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A control scheme with a novel DMP-robot coupling
achieving compliance and tracking accuracy under
unknown task dynamics and model uncertainties

Konstantinos Vlachos1 and Zoe Doulgeri1

Abstract—A control scheme consisting of a novel coupling of
a DMP based virtual reference with a low stiffness controlled
robot is proposed. The overall system is proved to achieve
superior tracking of a DMP encoded trajectory and accurate
target reaching with respect to the conventional scheme under the
presence of constant and periodic disturbances owing to unknown
task dynamics and robot model uncertainties. It further preserves
the desired compliance under contact forces that may arise in
human interventions and collisions. Results in simulations and
experiments validate the theoretical findings.

Index Terms—Compliance and Impedance Control, Motion
Control

I. INTRODUCTION

IN recent years robots are increasingly used into more
dynamic and uncertain environments and thus motion plan-

ning is being replaced by motion generation from dynamical
systems which can encode rich kinematic behaviors learned
by demonstrations. Dynamic movement primitives (DMPs) are
the most popular dynamical systems introduced in [1] and
revisited in [2]. DMPs allow spatial and temporal scaling
and are robust to perturbations from initial conditions and
target changes. They further allow on-line coupling via sensory
feedback from the controlled robot, such as phase stopping to
stop the time evolution in case of disturbances [3].

In practice, both the robot’s performance and its compliance
to external contact forces are required for accurately tracking
the desired trajectory and reaching of the desired target as
well as ensuring human-robot collaborative behaviours and
safety under collisions. It should be noted that accurate target
reaching is important particularly in interaction tasks (e.g
placing, peg-in-the-hole, drilling) while ensuring safety under
unexpected collisions is a major issue in collaborative robotics
that usually operate in uncertain and dynamic environments. If
the robot controller imposes high apparent stiffness for accu-
rately following the desired trajectory generated by the DMP,
it may compromise safety under unintentional contact and
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make collaboration harder. If, on the other hand, a low target
stiffness is imposed for safety and collaboration, disturbance
inputs arising from model uncertainties and unmodelled task
and robot dynamics induce considerable errors which com-
promise accuracy in target reaching and trajectory following.
Variable stiffness robot control combined with DMPs has been
proposed to address these issues but to preserve the control
system’s passivity a tank energy approach is required [4], [5].
To be effective tank energy levels should not be depleted and
the stiffness update law should drop stiffness fast in case of
external contact forces for fast compliant reactions. Tracking
control under uncertainties has been addressed by various
other control methods in the literature. Robust control methods
achieve tracking performance to the expense of compliance
to external forces [6]. The same is true for optimal control
approaches such as LQR [6] and MPC [7] if the cost related
to tracking accuracy is set at high values. Adaptive control
[6] on the other hand is effective only for model parametric
uncertainties.

Compliant movement primitives (CMP) have been proposed
to improve the tracking accuracy while maintaining compliant
robot behavior without requiring explicit models of task dy-
namics [8],[9]. They require robots which allow active torque
control and joint torque sensing. CMP consist of a pair of
DMP and a torque primitive (TP); the former encodes task
motion trajectories and the latter the corresponding torques
that are obtained by executing the learned motion trajecto-
ries with a high gain feedback controller which ensures the
required tracking accuracy under the assumption of a stable
high gain reproduction of the demonstrated motion. Each
motion trajectory encoded by the DMP is executed under
different task conditions (velocity, load) producing different
torque signals. Each TP is paired with the DMP resulting
in a number of CMPs that are generalized via statistical
learning since each possible task variation cannot be learned
in advance [8]. In the CMP approach, suitable torque signals
are fed forward during the execution of a desired task variant
combined with a low feedback gain controller; they improve
accuracy while remaining compliant given the task variant lies
within the training set. Instead of learning off-line the feed
forward compensation term, DMP coupling terms from the
robot’s output are utilized during execution in applications that
demand a desired actual or virtual contact force [10], [11]. In
[10], the recording of a (nominal) contact force during the
grasping of an object is driving the activation of the coupling
to adapt the learned kinematic behaviour to perception errors
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of target poses. In [11], the coupling term is learned after a
few repetitions of the same task in the case of a bimanual task
with independently controlled robots.

