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Abstract. Existing incremental digital volume correlation methods can reduce the number of errors introduced by 9 
interpolation calculations in the inverse-compositional Gauss-Newton algorithm (IC-GN) iteration. However, the 10 
accuracy of these existing methods is insufficient for some conditions as the curve-fitting method has high 11 
computational efficiency but lacks accuracy. A simple pre-interpolation method is proposed to improve the accuracy 12 
and computational efficiency of digital volume correlation. First, the pretreatment of a deformed volume image is 13 
calculated by the cubic spline interpolation method with the most often chosen interpolation step of 1/2 sub-voxel. 14 
Next, the pre-interpolation is calculated only once and the block calculation techniques solve the memory problem. 15 
Then, the reference sub-volume in the updated reference volume image is translated into the nearest half-integer 16 
voxel position instead of the integer voxel position or other sub-voxel positions. The pre-interpolation method is 17 
applied to both the IC-GN and the curve-fitting method. Experimental results show that the maximum mean bias 18 
error and the maximum standard deviation of the improved IC-GN are reduced by 34% and 75%, respectively. The 19 
improved curve-fitting has better accuracy and computational efficiency than IC-GN under small strain and the 20 
curve-fitting method can achieve about 3.2 times speedup than IC-GN. 21 
 22 
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1 Introduction 25 

The Digital Volume Correlation Method (DVC) was developed from mature two-dimensional 26 

digital image correlation (DIC) technologies by Bay et al.1 Since 1999, the DVC algorithm has 27 

been widely used to quantify the deformation field of materials under external loading.2 DVC 28 

can contribute to not only a better understanding of the mechanical behavior of materials from 29 

the perspective of a microstructural study3 but also to the verification of the results of 3D finite 30 

element simulation.4 In the past 20 years, many researchers have been committed to improving 31 

the accuracy and computational efficiency of DVC algorithms.5-9 The inverse-compositional 32 

Gauss-Newton algorithm (IC-GN) algorithm is an advanced matching algorithm10 that can 33 

accurately estimate displacement fields when large deformation occurs. Although the Hessian 34 
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matrix only needs to be calculated once in this method, its iterative calculation is still time-35 

consuming. Therefore, Pan et al.6 used the interpolation coefficient lookup table approach to 36 

reduce the amount of calculation, when using the IC-GN algorithm, in order to improve the 37 

computational efficiency; they obtained improvement in computational speed but the approach is 38 

memory-consuming. The fast Fourier transform algorithm was also introduced into the DVC 39 

algorithm for cases of small deformation to improve computational efficiency.7 In recent years, 40 

with the rapid development of GPU hardware and software, GPUs have been gradually 41 

employed to accelerate the DVC algorithm and the computational speed was significantly 42 

improved compared to that of a CPU.11 A simple and effective incremental DVC method was 43 

proposed by Wang et al.8 to reduce redundant interpolation calculations and errors introduced by 44 

interpolation calculations in IC-GN iterations. The deformation of different regions in a real 45 

material was calculated by Wang et al.9 using the self-adaptive DVC approach; the large 46 

deformation is calculated using a small sub-volume size while the small deformation is 47 

calculated using a large sub-volume size. 48 

However, there is still space for improvement in the accuracy and computational efficiency 49 

of these algorithms. For example, incremental algorithms performing well in terms of 50 

computational speed may have problems with accuracy and system stability. The self-adaptive 51 

DVC approach has the disadvantage of programming complexity. The accuracy and stability of 52 

the curve-fitting algorithm are relatively poor compared to the IC-GN algorithm; however, its 53 

computational efficiency is outstanding.12 The curve-fitting algorithm would still be a good 54 

choice if its accuracy could be improved. 55 

In this work, a simple and effective pre-interpolation method is proposed for the DVC 56 

algorithm. First, a 1/2 sub-voxel interpolation calculation is performed in advance, using the 57 
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proposed pre-interpolation method, on a deformed volume image matrix. Then, the sub-voxel 58 

displacement is estimated by the DVC incremental algorithm and the curve-fitting algorithm. 59 

