) ( ) .

ZYX ZYX ZYXT t m U U U g

m c s c s s U c s s s c U c c U g           

             

       

R ξ R ξ R ξ
 

The design of the rotational control of the quadrotor is straightforward (similar to 

(10)): 1

B o o o o( ) ( ) ( ) ,T τ R x B x K x e  where 6 3 3

o( ) : R x  is the weighting matrix for 

inputs, o 2 2,des 2 2,des,
T

T T T T    e ξ ξ υ ξ  (GPLV) or o 2 2,des 2 2,des,
T

T T T T    e ξ ξ ξ ξ  (GPGV) is 

error vector including rotational states, 6 6 6

o( ) : K x  is the symmetric positive def-

inite solution to the SDRE (dedicated for rotational control): 

 1

o o o o o o o o o o( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .T T   A x K x K x A x K x B x R x B x K x Q x 0  

7 Simulations 

In this section, both cases of GPLV and GPGV are simulated and compared. The pa-

rameters of the quadrotor are based on the model in Ref. [17]. A regulation case study 

is regarded to analyze the modeling and the controllers. The initial condition of the 

system was set as equilibrium point and the desired position was 
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des f des des 1 6( ) [0.4, 0.6,1, ( ), ( ),0.2, ]Tt t t   x 0 . It should be noted that 
des des( ), ( )t t   are de-

fined by (13) and (14). The simulation was done in 10s and the weighting matrices were 

selected as 
o t 3 310   R R I , 

o diag(1,1,1,0,0,0)Q  and 
t 6 6Q I . More details on 

weighting matrix selection could be reviewed in Ref. [13].The position of the quadrotor 

in Cartesian coordinate is presented in Figs. 2-3. Trajectories of the systems are pre-

sented in Fig. 4. The thrust and related moment of roll are illustrated in Fig. 5. The error 

of the GPLV was found 43.1mm and the one for GPGV 19.3mm. The change in the 

weighting matrix, variable a  in 
t 6 6a  Q I , increase or decrease the error of the sys-

tem. A range of constant matrices has been applied to study the error, see Table 1. 
(a) 

 

(b) 

 
Fig. 2. Position of the quadrotor in X (a), and Y direction (b). 

(a) 

 

(b) 

 
Fig. 3. Position of the quadrotor in Z direction (a), and pitch angle of the system (b). 

 
Fig. 4. Trajectories and configuration of the quadrotor. 
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(a) 

  

(b) 

 
Fig. 5. The thrust of the quadrotor (a), and moment input for roll (b). 

  
Fig. 6. Angular velocities of the rotors. 

 
Fig. 7. Angles of the blades in variable-pitch rotor design. 

Table 1. Change in the weighting matrix versus error of the quadrotor. 

a   error GPLV (mm) error GPGV (mm) 

0.01 767.3236 765.4663 

0.1 272.9474 264.6261 

1 25.0975 7.8013 

10 1.3296 0.1688 

100 0.0624 0.0254 

 

Angular velocities of the rotors are presented in Fig. 6 and the angle of the blades in 

Fig. 7. The trajectories were almost similar in regulation in Fig. 4 though more accuracy 

was obtained by GPGV. The steady-state thrust reached 4.59 (N)  as it was expected. 

The steady-state value of rotors’ angular velocities were set to 620.5 (rad/s) . The in-

crease in weighting matrix improves the results and accuracy nevertheless the GPGV 

outweighs the other feedback selection. The reason for similarities in angular velocities 

of the rotors, Fig. 6, or blade angles, Fig. 7, is rooted in the virtual constraint design, 

Eqs. (14) and (15). Based on the virtual constraint design, the quadrotor yaw, roll, and 
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pitch angles are kept at minimum; so, the differences between the rotor angles and rotor 

velocities are small. 

The solution to the quadrotor control results in total thrust 
BT  and input moment 

vector 
Bτ  which define the control input 

B B[ , ]T TTu τ , presented in Fig. 5. The relation 

between u  and thrusts could be done by fixed- or variable-pitch design. Figure 6 shows 

the choice of fixed-pitch rotors and Fig. 7 presents the variable-pitch ones. 

8 Conclusions 

This work presented nonlinear fully coupled six-DoF control of a variable-pitch quad-

rotor using the state-dependent Riccati equation. The dynamics equation of the quad-

rotor was considered without any simplification and transformed to state-space repre-

sentation in two schemes: GPLV and GPGV. Both of them successfully simulated on a 

system and analyzed. For the initial guess of the weighting matrix of states, the error of 

the GPLV was found 43.1mm and the one for GPGV 19.3mm. The decrease in the 

weighting matrix increased the error and the difference between the results of GPLV 

and GPGV. Increase in weighting matrix Q ,  decreased regulation error and also re-

duced the difference between two feedback selections. In all simulations and compari-

sons, the GPGV gained better accuracy. The reason is the assumption of 
2 2( ) ( )t tξ υ  

in state-space representation of GPLV. The transformation of the force/moment of the 

quadrotor to rotors were done using fixed- and variable-pitch design. The simulation 

showed success and suggested the application of the SDRE in practical implementa-

tions. 
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