
Dynamic Movement Primitives for moving goals with temporal scaling
adaptation

Leonidas Koutras and Zoe Doulgeri

Abstract— In this work, we propose an augmentation to
the Dynamic Movement Primitives (DMP) framework which
allows the system to generalize to moving goals without the
use of any known or approximation model for estimating the
goal’s motion. We aim to maintain the demonstrated velocity
levels during the execution to the moving goal, generating
motion profiles appropriate for human robot collaboration. The
proposed method employs a modified version of a DMP, learned
by a demonstration to a static goal, with adaptive temporal
scaling in order to achieve reaching of the moving goal with
the learned kinematic pattern. Only the current position and
velocity of the goal are required. The goal’s reaching error
and its derivative is proved to converge to zero via contraction
analysis. The theoretical results are verified by simulations and
experiments on a KUKA LWR4+ robot.

I. INTRODUCTION

In recent years, Dynamic Movement Primitives (DMP)
have provided a way of encoding arbitrary complex mo-
tions utilizing non - linear dynamics [1]–[5]. This encoding
provides accuracy in the execution of the motion, as well
as the ability to generalize to spatial and temporal scaling.
DMP have been used for a wide range of tasks. Both
point to point or discrete motions, as well as rhythmic,
periodic trajectories are able to be encoded, resulting in
the encoding of various behaviours and motion patterns
[6], [7]. Modified DMP have also been proposed to extend
their robustness to temporal and or spatial perturbations [8],
[9]. Moreover, appropriately designed coupling terms have
been used for DMP adaptation to external inputs (e.g. force
adaptation) [10]–[12]. DMP are proven advantageous over
typical trajectory encoding mechanisms as they are able to
generalize the learned pattern both spatially and temporally
as well as be used in conjunction with other dynamical fields
to generate in real time complex behaviours in environments
with goal perturbations and obstacles [9].

Movements encoded by DMP are designed to be executed
towards a stationary goal known before the start of the
motion although it can be perturbed to another stationary
goal during motion. Few research efforts have been focused
on DMP utilization with a moving goal. In [13], the authors
are modifying the DMP, to follow a moving goal in a leader-
follower framework. In [14] by augmenting a modified DMP
formulation with velocity feedback the authors allow the
system to follow moving goals. In both these works position

Authors are with the Automation & Robotics Lab, Dept. of Elec-
trical & Computer Engineering, Aristotle University of Thessaloniki,
Greece.{kleonidas@ece, doulgeri@eng}.auth.gr

The research leading to these results has received funding by the EU
Horizon 2020 Research and Innovation Programme under grant agreement
No 820767, project CoLLaboratE.

and velocity trajectories are scaled towards the moving goal
so that the preset time duration of the task is preserved. The
latter may induce either higher or lower velocities depending
on the current goal position. It is therefore possible that
the generated velocity exceeds safety boundaries. The use
of saturation on the robot’s velocity does not resolve this
problem as it generates a completely different velocity profile
than that of the demonstration. However, in robot human
coexistence, safety, trust and robot motion predictability is
of outmost importance. It is therefore essential to maintain
these human-like motion characteristics encoded during the
demonstration.

A different solution to the problem of high velocities is to
not require a fixed motion duration. This is possible in mod-
els that do not encode temporal characteristics of the motion
[15]. Alternatively one could adapt the motion duration as in
[16]; this adaptation is based on the utilization of a model
for the goal dynamics which predicts the reaching location.
However, such a model may not be available when for
example the robot interacts with agents of unknown dynamic
behaviour. Such agents could be other robots or humans
whose motion patterns may not be necessarily known. In
[17] a DMP formulation has been proposed in the context of
hitting a moving ball with a specified velocity. This method
has been extended in [18] utilizing the probabilistic DMP for-
mulation proposed in [19]. Both formulations require again
a predictor to estimate the reaching location and the moving
goal’s velocity at this point. Utilizing a predictor however
causes the system to heavily depend on the prediction errors
which can lead to execution failure.