The pre-interpolation calculation only needs to be carried out once, which reduces the error 60 

caused by intensity interpolation of renewed reference correlation points. Finally, the efficiency 61 

and capability of the proposed improved DVC approach is demonstrated in practical applications. 62 

2 In-advance interpolation method 63 

2.1 IC-GN—large strain 64 

Interpolation calculation is a time-consuming task in DVC calculations; it significantly 65 

influences the computational speed. As mentioned earlier, Pan et al.6 effectively reduced 66 

redundant calculations by using the interpolation coefficient lookup table approach to perform 67 

sub-voxel interpolation; however, the deformed sub-volume must be recalculated in each 68 

iteration. Subsequently, incremental deformation was employed by Wang et al.8 to solve the 69 

interpolation problem wherein each incremental position of the deformation is mapped to the 70 

nearest integer point. Their simulation results show that the calculation efficiency is increased by 71 

approximately 2.5 times the initial value and the error caused by intensity interpolation of 72 

renewed reference correlation points is reduced. However, according to the results of this 73 

algorithm, in cases such as a sub-voxel displacement calculation, the random errors cannot be 74 

ignored when the sub-voxel displacement is about 0.5 voxels (assuming a sub-volume size of 75 

41×41×41 the mean bias error is 0.003). Moreover, the systematic error of the incremental 76 

algorithm cannot be ignored when the sub-voxel displacement is about 0.25 voxels or 0.75 77 

voxels (assume a sub-volume size is 41×41×41, stand deviation error is 0.007). The accuracy of 78 

the incremental algorithm is far lower than that of the normal IC-GN algorithm in some cases. In 79 
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this study, the combination of the pre-interpolation method and the incremental algorithm is 80 

proposed in order to solve these problems. 81 

A basic 3D IC-GN algorithm flowchart is illustrated in Fig. 1. For each measurement point, 82 

the robust zero-mean normalized sum of squared difference criterion can be optimized through 83 

the sub-voxel displacement determined by the IC-GN algorithm. It can be seen from Eq. (1) that 84 

the deformation submatrix needs to be constantly updated in each iteration; the corresponding 85 

mathematical operation is the interpolation calculation (more details regarding the DVC 86 

algorithm can be found in Ref. 6). 87 
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where f(x) and g(x) are the gray intensity values at point x=(x,y,z)T in the reference and target 89 

sub-volumes; ξ=(Δx,Δy,Δz)T is the local coordinates of integer voxel points in the reference sub-90 

volume; fm and gm represent the mean intensity values of reference and deformed sub-volumes; p 91 

is the linear deformation vector; W(ξ;p) is the linear displacement mapping function used to 92 

describe the deformation of the target sub-volume; Δp is the incremental deformation vector; 93 

W(ξ; Δp) is the incremental mapping function exerted on the reference sub-volume. 94 

 95 

Fig. 1. Schematic illustration of the principle of the 3D IC-GN algorithm. 96 
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Since the general CT volume image matrix exceeds 1000×1000×1000 voxels and reduces the 97 

memory requirement, the pre-interpolation is usually set to 1/2 sub-voxel interpolation. In this 98 

work, the interpolation coefficient α is employed to represent the number of interpolation 99 

segments between two points; α is a positive integer. In Figs. 2(a) and (b), the pre-interpolation 100 

calculation when α = 2 is briefly explained. For example, as shown in Figs. 2(a) and (b), when 101 

taking a matrix with 2×2×2 voxel size in the deformed volume image and performing cubic 102 

spline interpolation, 19 interpolation points are added at the 1/2 grid nodes. Then, the 2×2×2 103 

voxels matrix is converted into a 3×3×3 voxels matrix and the number of nodes changes from 8 104 

to 27. 105 

 106 

Fig. 2. Schematic illustration of the implementation of cubic spline interpolation with α = 2: (a) local interpolation unit 107 

comprised of 4×4×4 voxels; (b) interpolation block surrounded by 8 integer voxel points (blue) and 19 half-integer voxel points 108 