This work shares the objective of the CMP approach, i.e.
that of tracking accuracy of a DMP encoded motion trajectory
while being compliant to contact forces possibly arising in
collisions. Its main result is a new control structure that
is easily implementable. In contrast to previously published
works [8], [9], [10], [11] it does not require the learning of a
feedforward or coupling term (offline or iteratively) to com-
pensate uncertain task dynamics. It is successfully employed
by adapting to different uncertain dynamics (e.g with the arm
holding objects of different weight) without compromising
compliance. It induces a variable apparent stiffness under
interactions without the need of variable control gains. Its
basic idea relies in a combination of a low feedback gain robot
controller with a virtual reference trajectory that is produced
by a variant of the learned DMP. Stability analysis under
sinusoidal and constant disturbances using contraction theory
is utilized to show accuracy in target reaching and following of
the desired trajectory encoded in the learned DMP. Moreover,
compliance for collaboration with humans and safety under
collisions is maintained at the target level. Without loss of
generality, the analysis in this work is confined to the robot’s
end-effector position.

II. PRELIMINARIES

A. Dynamic Movement Primitives

Dynamic movement primitives (DMP) have been used to
encode rich kinematic behaviors that are recorded from a
kinesthetic demonstration and can generalize to new goals
[2]. A DMP for encoding Cartesian position in point to point
motion is given by a transformation and a canonical system:

τ ż = αz(βz(g− y)− z)+diag(g− y0) f (s) (1)

τ ẏ = z (2)

τ ṡ =−αss, s(0) = 1 (3)

where y ∈ R3 is the position, z ∈ R3 is the scaled velocity of
the movement, s ∈ R+ is a phase variable introduced to avoid
explicit time dependancy, τ ∈ R+ is a temporal scaling factor,
g ∈ R3 is the desired target, y0 ∈ R3 is the initial position,
f (s) ∈ R3 is a non-linear forcing term and αz,βz,αs > 0 are
scalar positive gains. By choosing αz = 4βz the linear part of
the transformation system (1), (2) becomes critically damped
for each position coordinate. The forcing term f (s) ∈ R3 is
defined as a linear combination of N Gaussian basis func-
tions, which enable the encoding of any smooth demonstrated
trajectory:

f (s) =
∑

N
i=1 W iψi(s)

∑
N
i=1 ψi(s)

s (4)

where ψi(s) = exp(−hi(s−ci)
2), ci’s are the centers of Gaus-

sian kernels distributed along the phase of the movement
and hi’s the inverse widths while W i are the columns of
the weight matrix W ∈ R3×N calculated during learning by
Locally Weighed Regression (LWR) to encode the motion

pattern of the demonstrated trajectory. Notice that s converges
exponetially to zero hence at the end of the motion the forcing
term vanishes and consequently the system converges to the
target y = g, z = 0.

The Bio-Inspired version of a DMP mitigates the disadvan-
tages of the original version when the initial position and the
goal coincide for a degree of freedom [12], and utilizes the
following equation instead of (1):

τ ż = k(g− y)−dz− k(g− y0)s+ k f (s) (5)

where k = αzβz and d = αz are scalar gains.

