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ABSTRACT

The notion of Symmetric Non-causal Auto-Regressive
Signals (SNARS) arises in several, mostly spatial, sig-
nal processing applications. In this paper we introduce
a subspace fitting approach for parameter estimation of
SNARS from noise-corrupted measurements. We show
that the subspaces associated with a Hankel matrix built
from the data covariances contain enough information
to determine the signal parameters in a consistent man-
ner. Based on this result we propose a MUSIC (MUlti-
ple SIgnal Classification)-like methodology for parame-
ter estimation of SNARS. Compared with the methods
previously proposed for SNARS parameter estimation,
our SNARS-MUSIC approach is expected to possess a
better trade-off between computational and statistical
performances.

1 INTRODUCTION

SNARS applications include image reconstruction or de-
blurring, astronomical and seismic data processing, time
series interpolation and spectral estimation, among oth-
ers; for details see [1, 2] and the references therein. Mo-
tivated by the practical relevance of SNARS, several pa-
pers in the recent signal processing literature have ad-
dressed the problem of estimating the parameters of this
type of signals. The paper [2] proposed a Prediction Er-
ror Minimization (PEM) approach to SNARS parameter
estimation. In the class of estimation methods based on
second order statistics, the PEM is generally the most
accurate one. However, the PEM requires a multidi-
mensional search over the parameter space, a task for
which there is currently no computationally convenient
and reliable algorithm. Owing to the aforementioned
drawback of PEM, the recent paper [1] made use of
the Yule-Walker (YW) approach to derive a computa-
tionally simpler SNARS parameter estimation method.
However, the computational simplicity of the YW-based
method of [1] is obtained at the price of a degraded
statistical performance. In particular, unlike PEM, the
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latter approach violates the parsimony principle by es-
timating the parameters in a redundant signal model.
In this paper we make use of a subspace-based ap-
proach to derive a MUSIC-like methodology for param-
eter estimation of SNARS. Compared with the afore-
mentioned approaches, the SNARS-MUSIC has a num-
ber of advantages. First, it makes a better compromise
between the computational and the statistical perfor-
mances. More exactly, SNARS-MUSIC is usually much
simpler as well as more reliable than PEM, at the price
of only a slightly degraded statistical accuracy. Sec-
ondly, unlike YW and PEM approaches, the SNARS-
MUSIC has a naturally associated procedure for order
estimation, as explained in the sections to follow.

2 SIGNAL MODEL

By definition, a discrete-time SNARS satisfies the fol-
lowing equation:

B(z,z7Ya(t) = (1), t=0,%1,42,... (1)

where z~! and z are the unit delay and advance op-

erators, respectively (ie., z7*z(t) = =z(t — k) for
k= 0,£1,%£2,...), {e(t)} is a zero mean white noise
sequence with unit variance, and

B(z,27") = b2 " 4b1 7 by +br 2+ A bp2™. (2)

Assume that we observe a noise-corrupted version of
x(t),

y(t) = z(t) + w(t), t=1,2,... (3)
where {w(t)} is a white noise sequence with zero mean
and variance denoted by o2. We assume that w(t) and
e(t) are uncorrelated with one another,

Elw(t)e(s)] =0, for all ¢, s. (4)

Hereafter, the symbol E stands for the statistical ex-
pectation operator. We also assume that the zeros of
B(z,27 1) in (2) are strictly bounded away from the unit
circle. Under these assumptions, y(t) in (3) is a station-
ary (non-causal) signal that possesses a power spectral
density (PSD) given by

+ o, (5)



Furthermore, by the spectral factorization theorem (see,
e.g., [3]), the polynomial B(z,27!) can be written as

B(z,27") = D(2)D(:7") /o (6)
where
D) B 1+diz+ - +duz"#0 for|z| <1. (7)
Inserting (6) into (5), we obtain

0? + 02 D*(2)D?*(z71)

(}y('zazil) = DQ(Z)DQ(Z_l) . (8)

By making use of the spectral factorization theorem,
once again, we can write the numerator in (8) as follows:

0? + 02 D*(2)D*(z ') = 02C(2)0(z ) (9)
where

C(z)214cz+-+em2™#0 for|z| <1 (10)
and where @ 2 2n. It follows from (8) and (9) that
the SNARS-plus-white-noise model, (1)—(3), is spectrally
equivalent to the following “standard” mth-order autore-
gressive moving average (ARMA) signal model:

D*(z My(t) = C(z"Ho(t) (11)

where {v(¢)} is a zero mean white noise sequence with
variance equal to o2.

