# Supporting Information for "Simulation of plasmaspheric plume impact on dayside magnetic reconnection"

J. Dargent<sup>1</sup>, N. Aunai <sup>2</sup>, B. Lavraud <sup>3</sup>, S. Toledo-Redondo <sup>3,4</sup>, F. Califano <sup>1</sup>

 $^1 \mathrm{Dipartimento}$ di Fisica "E. Fermi", Universitá di Pisa, Pisa, Italy

<sup>2</sup>LPP, CNRS, Ecole polytechnique, UPMC Univ Paris 06, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne

Universités, PSL Research University, Palaiseau, France

<sup>3</sup>Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France

 $^4\mathrm{Department}$  of Electromagnetism and Electronics, University of Murcia, Murcia, Spain

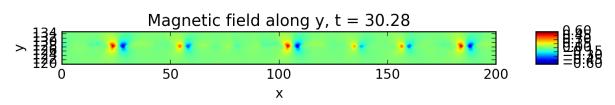
## Contents of this file

1. Figure of the early tearing instability

In Figure S1, we can see the early layer forming reconnection X point far away from the perturbation. Those X point are observable thanks to the dipoles in  $B_y$  and their separation is consistent with the linear tearing instability (see the discussion in the paper).

### Additional Supporting Information (Files uploaded separately)

1. Captions for Datasets S1


#### Introduction

The Supplementary material corresponds to the data sets used in this paper. For each time step of the simulation, we localized the X point and calculated the reconnection rate at its location. Then, for normalization, we extracted the densities and magnetic field in inflow and outflow of the reconnection X point. All those data are stored in the Data Set S1.

#### Data Set S1.

Data used for the simulation. The data are stored using the HDF5 format. The file contains 7 hdf5 directories. The first one is called "time" and contains a table of size [2663] with the times. The second one is called "Xpoint\_coord" and contains a table of size [2,2663] with the coordinates of the X point in the simulation box for each time. The third one is called "rate" and contains a table of size [2663] with the reconnection rate at the X point for each time. The fourth (resp. fifth) one is called "Binflow" (resp. "Ninflow") and contains a table of size [1200,2663] with the magnetic field amplitude (resp. the total ion density) for each time in a vertical cut along y and centered on the reconnection X point. The sixth (resp. seventh) one is called "Boutflow" (resp. "Noutflow") and contains a table of size [2000,2663] with the magnetic field amplitude (resp. the total ion density) for each time in a vertical cut along y and centered on the reconnection X point. The sixth (resp. seventh) one is called "Boutflow" (resp. "Noutflow") and contains a table of size [2000,2663] with the magnetic field amplitude (resp. the total ion density) for each time in a cut following in x the fluid streamline of ions ion the outflow jet. These cuts are also centered on the reconnection X point.

January 21, 2020, 12:06pm



:

**Figure S1.** Magnetic field  $B_y$  in a sub-box along the current layer.

X - 3