B. Impedance control with robot and task uncertainties

Consider the dynamic model of a 3-dof non-redundant ma-
nipulator in the 3-dimensional operational space with p ∈ R3,
ṗ ∈ R3 p̈ ∈ R3, being the Cartesian position,velocity and
acceleration of the robot tip respectively:

Λp(p)p̈+Cp(p, ṗ)ṗ+Fg(p) = uc +F(t)+Fext (6)

where Λp(p) = [J(q)Λ−1(q)JT (q)]−1, Cp(p, ṗ) =
J−T (q)C(q, q̇)q̇ − Λp(p)J̇(q)q, Fg(p) = J−T (q)G(q),
uc = J−T τc, F(t) ∈ R3 a term arising from robot unmodelled
dynamics like friction and backlash and unknown task
dynamics like unknown loads, Fext are external contact forces,
τc the joint control input, Λ(q) ∈ R3×3 the manipulator’s
inertia matrix, C(q, q̇) ∈ R3×3 the centrifugal/Coriolis matrix,
G(q) ∈ R3 the gravity vector and J(q) the robot Jacobian; it
is assumed that the robot moves away from singularities so
that the Jacobian is invertible and defines a bijective mapping
between the joint space and the operational space.

Let yd , ẏd , ÿd ∈ R3 be a desired trajectory in the operational
space that can be planned or provided by a DMP. Impedance
control is a popular solution for trajectory tracking. It requires
an estimate of the robot inverse dynamics together with a PD
control scheme for the tracking error et = p− yd as well as
the feedforward of the desired acceleration [13]. In the closed
loop, it yields the following target linear dynamics Λd ët +
Dd ėt +Kdet = Fe(t)+Fext , where the positive definite matrices
Λd ,Dd ,Kd ∈ R3×3 set by the designer are the target inertia,
damping and stiffness; Fe(t) includes F(t) of unmodeled robot
and task dynamics and the residual dynamics that are due to
robot model parametric uncertainties.

In case Fext = 0, the unknown term Fe(t) acts as a dis-
turbance input to the system affecting tracking accuracy. To
be robust to such disturbances a stiff robot is required (high
feedback gains) that contradicts the desired compliance to
external contact forces for safety and collaboration.

C. Contraction Analysis

Contraction analysis provides a simple and efficient way
for analyzing the stability of non-linear dynamics [14], [15].
The basic convergence principle of contracting systems states
that if all neighboring trajectories converge to each other
(contraction behavior) global exponential convergence to a
single trajectory can then be concluded [14]. More formally,
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Fig. 1. The proposed control structure.

Definition 1: [14] Given the system equations ẋ = f (x, t) a
region of the state space is called a contraction region if the
Jacobian ∂ f

∂x is uniformly negative definite in that region.
Theorem 1: [14] Given the system equations ẋ = f (x, t),

any trajectory, which starts in a ball of constant radius centered
about a given trajectory and contained at all times in a contrac-
tion region, remains in that ball and converges exponentially
to this trajectory. Furthermore, global exponential convergence
to the given trajectory is guaranteed if the whole state space
is a contraction region.

Notice that, in a globally contracting autonomous system,
all trajectories converge exponentially to a unique equilibrium
point [14]. The following proposition, which is utilized in
our analysis is proposition 2 of [15] applied to autonomous
systems.

Proposition 1: If ẋ1 = g1(x1) is contracting and ẋ2 =
g2(x1,x2) is contracting for each fixed x1, then the following
hierarchy is contracting.

d
dt

(
x1
x2

)
=

(
g1(x1)

g2(x1,x2)

)
(7)

III. THE PROPOSED CONTROL SCHEME

A block diagram of the proposed control scheme is shown in
Figure 1. Let the desired trajectory yd , ẏd , ÿd ∈ R3 be generated
by a bio-inspired DMP with phase stopping given by the
following dynamic equations:

τaẏd = zd

τażd = k(g− yd)−dzd− k(g− yd0)s+ k f (s)
τa = τ(1+ exp(asig(|e|− csig)))

τaṡ =−αss

(8)

where zd ∈ R3 is the scaled desired velocity, yd0 ∈ R3 is the
initial position, e∈ R3 is a feedback error to be defined below,
τ is the desired time duration of the movement, τa ≥ τ is an
adaptive time scaling parameter with asig, csig being positive
parameters of a sigmoid function (1+ exp(asig(|e|− csig)))

−1

that regulate its slope and center. The phase stopping imple-
mented in this way allows the abrupt increase of τa after a
certain error value. In fact, for high slope values and |e|< csig
τa ≈ τ while for |e|> csig τa takes very high values stopping
the DMP evolution.