The problem of interest herein can now be stated as
follows: estimate the SNARS parameters {by},_,, or
essentially equivalent: estimate {dy},_, and ¢, from

a sample of N noise-corrupted measurements {y(t)}éil
We will also briefly address the problem of estimating
the signal order n. To solve these estimation problems
we make use of the ARMA model (11). The idea to
employ the spectrally equivalent signal model (11) to
solve the original parameter estimation problem was ap-
parently used for the first time in [2]. However, the
parameter estimation methods devised in [2] are com-
putationally complex. A computationally much simpler
approach, which is also based on the ARMA model (11),
has recently been proposed in [1]. However, the method
in these references estimates the parameters in a non-
parsimonious manner (basically, it estimates the coeffi-
cients of D?(z) instead of estimating the coefficients of
D(z)), and hence it can be expected to have a degraded
statistical performance. The subspace based MUSIC-
like approach of this paper estimates the coefficients of
D(z) and o2 directly. Additionally, the SNARS-MUSIC,
being a subspace fitting approach, enjoys the excellent
statistical accuracy of this class of parameter estimation
methods (see, e.g., [4, 5]). In what concerns the compu-
tational burden, SNARS-MUSIC requires a search over
a two-dimensional space, which can be organized in an
efficient manner (as described in [6]).

3 SNARS HANKEL COVARIANCE MATRIX
PROPERTIES

In this section we present a subspace property of the
Hankel matrix built from the covariances of a SNARS.
The SNARS-MUSIC parameter estimator, to be pre-
sented in the next section, is obtained in a straightfor-
ward manner from this property. Let

r(k) = Ely(t)y(t — k)] (12)

and define (for m, m > n)

r(1) r(2 - r(m)
I r(2) r(3) r(m+1)
r(m) r(m+1) r(m 4+ — 1)

(13)

Theorem 3.1 The Hankel covariance matriz R, asso-
ciated with an nth-order SNARS, can be factorized as

R=TQT. (14)
Let
1 0
A 1
(f) o2 N 2X . (1)

Then T is given by
L= (f() f'(A) - f(A) £ (M) (16)

(the expression of Q is not important for the present
discussion, see [6]). Furthermore, under the assumption
that m and ™ are chosen larger than w, both T' and
have rank equal to m. Hence

rank (R) =7 (17)
and the columns of T' span the range space of R.

Proof: see [6].

The rank property (17) has a clear potential for
SNARS order estimation. Let R be an estimate of R,
computed from the available sample of N data points
by replacing r(k) (for k=1,...,m +m — 1) in (13) by

N

= 3 ol ). (18)

=k+1

>

7 (k)

We can then estimate the rank of R from R by using
the “rule T” recently introduced in [7]. The reader
is referred to the cited reference for the details of the
rank/order estimation scheme.

The results of Theorem 3.1 also have a potential for
SNARS parameter estimation, as described in the next
sections.



4 ESTIMATION OF THE COEFFICIENTS
OF D

Clearly, the estimation of {dj },_, can be reduced to the
estimation of {\,} _,, the roots z"D(z~'). By using
the fact that rank (R) = @, we can write the singular
value decomposition of R as
(S G) ¥ 0 v \ln

B= "~ ~={ g o)lv Jim-n
In the above equation the matrices (S G) and (Vi V3)
are orthogonal, and ¥ is an 7 x nn diagonal and nonsin-

gular matrix. Since the columns of S, like those of T,
span the range space of R, it readily follows that

GIr =o. (20)
From (20) and in view of (16),
FFNGGETFN) + f*NGGETf' () =0 (21)

for A = Aq,..., \n, where the superscript “x” denotes
the conjugate transpose, and where use was made of
the fact that G is real-valued. Hence, the parameters of
interest {/\,,}ZZ1 are the solutions of the equation in (21).
Furthermore, it can be shown that they are the only
solutions [6].