(green); and (c) schematic of the nearest sub-volume offset approach for incremental DVC. 109 



 

6 

The interpolated deformation matrix is 23-1=7 times larger than the original matrix when α = 110 

2. Although it needs to occupy a massive amount of memory, this problem can be overcome 111 

using block calculation techniques (as shown in Fig. 3). According to the memory of a computer, 112 

the original matrix can be partitioned in different blocks. s is the maximum displacement, M is 113 

the sub-volume size, and the deformed block volume image is bigger than the reference block 114 

volume image. 115 

A schematic illustrating the brief flow of the DVC increment algorithm when α = 2 is shown 116 

in Fig. 2(c). According to the 1st-order shape function, the incremental displacement vector of the 117 

updated measurement point can be estimated by:8 118 
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where (x, y, z) is the coordinate of the updated reference measurement point; x1/2int = round(x), 120 

y1/2int = round(y), and z1/2int = round(z) are coordinates providing the location of the nearest half-121 

integer voxel of coordinate point (x, y, z); the vector can be defined as the center point of the 122 

offset reference sub-volume. u, v, and w are three displacement components and ux, uy, uz, vx, vy, 123 

vz, wx, wy, and wz are nine displacement gradient components. 124 

In the conventional IC-GN algorithm, the gradients of the intensity within the reference sub-125 

volume ▽f(fx, fy, fz) are gradients under integer voxel conditions. Since the deformed volume 126 

image matrix is interpolated, the differential formula needs to be corrected as: 127 
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where α is the interpolation coefficient. 129 
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 130 

Fig. 3. Schematic of the block calculation method (s is the maximum displacement and M is sub-volume size). 131 

2.2 Curve-fitting—small strain 132 

In real DVC strain analysis, the strain error is difficult to control if the deformation is too large. 133 

Generally, the average strain level of the material is small (usually less than 5%); however, the 134 

local strain may be large (for example, the shear strain of some shear bands may exceed 20%). It 135 

is time-consuming to fully utilize the IC-GN algorithm in terms of calculating small strains. In 136 

the iterative process of the IC-GN algorithm, the calculation of the multiplication and inversion 137 

of the remaining matrices is still very large, even though the Hessian matrix only needs to be 138 

calculated once. In the DIC algorithm, the computational speed of the curve-fitting algorithm is 139 

seven times that of the IC-GN algorithm;12,13 the computational speed difference between these 140 

two algorithms will be more disparate in the DVC algorithm. Therefore, the curve-fitting method 141 

is more suitable for calculating small deformation regions. Three algorithms, including the 142 

curve-fitting method, gradient-based method, and the Newton method, were compared in terms 143 

of calculation accuracy and stability.12 The Newton method has the best calculation accuracy and 144 
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stability; the gradient-based method is the second; the curve-fitting method is the worst (the 145 

accuracies and stabilities of the Newton method and IC-GN are almost the same13). The accuracy 146 

and stability of the curve-fitting method can barely meet the calculation requirements. In addition, 147 

the pre-interpolation calculation method described in Section 2.1 is also applied to the curve-148 

fitting algorithm in order to improve the accuracy and stability. 149 

First, the location of the extreme point of the zero-normalized cross-correlation (ZNCC) is 150 

calculated by the integer search algorithm; the ZNCC function is established at the extreme point. 151 

The ZNCC function can be set as C(x,y,z) and the general curve-fitting equation is a ternary 152 

quadratic function:14 153 
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In some research, the least squares method is used to solve the equation parameters;12,15 156 

however, the least squares method involves complicated and time-consuming matrix operations. 157 