The objective of this work is to enable a DMP, encoding
a kinematic behaviour to a stationary target, to be utilized
in the case of a moving target keeping velocities at levels
similar to the demonstrated ones. Only the current goal’s
position and velocity is assumed to be provided by the
perception system as opposed to the above works. To achieve
this objective we propose a modified DMP for motion
generation to a moving goal and prove its convergence to the
goal using contraction analysis. Simulations and experiments
are utilized to validate the theoretical findings. By alleviating
the need of predictions and/or goal model dynamics the
proposed approach does not depend on any prediction errors
and addresses cases of unknown goal dynamics. Moreover,
it addresses a wider range of DMP applications that involve
collaboration with humans and work in shared environments
in which maintaining a certain velocity level is important
for the human safety and the robot’s motion predictability.
Such applications include collaborative tasks like handover



or collaborative assembly in which the human (or another
robot’s) hand are considered as moving goals [13], [14].

II. PRELIMINARIES
A. Dynamic Movement Primitives

Dynamic movement primitives (DMP) are used to encode
trajectories, through the augmentation of a unique point
attractor linear dynamical system with a non-linear term that
encapsulates arbitrary complex shape modulations known as
the transformation system of the DMP. For encoding an n
degrees of freedom task, the transformation system is given
by [5]:

τ ż = αz(βz(g − y)− z) + diag (g − y0)F (x)
τ ẏ = z

(1)

where y ∈ Rn is the position, z ∈ Rn is the scaled velocity,
g ∈ Rn is the attractor of the linear system, y0 ∈ Rn its
initial position, diag (g − y0) ∈ Rn×n is a diagonal matrix
with its elements equal to the coordinates of g − y0, τ is a
scalar temporal scaling term, which traditionally is set equal
to the duration of the motion and F (x) ∈ Rn is the forcing
term which determines the motion pattern:

F (x) =

∑
iwiΨi(x)x∑
i Ψi(x)

(2)

with wi ∈ Rn being the weights of the N Gaussian kernel
functions Ψi:

Ψi(x) = exp[−hi(x− ci)2] (3)

and ci the kernels’ centers distributed to the interval [0, 1]
and hi their inverse widths. Variable x is a monotonically
decreasing phase variable, whose dynamics are known as
the canonical system and are given by a first order system
with its initial value set to 1:

τ ẋ = −αxx (4)

DMP are traditionally used for movements towards a con-
stant goal g.

As mentioned earlier, the DMP framework is able to
generalize to new goals. When a new stationary goal is
selected, the demonstrated trajectory is scaled accordingly
to the new goal’s position. Therefore the generated position,
velocity and acceleration will be the scaled demonstrated
motion to the new goal. For example a goal which is twice as
far from the initial position as compared to the demonstrated
goal, will produce twice as large velocity and acceleration.
As discussed in Section I this property may not be suitable
for collaborative environments.

In case the new goal is not stationary but moving, the
system may be eventually able to track the goal but the
trajectory does not follow the encoded motion pattern after
a preset time duration since the forcing term goes to zero
when the phase variable vanishes. This is happening as the
phase variable evolution (4) does not depend on g. For
example when tracking a goal that moves away from the
initial position, the phase variable will reach zero before
reaching the goal, which implies a zero forcing term, thus
removing all encoded motion patterns from the trajectory.

B. Contraction Analysis

Contraction Analysis was introduced in [20] and used in
conjunction with DMP in [21] with the objective to provide
a simpler method for the stability analysis of non linear dy-
namical systems. Instead of trying to verify point equilibrium
stability, this framework tries to prove that if neighbouring
state trajectories converge to each other, then all trajectories
should exponentially converge to a single trajectory. This
methodology can be expressed mathematically as follows:

Definition I [20]: Given the system equations ẋ = f(t,x)
a region of the state space is called a contraction region if
the Jacobian ∂f

∂t is uniformly negative definite in that region.
Theorem I [20]: Given the system equations ẋ = f(t,x),

any trajectory, which starts in a ball of constant radius
centered about a given trajectory and contained at all times
in a contraction region, remains in that ball and converges
exponentially to this trajectory. Furthermore, global expo-
nential convergence to the given trajectory is guaranteed if
the whole state space is a contraction region.