Instead of providing the system with the desired trajectory
we generate a reference trajectory y, ẏ, ÿ ∈ R3 by a virtual

DMP preserving the generalization properties of (8) with the
following structure:

τaẏ = z
τaż = k(g− y)−dz− k(g− y0)s− ke+ k f (s)
τa = τ(1+ exp(asig(|e|− csig)))

τaṡ =−αss

(9)

where e = p− y ∈ R3 is the tracking error from the virtual
reference trajectory with p ∈ R3 being the robot’s actual
position which may differ from the reference depending on
the tracking accuracy achieved by the robot control system.
Notice that the virtual DMP is similar to (8) with the addition
of a coupling term at the acceleration level. This coupling term
is a negative feedback of the virtual tracking error utilizing
the same position control gain k with the linear DMP part.
The latter is instrumental in the achievement of the control
objective as it is shown in section III A. Moreover, unlike
[10], [11] this coupling term does not utilize the deviation
from the nominal behavior (yd) but from the virtual reference
y.

The virtual DMP is coupled with a robot control system
which implements a target impedance Λd ,Dd ,Kd ∈ R3×3 in-
troduced in section II B, between the input and the virtual
tracking error:

Λd ë+Dd ė+Kde = Fe(t)+Fext (10)

where Λd , Dd , Kd are defined for the rest of the paper as
diagonal positive definite matrices and Fe(t) includes unmod-
eled and residual dynamics and Fext are external contact forces
discussed in section II B. Notice that the linear system (10)
ensures perfect tracking only when the input is zero. Otherwise
the virtual tracking error depends on the value of the target
stiffness Kd .

The employment of the proposed scheme with low target
stiffness gains, although it does not utilize et = p−yd , achieves
high tracking accuracy of yd with et reaching practically zero
at the target. As it is made clear in the following stability
analysis, after a transient, the virtual trajectory tracking error
e is of the same magnitude and opposite sign from the distance
between the desired and virtual trajectory y− yd . Hence, the
role of the virtual trajectory y(= yd − e) is to provide the
robot with a reference which includes the desired trajectory
displaced by the amount required to follow accurately yd .
One can say that the virtual trajectory is in fact deceiving the
robot control system so that it accurately follows the desired
trajectory yd .

The most significant disturbances that arise from task
dynamics and robot model uncertainties are mainly caused
by gravitational forces affecting tracking accuracy. These are
constant at stationary states. In the following stability analysis
we consider the cases of constant and periodic disturbances in
order to take into account disturbance inputs during motion.
For a constant input, it is proved that p converges to yd . For
a periodical input, it is shown that p converges within a small
region around yd if the input frequencies are considerably
lower than the bandwidth of the virtual DMP and the robot
control system; these conditions depend on the values of k and
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Kd . Moreover, the system is compliant under the presence of
a bounded external contact force of limited duration, typically
arising in unforeseen contacts.

A. Stability Analysis

We write the control system in state-space form with respect
to the state:

ξ =
(
e ė s y−g z

)T

d
dt


e
ė
s

y−g
z

=


ė

−Λ
−1
d Dd ė−Λ

−1
d Kde+Λ

−1
d (Fe(t)+Fext)

−αss/τa
z/τa

k
τa
((g− y)− (g− y0)s− e+ f (s))− d

τa
z


(11)

Notice that Fe(t)+Fext can be regarded as the control system’s
input. Stability analysis proceeds as follows. First, we prove
that in the absence of an input, i.e Fe(t)+Fext = 0, the system
described by (11) is globally contracting. For autonomous
systems this means that all trajectories converge exponentially
to the equilibrium ξ = 0. Then, we consider the cases of a
constant and a periodic input with frequencies considerably
lower than the bandwidths of the virtual DMP and the robot
control system. For the first case we prove that the virtual
tracking error e converges to a constant such that p = yd .
Similarly, in the second case e converges to a trajectory such
that p≈ yd .