The previous observations can be exploited to esti-
mate {)\p}zzl in the following way. Let G denote the

n m—n

matrix made from the left singular vectors of ﬁ, which
correspond to the smallest (m — @) singular values. Ob-
tain estimates of {)‘P}Zzl as the locations of the n dom-
inant peaks of the function

) =1/ [FNGETFO) + FNGETF (V)] - (22)

Let A = pe'. As h(ue™) = h(ue™™), the maximization
of (22) should be done for 4 € [0,1] and w € [0,7]. A
direct way of performing this maximization is by a two-
dimensional exhaustive search over the previous ranges
of p and w. A computationally less intensive way is
outlined in [6].

5 ESTIMATION OF o2

2 2

It can be shown, that an estimate o2 of o2 can be de-
termined from a simple least-squares technique:

m+m—1 m+m—1
5 = [ > f(k)ﬁ(k)] /[ > @2(’6)] (23)
k=1 k=1

where the quantities {¢p(k)} are readily obtained from
the estimates of {d} (we refer to [6] for the details on
how to obtain {¢(k)}). The interval for the index k con-
sidered in the above equation is motivated by the fact
that {#(k)}7™ " are readily available from the com-
putation of the sample covariance matrix R. Whenever
{A\p} are close to the unit circle, the summation in (23)
may be truncated at some value k < m+m—1 to slightly
enhance the estimation accuracy of 52 (see [6] for details
on this aspect).

6 NUMERICAL EXAMPLES
The model used in the simulations is
B(z,27') =0.9224+1.332 ' +2.3+1.332+0.92% (24)
From the factorization (6) we obtain
D(z) =1+0.702 1 +0.90z %, o = 1. (25)
The signal-to-noise ratio (SNR) is defined through
SNR = 10log(o2/02) [dB] (26)
where o2 2 E[22(t)], with x(t) given by (1).

First we apply the proposed parameter estimation
scheme to 20 independent realizations of the above
SNARS (N = 200, SNR = 20dB and m = m = 8).
The results shown in Figure 1 illustrate how the random
fluctuations of the location of the estimated zeros of the
polynomial 22D (27 1) affect the shape of the estimated
impulse response.

In what follows we discuss the performance of the
SNARS-MUSIC methodology in terms of mean and
variance of the estimated parameters § = (Jl,(f2,&).
In the simulations, these statistics are calculated from
50 independent realizations. We compare the accu-
racy achieved by SNARS-MUSIC with the Cramer-Rao
bound (CRB) corresponding to the ARMA signal model
with double poles in (11).

In Figures 2-3 we show the mean and variance of the
estimated parameters as a function of the sample size
N, for SNR = 20dB and SNR = 25dB (m = m = 8).
We see that the method proposed here performs well
for practical sample sizes and that the estimation of o
is more sensitive to the experimental conditions than
the estimation of the coefficients of the D polynomial.

Further numerical results can be found in [6] where
we also study the effect of m, m and the SNR on the

performance of the SNARS-MUSIC parameter estima-
tor.
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Figure 1: Location of the zeros of 22D(27!) and the
corresponding (normalized) impulse response, both true
(solid) and estimated (dotted), for 20 independent real-
izations; SNR = 20dB, N = 200, m =m = 8.
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Figure 2: Mean and variance (the CRBs are included
for comparison) of the coefficients of D as a function of
N for SNR = 20 dB (dashed lines) and SNR = 25 dB
(solid lines), m =m = 8.
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Figure 3: Mean and variance of ¢ as a function of N for
SNR = 20 dB (dashed lines) and SNR = 25 dB (solid
lines), m =m = 8.