Proposition 1 [21]: If f1(t,x1) is contracting and
f2(t,x1,x2) is contracting for each fixed x1, then the
hierarchy ẋ1 = f1(t,x1), ẋ2 = f2(t,x1,x2) is contracting.

III. PROPOSED MODIFIED DMP FOR REACHING
MOVING GOALS

Consider a moving goal g(t), ġ(t). We assume that
a perception system provides the goal’s position and an
estimate of its velocity on-line. The latter can be calculated
by numerically differentiating the position measurements.

We propose the following DMP transformation system for
the case of a moving goal:

τ ż = −αz(βze + z) + diag (g − y0)F (x)
τ ė = z

(5)

where e = g − y ∈ Rn is the position error and z ∈ Rn
is the scaled velocity error. Notice that (5) is equivalent to
(1) for the case of a stationary goal with the forcing term
expressing the negative of that in (1). The system is trained
as the traditional DMP framework, using a demonstration
from the initial position y0,d to the stationary goal gd with
temporal scaling τd.

In order for the system to generate a trajectory with the
encoded motion pattern while reaching a moving goal, the
temporal scaling parameter τ must be continuously adjusted.
If the robot keeps the motion pattern of the demonstrated
motion without adjusting its time scaling [13], [14] then, a
faraway target would induce high velocities that could exceed
the robot’s capabilities. Hence, in the case of a moving target,
the temporal scaling parameter should be modified in real
time. We propose to augment the DMP system with the
following temporal scaling adaption law:

τ̇ = −κτ (τ − τg) + τ̇g (6)

where κτ is a positive design parameter and τg is given by:

τg =
‖g − y0‖
‖gd − y0,d‖

τd (7)



Equation (6) ensures the tracking of τg which can be
interpreted as the temporal scaling related to the motion
towards the current goal location g(t) considered stationary.
When the goal moves away from the initial position y0

the temporal scaling increases, leading to slower system
evolution. This slow down counteracts the speed-up caused
by the goal’s position. When the goal approaches the initial
position, τ decreases leading to faster execution. This again
counteracts the slowing down caused by the goal’s position.
In this way, the produced trajectory maintains the demon-
strated velocity characteristics. Notice that τg is bounded
for gd 6= y0,d which is generally true for discrete motions.
We also assume that the goal will not coincide with the
initial position y0, ‖g(t) − y0‖ 6= 0,∀t, which implies
τg > 0. The same assumption holds for (1) in order to enable
motion encoding by ensuring a non-zero value for the term
diag (g − y0)F (x). The derivative τ̇g in (6) can be computed
analytically from the goal’s position and velocity. Notice that
the proposed system does not require a model for the goal’s
motion, but only measurements of the goal’s position and
velocity. Further notice that after the moving goal is reached
the forcing term vanishes; if then a disturbance temporarily
displaces the arm away from the goal trajectory the DMP
system may be re-initialized if a kinematic behavior similar
to the demonstrated is desired.

We claim that the system composed of (4), (5), and (6)
with τ(0) = τg(0) can achieve the objective of reproducing a
desired kinematic behaviour while reaching a moving target.

A. Stability Analysis

The complete system can be written as:

τ̇ = −κτ (τ − τg) + τ̇g
τ ẋ = −αxx
τ ż = −αz(βze + z) + diag (g − y0)F (x)
τ ė = z

(8)

Stability analysis concerns the asymptotic convergence of
the goal tracking error e = g−y and its velocity, ė = ġ−ẏ to
zero. In addition, τ must follow the desired temporal scaling
τg , therefore the temporal scaling tracking error eτ = τ − τg
must also converge to zero.