Setting Fe(t)+Fext = 0, the system, consisting of the first
three equations of (11) is an hierarchical combination of the
linear system:

d
dt

(
e
ė

)
=

(
03×3 I3
−Λ
−1
d Kd −Λ

−1
d Dd

)(
e
ė

)
(12)

and of ṡ = −αs/τa. System (12) is globally exponentially
stable, with a unique equilibrium at (e, ė) = (0,0), since it is
linear and Λd , Dd , Kd are diagonal positive definite matrices
and therefore, it is globally contracting. For (e, ė) = (0,0)
we have ṡ = −αss/τ which is contracting. Therefore, using
Proposition 1 we prove that the hierarchical combination of
(12) and of ṡ=−αs/τa is contracting. Finally, in order to prove
that system (11) with zero input is contracting, we examine the
system composed of the last two equations of (11) and prove
that is also contracting. In particular, the second system:

d
dt

(
y−g

z

)
=

(
z/τa

k
τa
((g− y)− (g− y0)s− e+ f (s))− d

τa
z

)
(13)

is contracting since for the fixed point (e, ė,s) = (0,0,0) we
have τa = τ , f (s) = f (0) = 0 and hence (13) is simplified to
the following linear contracting system:

d
dt

(
y−g

z

)
=

(
03×3

1
τ

I3
− k

τ
I3 − d

τ
I3

)(
y−g

z

)
(14)

Thus, using Proposition 1 we conclude that the hierarchi-
cal combination of the system composed of the first three
equations of (11) and the last two equations of (11) is also
globally contracting. Consequently, system (11) is contracting
in the whole state space. Since, in a globally contracting
autonomous system all trajectories converge exponentially to

a unique equilibrium point [14], the equilibrium ξ = 0 is
globally exponentially stable, which implies y = p = g.

In order to proceed with the cases of a constant and periodic
inputs, we reformulate the virtual DMP system with respect
to the dynamics of the error er = y− yd . To this aim we
consider the forcing term f (s) as a sum of position, velocity
and acceleration terms assuming perfect reconstruction of the
demonstrated data:

f (s) =
τ2ÿd + τdẏd− k(g− yd)+ k(g− y0)s

k
(15)

For tracking accuracy we are interested in disturbance inputs
from unmodeled dynamics for which |e|< csig hence τa ≈ τ .
Then substituting (15) in the virtual DMP differential equation:

τ
2ÿ = k(g− y)− τdẏ− k(g− y0)s− ke+ k f (s) (16)

yields ër +
d
τ

ėr +
k

τ2 er =− k
τ2 e. This system together with the

robot control system dynamics (10) can be written in the
standard second order linear system form as follows:{

ë+ζ1ωn1ė+ω2
n1e = Λ

−1
d Fe(t)

ër +ζ2ωn2ėr +ω2
n2er =−ω2

n2e
(17)

where ωn1 =
√

Λ
−1
d Kd and ωn2 =

√
k

τ
.

Consider the constant input Λ
−1
d Fe(t) = F = const. Then,

the first equation of (17) implies that e converges to K−1
d F .

Substituting e = K−1
d F in the second equation of (17), implies

that er converges to −K−1
d F which is of the same magnitude

and opposite sign as compared to e. Notice that p− yd = e+
er. Hence p converges to yd . The speed of convergence of
er depends on the value of k while phase stopping allows a
compliant reaction according to the value of Kd .