The explicit method is used for acceleration while the accuracy and stability of the existing 158 

explicit calculation method are insufficient.14 Therefore, this method needs to be improved and 159 

solved using Eq. (12), which can be found in the appendix where detailed derivation processes 160 

are included. 161 

3 Experimental verification using numerical tests 162 

3.1 Accuracy of the proposed DVC method 163 

In this work, a 100×100×100 voxel size referencing a 3D speckle pattern (R=4 voxels, s=12,000) 164 

was first generated, as shown in the inset of Fig. 4(a). Then, according to the Fourier shift 165 
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theorem,16 ten pure rigid body translation volume images were generated as the deformed 166 

volume images. Along the z direction, the displacements range from 0 to 1 voxel (0.0, 0.1, 0.2, 167 

0.3, ..., 0.9, 1.0 voxel); the displacements of the x direction and y direction are zero. The random 168 

Gaussian noise with a mean value of zero and a variance of four was added to the previous 169 

eleven volume images. All DVC analyses were calculated by DVC software written using 170 

MATLAB 2018b language on a desktop computer (i7-6700 CPU 3.40 GHz and 8 GB RAM); the 171 

free GUI can be found at the following website: https://github.com/lichengshengHK/FastDVC. 172 

The result of the IC-GN algorithm represents the existing incremental DVC algorithm result 173 

when α = 1; this means that the incremental DVC algorithm proposed in reference8 is a special 174 

case of the proposed method in this work. As shown in Figs. 4(a) and (b), for the existing 175 

incremental algorithm, the accuracy of the algorithm will be significantly reduced to be far from 176 

the accuracy of the conventional IC-GN algorithm when the sub-voxel displacement is in a 177 

certain range. Moreover, 1/2 sub-voxel interpolation is performed on the deformed volume 178 

image when α = 2; the result of IC-GN calculation shows that the insufficiency of the 179 

incremental algorithm can be effectively improved. Particularly, the maximum mean bias error is 180 

reduced by 34% and the maximum random errors are reduced by 75% when the sub-voxel 181 

displacement is between 0.4 and 0.6 voxels. The improvement of the mean bias error and random 182 

error is very significant. According to the trend of the curves, the period and amplitude of the 183 

mean bias error curves of α = 2 are about half of those of the mean bias error curves of α = 1. 184 

Since the interpolation calculation is completed before the formal DVC calculation, the 185 

interpolation calculation time can be almost ignored; however, the improvement of the accuracy 186 

and stability of the algorithm is particularly remarkable. Furthermore, the accuracy of the DVC 187 

https://github.com/lichengshengHK/FastDVC
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algorithm is very close to that of the traditional IC-GN algorithm when α = 2. The specific 188 

comparison of algorithms can be found in Ref. 6. 189 

 190 

Fig. 4. Measured z displacements as a function of sub-voxel displacement estimated by different α and different sub-volume sizes: 191 

(a) mean bias error and (b) standard deviation error of the proposed DVC method of IC-GN method; (c) mean bias error and (d) 192 

standard deviation error of curve-fitting method. 193 

As shown in Figs. 4(c) and (d), the mean bias error of the curve-fitting method is close to that 194 

of the IC-GN method when α = 1; the maximum error is about 0.003 voxels. However, the 195 

difference between the random errors of these two algorithms approaches one order of 196 

magnitude. Therefore, it is unreasonable to use the curve-fitting method to estimate the sub-197 

voxel displacement directly. The curve-fitting calculation is much more accurate compared to the 198 
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existing IC-GN algorithm when the deformed volume is pre-interpolated by a 1/2 sub-voxel (α = 199 

2). Not only can the mean bias error of sub-voxel displacement be reduced nearly ten times, but 200 

the random errors can also be well controlled, which is very close to the random errors of the IC-201 