We define the state vector s as follows:

s =
[
eτ x eT zT

]T
(9)

and write the system (8) in the state space form:

ṡ =


ėτ
ẋ
ė
ż

 =


−κτeτ
− 1
τ αxx
1
τ z

1
τ (−αz(βze + z) + diag (g − y0)F (x))


(10)

The system consisting of the first two equations of (10) is a
hierarchical combination of the linear first order system:

ėτ = −κτeτ (11)

and of ẋ = − 1
τ αxx. System (11) is globally exponentially

stable, with a unique equilibrium at eτ = 0, as −κτ < 0.
Therefore the system is globally contracting. For eτ = 0, we

have τ = τg and ẋ = − 1
τg
αxx. As − 1

τg
αx < 0, ∀t and

the time depended parameter τg is bounded, ẋ = − 1
τg
αxx is

also contracting. Therefore, using Proposition 1 we proved
that the hierarchical combination of (11) and of ẋ = − 1

τ αxx
is contracting. Finally, in order to prove that system (10) is
contracting we will prove that the hierarchical combination
of the system comprised of the last two equations of (10) is
also contracting. In particular, the system:[

ė
ż

]
=

[
1
τ z

1
τ (−αz(βze + z) + diag (g − y0)F (x))

]
(12)

for the fixed point [eτ x]T = [0 0]T , which implies τ = τg ,
F (x) = F (0) = 0, can be written as:[

ė
ż

]
=

1

τg

[
0n In

−αzβzIn −αzIn

] [
e
z

]
(13)

which is a linear time varying system, with strictly negative
eigenvalues for all values of the bounded time dependent
parameter τg . We denote In the n × n identity matrix and
0n the n× n zero matrix. Notice that τg is bounded by the
minimum and maximum distances between y0 and g(t).

Theorem II [22]: Consider a linear non autonomous system
ẋ = A(t)x,x ∈ Rn,A(t) ∈ Rn×n. The equilibrium
state x = 0 is exponentially stable if and only if for any
given symmetric, positive definite, continuous and bounded
matrix Q(t), there exists a symmetric, positive definite,
continuously differentiable and bounded matrix P (t) such
that:

−Q(t) = P (t)A(t) + AT (t)P (t) + Ṗ (t) (14)

We select matrix P :

P =
1

2

[
(βz + 1

αz
+ 1

βz
)In

1
αzβz

In
1

αzβz
In ( 1

αz
+ 1

α2
zβz

)In

]
(15)

P does not depend on time, therefore it is by construct
bounded, and continuously differentiable, with Ṗ = 0. P
is also positive definite (See Appendix). With this selection,
we obtain:

Q(t) =
1

τg
I2n (16)

Q(t) is bounded by the maximum and minimum values of
its eigenvalues:

1

τg,max
xTx ≤ xTQ(t)x ≤ 1

τg,min
xTx (17)

∀x ∈ R2n. Therefore Q(t) is bounded ∀t and using Theorem
II the system of (13) is exponentially stable.

Hence, the system is contracting. Thus using Proposition
1 we conclude that this hierarchy is also globally contracting.
Consequently, system (10) is contracting in the whole state
space. As a result, all trajectories converge exponentially to
the unique equilibrium point s = 0, where e = 0, ė =
0 and eτ = 0 reaching the moving goal. The rate of this
exponential convergence will be bounded between the rates
corresponding to the largest, from above and smallest, from
below value of τ .



TABLE I: SYSTEM PARAMETERS

Parameter Description Value
αz Gain of DMP 40
βz Gain of DMP 10
αx Gain of phase system 4.6052
N Number of Gaussian Kernels 60
κτ Gain of temporal scaling controller 100