Consider the periodic input Λ
−1
d Fe(t) = Asinωt. Then, the

first equation of (17) is a linear system driven by a periodic
input; its steady state solution is:

ess(t) =−
A√

(ω2
n1−ω2)2 +4ζ 2ω2

n1ω2
cos(ωt +φ) (18)

where φ = tan−1(
ω2

n1−ω2

2ζ ωn1ω
). Assuming ωn1 � ω implies φ ≈

tan−1 ω2
n1 ≈ π/2 and

A√
(ω2

n1−ω2)2 +4ζ 2ω2
n1ω2

≈ A
ω2

n1

Then, the steady state response is given by:

ess(t)≈
A

ω2
n1

sin(ωt) = Λ
−1
d K−1

d Fe(t) (19)

The second equation of (17) is a linear system for er driven
by the periodic input of the virtual tracking error. Assuming
that ωn2�ω , the steady state response of er will be given by
the following:

er,ss(t)≈
ω2

n2A
ω2

n1ω2
n2

sin(ωt) =−Λ
−1
d K−1

d Fe(t) (20)

which is minus the function ess(t). We can therefore conclude
that p converges to yd if ωn1� ω and ωn2� ω . Notice that
these conditions depend on the values of k and Kd .
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Fig. 2. Bounded disturbance input. Sum of a constant and a sinusoidal term
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Fig. 3. Position and desired trajectory under the bounded disturbance with
the proposed (blue line) and the conventional scheme (black line).

IV. SIMULATIONS

We have simulated a 3-dof non-redudant manipulator in
the 3-dimensional operational space driven by a DMP system,
described by (8), (9), (10) with model and control parameter
values set as follows: Λd = In, Kd = 100In, Dd = 20In implying
ζ1 = 1 and ωn1 = 10, k = 1600 d = 80 or az = 80, bz = 20 for a
critically damped response of the linear part of the DMP within
approximately 0.4 s, asig = 300 and csig = 0.13m. The DMP
was trained with synthetic data from an initial position p0 =
(0m,−0.2m,−0.2m) towards a goal g = (0.4m,0.2m,0.2m)
using LWR. The first simulation considers the case of an
input Fe(t) shown in Figure 2 which consists of a constant
and a sinusoidal component. We have also simulated the
conventional scheme in which the system is driven by the
DMP’s desired trajectory (8) rather than the virtual trajectory
for comparison purposes. Notice that ωn1� ω = 0.785 and
φ = 89.4 deg and that |emax| ≈ 0.019 which means that τa = τ .
Furthermore ωn2≈ 10�ω . The position response of the robot
with the proposed scheme p1 and the conventional scheme
p2 is shown in Figure 3 together with the desired trajectory.
Notice how the proposed scheme follows closely the desired
trajectory reaching the target as opposed to the conventional
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Fig. 4. Norm of tracking error under bounded disturbances.
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scheme which exhibits significant errors in the z−axis where
the disturbance input is higher. The norm of the tracking
error is shown in Figure 4 where practically a zero tracking
error is achieved after a fast transient (see embedded subplot).
To achieve the same magnitude of tracking errors with the
conventional scheme we had to increase the robot control gain
from 200 to 25000 and adjust the velocity gain accordingly,
resulting to a non-compliant robot under collisions. To reveal
the way the proposed scheme works, Figure 5 shows the
tracking error et = p− yd together with the virtual tracking
error e = p− y and er = y− yd for each axis. It is clear that
the virtual tracking error e is compensated by er so that the
tracking error et is zero after a fast transient.

Next, we repeated the simulation but now we have exerted
a contact force shown in figure 6 of maximum value of
50N that could have arisen in collisions. The response of the
norm of the tracking error et = p− yd is shown in Figure 7
demonstrating the system’s compliance in case of collisions.
Moreover the response of p is shown in Figure 8 for the
z− axis where the contact force is higher together with the
response of the respective virtual reference y with and without
the external force. Notice how the evolution of y slows down
during the external force exertion delaying its compensating
effect, thus allowing the compliant response of p. The apparent
stiffness estimated as the ratio of maximum exerted force over
the maximum error is approximately Ka = 119N/m which is
practically close to the target stiffness (Kd value).