GN algorithm and fully meets the requirements of a real calculation. The pre-interpolation 202 

method can effectively improve the calculation accuracy and stability of the curve-fitting method 203 

while retaining the outstanding advantages of high computational efficiency and simple 204 

programming. 205 

The interpolation coefficients are set as α = 1,2,3,4 and the window sub-matrix is set to the 206 

sub-volume size of 41×41×41 in order to verify the accuracy and stability of the algorithm under 207 

different interpolation coefficients α. Calculation results are shown in Fig. 5 and it can be seen 208 

that the IC-GN algorithm has better accuracy and stability. The mean bias error and standard 209 

deviation (SD) error of the IC-GN algorithm gradually decrease when the interpolation 210 

coefficient α increases from 1 to 3. However, the stability of the IC-GN algorithm deteriorates 211 

and mutations occur in some sub-voxel displacement when α = 4. In addition to memory 212 

consumption, the accuracy of the algorithm can be improved by appropriately increasing the 213 

interpolation coefficient α. 214 

The accuracy and stability of the algorithm are improved when the interpolation coefficient α 215 

increases from one to two. However, the curve-fitting algorithm is less fortunate than the IC-GN 216 

algorithm when the interpolation coefficient α > 2; meanwhile, the mean bias error of the 217 

algorithm becomes very unstable. Moreover, the SD error increases by nearly seven times its 218 

initial value. In these cases, the curve-fitting algorithm cannot meet the calculation accuracy 219 

requirements. It can be illustrated from the above analysis that some interpolation errors could be 220 
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easily caused if the interpolation coefficient is too large, affecting the accuracy and system 221 

stability of the DVC algorithm. 222 

 223 

Fig. 5. Measured z displacements as a function of sub-voxel displacement estimated by different α: (a) mean bias error and (b) 224 

standard deviation error of the proposed DVC method of the IC-GN method; (c) mean bias error and (d) standard deviation error 225 

of the curve-fitting method. 226 

Since the accuracy and stability of the algorithm could not be improved by the increase in the 227 

interpolation coefficient, it is necessary to find the optimal α. The memory requirement is 228 

increased by 27 times its initial value when the interpolation coefficient α = 3. The memory 229 

requirement is sharply increased to 64 times its initial value when the interpolation coefficient α 230 

= 4, seriously reducing the applicability of the algorithm. Considering the calculation accuracy 231 



 

13 

and memory consumption of the algorithm, the interpolation coefficient α = 2 is the best choice. 232 

This not only ensures calculation accuracy but also does not occupy a massive amount of 233 

memory. 234 

Moreover, as shown in Fig. 6, the curve-fitting algorithm has better accuracy than the IC-GN 235 

algorithm when α = 2. The SD of those two algorithms are similar; however, the mean bias error 236 

differs. The mean bias error of curve-fitting is 15 times less than that of IC-GN. Although curve-237 

fitting can only deal with small strain deformation of materials, the improved curve-fitting not 238 

only has good accuracy but also has very high calculation efficiency. Therefore, it has a very 239 

high utilization value in small strain situations. 240 

 241 

Fig. 6 Comparison of accuracy between the curve-fitting algorithm and IC-GN algorithm with α = 2, sub-volume size is 242 

41×41×41: (a) mean bias error and (b) standard deviation error. 243 

3.2. Computational efficiency of the proposed DVC method 244 

The proposed algorithm has better accuracy and stability when the interpolation coefficient α = 2. 245 

In this section, the computational efficiencies of the two algorithms under different conditions 246 

are compared. Selecting α = 1 and 2, the computational speeds of the curve-fitting method and 247 

the IC-GN method are compared. The IC-GN algorithm has the same computational speed as 248 
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existing incremental DVC algorithms when α = 1. Due to the use of different programming 249 

languages and computer configurations, the computational speed in this paper is slower than that 250 

in Ref. 8 (MATLAB programs are much slower than C++ in general). As shown in Fig. 7, the 251 

computational speed of the curve-fitting method can reach 757.38 points/s and the improved IC-252 