IV. SIMULATIONS

For the demonstration with simulations of the system’s
performance the following setup was used. We have initially
created a 3-D trajectory in the Cartesian Space to a stationary
goal from y0,d = [0.2 0.3 0.85]T to gd = [0.6 0.6 0.65]T

with duration τd = 1.124s. Then we trained the proposed
DMP (5) utilizing these data. The DMP parameters used in
the simulation are depicted in Table I. The value of αx was
chosen so that x reaches 0.01 at the end of the demonstrated
motion. To demonstrate the DMP capabilities in the case
of a moving goal, we simulated the motion of a moving
agent, from g1 = [0.6 0.8 0.75]T to g2 = [2 1.5 − 0.38]T .
We then executed both the goal motion and the proposed
DMP for moving goals (4) - 6), from the initial position
y0 = y0,d, feeding back the DMP with the current goal
position and velocity. Notice that the system reaches the
goal at the point gc = [1.92 1.44 0.33], at time t = 3.37s
before the goal completes its execution and reaches g2. After
reaching the goal the system tracks the goal’s motion to g2.
The simulation results are presented in Figures 1 - 5. In
particular, Figures 1, 2 and 3 show the path and trajectories
of the y coordinates and its derivatives as well as those of the
moving goal. We see the goal moving from a position g1 near
the stationary goal gd of the demonstration (red line path in
Figure 1) following its own trajectory (black dashed line in
Figures 2 and 3) towards g2 which is further away from y0

as compared to g1. The relative position and velocity errors
converge to zero validating the theoretical analysis as shown
in Figure 4. As shown in Figure 5, τ increases as the goal
moves away from the initial position y0. The adaptation of τ
prevents the appearance of high velocities as seen in Figure
3 keeping the velocity at levels similar to the demonstration.
Notice in Figure 3, the discontinuity arising initially since
ġ 6= 0 at t = 0. In practice, smoothness techniques should
be employed at the beginning of motion. To demonstrate
the advantages of the temporal adaptation law (6), Figure
6 shows the proposed DMP velocities together with those
produced in a DMP execution without temporal adaptation
(4), (5) with τ = τd. Notice the higher velocities induced by
the lack of temporal adaptation. This may not be acceptable
as it may exceed the robot’s capabilities, be dangerous for
humans and ruin the human-likeness of the demonstrated
motion.

Overall, simulation results show that the proposed DMP
framework successfully reaches the moving goal, scaling
the demonstrated motion’s position pattern and subsequently
tracks the goal motion, while maintaining velocity levels
close to the demonstrated ones.

0.2

0.3

0.4

0.5

0

0.6

0.7

0.8

0.9

0.5

1

1.5

0.511.52

Fig. 1: Path of the DMP, the demonstration and the moving goal.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

Fig. 2: Evolution of the position when reaching the moving goal. Also
depicting the goal trajectory as well as the demonstration trajectory.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

-0.5

0

Fig. 3: Evolution of the velocity when reaching the moving goal. Also
depicting the goal trajectory as well as the demonstration trajectory.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-2

0

2

Fig. 4: Position and velocity errors in each coordinate.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

2

4

Fig. 5: Temporal scaling τ and its derivative τ̇ .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-5

0

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-2

0

2

Fig. 6: Evolution of the velocity when reaching the moving goal with and
without temporal scaling adaptation.

0.25

0.3

0.3

0.35

0.4

00.4
0.20.5

0.4

Fig. 7: Experimental Result: Path of the robot, the demonstration and the
moving goal.

V. EXPERIMENTS

To demonstrate the proposed method on real world condi-
tions, an implementation was made on a 7 degree of freedom
KUKA LWR4+ robotic manipulator. The methodology was
implemented in C++, on a real-time Linux PC. For the
communication with robot, the FRI library [23] was used,
with control frequency 500Hz. Robot kinesthetic guidance
was used to record two trajectories. The recorded tool
position data from the first demonstration was used to train
the proposed DMP (4), (5) while data from the second
demonstration was used to emulate a moving target. During
both demonstrations the robot was under gravity compensa-
tion and high stiffness orientation control for maintaining its
initial tool orientation.

The demonstrated trajectory started from initial position
y0,d = [0.39 0.32 0.24]T towards the goal position gd =
[0.03 0.56 0.36]T in 6.54s. The moving goal’s demon-
strated trajectory started from the stationary goal of the
demonstration gd, moving closer to the initial position and
reaching gc = [0.19 0.44 0.31]T . During execution the DMP
with the parameters of Table I generated the tool reference
trajectory which was mapped to the joint space by the
Jacobian pseudoinverse. Closed loop inverse kinematics [24]
was utilized to ensure accurate following of the reference
trajectory. The robot’s initial position was set equal to the
demonstrated one. When the moving goal was reached in
4.7s, the execution was terminated.