V. EXPERIMENTAL RESULTS

For the experiments we have used a 7-dof KUKA LWR
4+ robot with a Barret BS8-hand attached at its wrist hold-
ing a cylindrical tin under gravity compensation. The robot
was driven at the torque level with a control loop running
at 500 Hz by a Jacobian transpose PD-control scheme of
the Cartesian position error p− y with a low P-gain set at
Kp = 200I3 for low positional stiffness and a velocity gain
set at Dd = 40I3. We have fixed orientation dofs to stay at
their initial values by a high gain feedback controller. Notice
that this compliant control scheme is equivalent to impedance
control without inertia shaping and implies disturbance forces
from uncompensated system dynamics unlike the simulation
cases. The task is to place the tin on top of another on the
table. The motion is demonstrated by human guidance and is
encoded in a DMP with parameters d = 80, k = 1600, asig =
500 and csig = 0.05. The initial and target tip positions are
p0 = (−0.01m,0.58m,0.18m) and g = (0.34m,0.45m,0.41m).
In the first run, we demonstrate trajectory tracking and target
reaching accuracy under unknown task dynamics by adding a
weight of 0.5 kg on top of the grasped tin, as unknown task
dynamics. The experiment is repeated with the conventional
scheme for comparison purposes. In the second run, we
demonstrate the proposed scheme’s collaborative aspects by
having the human stop the robot’s motion with its finger before
reaching the target and place the weight on top of tin. In
the last run, we demonstrate compliance under unintentional
contact by having a human intersect the robot’s path, which
is now not carrying the weight. Disturbance inputs measured
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Fig. 9. Disturbance input from unknown task and robot dynamics
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by the KUKA’s external force estimator and the norm of
tracking error for the first run are shown in Figure 9 and 10
respectively. The larger disturbance values on z−axis are from
the extra weight while disturbances in the x and y−axis are
mainly due to the robot’s uncompensated dynamics. Notice the
low tracking error (< 5mm) at steady state and the accurate
target reaching of the proposed scheme as opposed to the
conventional scheme. In fact, the conventional scheme with
errors in the range of 4.5 cm cannot complete the task colliding
with the target tin (see the video). Results of the disturbance
input and the actual and desired trajectory for the second run
are shown in Figures 11 and 12. Notice the phase stopping
effect as the user stops the robot at time 3.5sec until he applies
the weight at times 8sec. After a short transient, the response
is following the desired, reaching accurately the target (Figure
12). In the last run, the contact force from the unintentional
contact is depicted in Figure 13, the robot’s actual and desired
trajectory in Figure 14 and the norm of the tracking error in
Figure 15. Notice the phase stopping effect and the compliant
response of p as the user pushes the robot backwards mainly
along the x−axis (see the video). The apparent stiffness can
be estimated approximately at Ka = 236N/m which is almost
equal to the target stiffness. The code used in the experiments
can be retrieved from: https://github.com/kostasVlachos/dmp
control/releases/tag/DMP control
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Fig. 11. Disturbance input in human robot interaction
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Fig. 12. Robot and desired trajectory in human-robot interaction
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Fig. 13. Unintentional contact force.
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VI. CONCLUSIONS

A novel control scheme is proposed to achieve both the
following of a desired trajectory with accurate target reaching
under robot and task uncertainties and compliance under in-
tentional and unintentional contacts. It involves a virtual DMP
reference trajectory coupled with a low stiffness controlled
robot. The scheme is theoretically shown to achieve tracking
error convergence in case of constant and sinusoidal distur-
bance inputs without requiring any prior training or iterative
execution in order to perform well. Simulations validate the
theoretical findings giving insights in the way the proposed
scheme acts. Experimental results with a KUKA LWR4+ robot
show accurate target reaching and higher tracking accuracy
with respect to the conventional scheme.
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