GN algorithm can reach 237.35 points/s when α = 2 and sub-volume size is 41×41×41. The 253 

computational speed of the curve-fitting algorithm is 3.2 times that of the IC-GN algorithm. It 254 

can be seen that the curve-fitting algorithm is much faster than the IC-GN algorithm. The 255 

computational speed of the small deformation region in the material can be greatly improved and 256 

the displacement of the large deformation region can also be accurately estimated when 257 

calculating the strain field of a real material. 258 

 259 

Fig. 7. Comparison of experimental computational speed of the improved IC-G methods to the improved curve-260 

fitting method using various sub-volumes (the computation speed of the IC-GN algorithm with α = 1 is considered 261 

the standard) 262 

4 Discussion and Conclusions 263 

In this work, a pre-interpolation method is proposed that typically uses a 1/2 sub-voxel 264 

interpolation. It was only necessary to calculate the pre-interpolation once and the reference sub-265 
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volumes in the updated reference volume image automatically translated into the nearest half-266 

integer voxel position. Therefore, the redundant sub-voxel interpolation calculation was avoided 267 

completely. Compared with the integer increment algorithm, the proposed method can improve 268 

the accuracy and retain high computational efficiency. Additionally, the curve-fitting algorithm 269 

was improved by the pre-interpolation method, whose accuracy and computational efficiency 270 

improved significantly. It was also found that if the interpolation coefficient larger than two, the 271 

error of the IC-GN algorithm and the curve-fitting algorithm increases; simultaneously, the 272 

memory requirement also increases significantly. 273 

The simulation results show that the proposed improved DVC algorithm has better 274 

performance in accuracy, computational efficiency, and ease of implementation compared to the 275 

already existing DVC algorithm. In the MATLAB programming environment, the computational 276 

speed is increased by 1-3.2 times the original value, which can effectively improve the accuracy 277 

and efficiency of the DVC algorithm. Future studies will investigate how to use IC-GN and 278 

curve-fitting algorithms more effectively.  279 

 280 
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Appendix 288 

This is the curve-fitting method 289 

In this appendix, the steps of solving the curve-fitting Eq. (5) are illustrated in detail. First, for 290 

the convenience of writing, the 19 nodes in the cube lattice are marked as follows: 291 
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instrumental variables: 293 
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              (9) 296 

According to the Eq. (6)~(9), the curve-fitting equation parameters can be obtained: 297 
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the extreme points of the fitting function C(x,y,z) should satisfy the following equations: 299 
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                                        (11) 300 

solving the Eq. (11) and the sub-voxel displacement is given as: 301 
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where 303 
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Caption List 356 

 357 

Fig. 1 Schematic illustration of the principle of the 3D IC-GN algorithm. 358 

Fig. 2 Schematic illustration of the implementation of cubic spline interpolation with α = 2: (a) 359 

local interpolation unit comprised of 4×4×4 voxels; (b) interpolation block surrounded by 8 360 

integer voxel points (blue) and 19 half-integer voxel points (green); and (c) schematic of the 361 

nearest sub-volume offset approach for incremental DVC. 362 

Fig. 3 Schematic of the block calculation method (s is the maximum displacement and M is sub-363 

volume size). 364 

Fig. 4 Measured z displacements as a function of sub-voxel displacement estimated by different 365 

α and different sub-volume size: (a) mean bias error and (b) standard deviation error of the 366 

proposed DVC method of IC-GN method; (c) mean bias error and (d) standard deviation error of 367 

curve-fitting method. 368 

Fig. 5 Measured z displacements as a function of sub-voxel displacement estimated by different 369 

α: (a) mean bias error and (b) standard deviation error of the proposed DVC method of the IC-370 

GN method; (c) mean bias error and (d) standard deviation error of the curve-fitting method. 371 

Fig. 6 Comparison of accuracy between the curve-fitting algorithm and IC-GN algorithm with α 372 

= 2, sub-volume size is 41×41×41: (a) mean bias error and (b) standard deviation error. 373 

Fig. 7 Comparison of experimental computational speed of the improved IC-G methods to the 374 

improved curve-fitting method using various sub-volumes (the computation speed of the IC-GN 375 

algorithm with α = 1 is considered the standard) 376 
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