Results of the path, the position and velocity trajectory and
the goal’s trajectory are shown in Figures 7 - 9. The robot’s
position and velocity coincide with the reference generated
by the DMP. Position and velocity error convergence is
shown in Figure 10. The temporal scaling parameter τ is
shown to decrease in Figure 11 as the goal is approaching the
initial position, from it initial value of τd = 6.54 to τ = 3.63
at the end of motion. As the goal movement was simulated by
a demonstrated motion, measurements of the velocity were
available. However, we chose to numerically differentiate



0 1 2 3 4 5 6 7

-0.5

0

0.5

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0 1 2 3 4 5 6 7

0.2

0.3

0.4

Fig. 8: Experimental Result: Evolution of the position of the robot when
reaching the moving goal. Also depicting the goal trajectory as well as the
demonstration trajectory.

0 1 2 3 4 5 6 7

-0.5

0

0.5

0 1 2 3 4 5 6 7

-0.2

0

0.2

0 1 2 3 4 5 6 7

-0.1

0

0.1

Fig. 9: Experimental Result: Evolution of the velocity the robot when
reaching the moving goal. Also depicting the goal trajectory as well as
the demonstration trajectory.

0 1 2 3 4 5 6 7

-0.5

0

0.5

0 1 2 3 4 5 6 7

-0.2

0

0.2

0.4

Fig. 10: Experimental Result: Position and velocity errors in each coordinate
at the robot experiment.

0 1 2 3 4 5 6 7

0

5

10

0 1 2 3 4 5 6 7

-2

0

2

Fig. 11: Experimental Result: Temporal scaling τ and its derivative τ̇ at
the robot experiment.

the values of g, as it would happen if the goal’s state
was provided by a perception system. This differentiation
explains the noise appearing in the ġ and τ̇ in Figures 9 and
11. The system however is not affected as it is evident from
Figures 7 - 11.

VI. CONCLUSIONS

In this paper a modified DMP framework is proposed
for the case of reaching moving goals maintaining the
demonstrated velocity characteristics. The framework only
requires the goal’s current position and velocity that can
be in general provided by a perception system. Thus, it
avoids prediction and model uncertainty errors that arise in
predictor or model based approaches. Temporal adaptation
provides predictable velocity behaviours that remain closer
to the demonstrated as the moving goal scales the trajectory
spatially. This generalization allows DMP to be used for
more complex tasks and to operate effectively in workplaces
shared with humans. The reaching of the moving goal is
theoretically proved and validated by both simulations and
experiments.

APPENDIX

Theorem III [25]: Consider a matrix that can be written
as:

X =

[
A B
BT C

]
(18)

with X ∈ Rm×m, A ∈ Rp×p, B ∈ Rp×q and C ∈ Rq×q ,
where m = p+ q.

The Schur complement of A in X is denoted X/A and
defined as:

X/A = C −BTA−1B (19)

If A and X/A are both positive definite, then X is also
positive definite.

Notice that matrix P of (15) has the form described in
(18) with A = 1

2 (βz + 1
αz

+ 1
βz

)In, B = 1
2

1
αzβz

In , C =
1
2 ( 1
αz

+ 1
α2

zβz
)In, m = 2n and p = q = n. The Schur

complement of A in P is:

P /A =
1

2

(αzβz + 1)2 + α2
z

α3
zβ

2
z + α2

zβz + α3
z

In (20)

Both A and P /A are positive definite, thus P is also
positive definite.



REFERENCES

[1] S. Schaal, S. Kotosaka, and D. Sternad, “Nonlinear dynamical sys-
tems as movement primitives,” in Humanoids2000, First IEEE-RAS
International Conference on Humanoid Robots. Cambridge, MA:
CD-Proceedings, Sept. 2000, clmc.

[2] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings
2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292), vol. 2, May 2002, pp. 1398–1403 vol.2.

[3] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement
primitives,” in Robotics Research. The Eleventh International Sympo-
sium, P. Dario and R. Chatila, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 561–572.

[4] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-
scapes for learning motor primitives,” in Proceedings of the 15th
International Conference on Neural Information Processing Systems,
ser. NIPS’02. MIT Press, 2002, pp. 1547–1554.

[5] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, Feb
2013.

[6] S. Schaal, Dynamic Movement Primitives -A Framework for Motor
Control in Humans and Humanoid Robotics. Tokyo: Springer Tokyo,
2006, pp. 261–280.

[7] J. Rosado, F. Silva, and V. Santos, “Adaptation of robot locomotion
patterns with dynamic movement primitives,” in 2015 IEEE Interna-
tional Conference on Autonomous Robot Systems and Competitions,
April 2015, pp. 23–28.

[8] M. Karlsson, A. Robertsson, and R. Johansson, “Convergence of
dynamical movement primitives with temporal coupling,” in 2018
European Control Conference (ECC). IEEE–Institute of Electrical
and Electronics Engineers Inc., 6 2018.

[9] H. Hoffmann, P. Pastor, D. Park, and S. Schaal, “Biologically-inspired
dynamical systems for movement generation: Automatic real-time
goal adaptation and obstacle avoidance,” in 2009 IEEE International
Conference on Robotics and Automation, May 2009, pp. 2587–2592.

[10] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online
movement adaptation based on previous sensor experiences,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sept 2011, pp. 365–371.

[11] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,”
IEEE Transactions on Robotics, vol. 30, no. 4, pp. 816–830, Aug
2014.

[12] B. Nemec, A. Gams, M. Deniša, and A. Ude, “Human-robot cooper-
ation through force adaptation using dynamic motion primitives and
iterative learning,” in 2014 IEEE International Conference on Robotics
and Biomimetics (ROBIO 2014), Dec 2014, pp. 1439–1444.

[13] Y. Zhou, M. Do, and T. Asfour, “Coordinate change dynamic move-
ment primitives — a leader-follower approach,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct 2016, pp. 5481–5488.

[14] M. Prada, A. Remazeilles, A. Koene, and S. Endo, “Dynamic move-
ment primitives for human-robot interaction: Comparison with human
behavioral observation,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Nov 2013, pp. 1168–1175.

[15] E. Gribovskaya and A. Billard, “Learning nonlinear multi-variate
motion dynamics for real-time position and orientation control of
robotic manipulators,” in 2009 9th IEEE-RAS International Conference
on Humanoid Robots, Dec 2009, pp. 472–477.

[16] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE
Transactions on Robotics, vol. 30, no. 5, pp. 1049–1065, Oct 2014.

[17] J. Kober, K. Mülling, O. Krömer, C. H. Lampert, B. Schölkopf, and
J. Peters, “Movement templates for learning of hitting and batting,”
in 2010 IEEE International Conference on Robotics and Automation,
May 2010, pp. 853–858.

[18] S. Gomez-Gonzalez, G. Neumann, B. Schölkopf, and J. Peters, “Using
probabilistic movement primitives for striking movements,” in 2016
IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids), Nov 2016, pp. 502–508.

[19] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in NeuralInformation Processing
Systems, 2013, p. 2616–2624.

[20] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-
linear systems,” Automatica, vol. 34, no. 6, pp. 683–696, June 1998.

[21] P. M. Wensing and J.-J. Slotine, “Sparse control for dynamic move-
ment primitives,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10 114 –
10 121, 2017, 20th IFAC World Congress.

[22] H. Marquez, Nonlinear Control Systems: Analysis and Design, 11
2002, ch. 4.

[23] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface
for the kuka lightweight robot,” in IEEE ICRA 2010 Workshop on
Innovative Robot Control Architectures for Demanding (Research)
Applications, 2010.

[24] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin,
Heidelberg: Springer-Verlag, 2007, ch. 11.

[25] F. Z. Zhang, The Schur Complement and Its Applications, 01 2005.


