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Abstract. LiDAR based SLAM is becoming affordable by new sensors
such as the M8 Quanergy LiDAR, but there is still little work reporting
on the accuracy attained with them. In this paper we report on the
comparison of three registration methods applied to the estimation of
the path followed by the LiDAR sensor and the registration of the overall
cloud of points, namely the iterated closest points (ICP), Coherent Point
Drift (CPD), and Normal Distributions Transform (NDT) registration
methods. In our experiment, we found that the NDT method provides
the most robust performance.

Keywords: Point Cloud Registration · LiDAR · SLAM.

1 Introduction

The simultaneous localization and mapping (SLAM) aims to estimate a recon-
struction of the environment along with the path traversed by the sensor has
become an integral part of the robotic operating system (ROS) [13,14]. One of
the most widely used kinds of sensors used for SLAM are laser based depth mea-
surement sensors, or light detection and ranging (LiDAR) sensors, which have
been used for scanning and reconstruction of indoor and outdoor environments
[3], even in underground mining vehicles [12]. Fusion of LiDAR with GPS allows
for large scale navigation [4] of autonomous systems.

New affordable LiDAR sensors, such as the M8 from Quanergy that we are
testing in this paper, allow for further popularization of LiDAR based SLAM
applications. Due to its specific innovative characteristics, the M8 sensor still
needs extensive testing by the community in order to assume its integration in
the newly developed systems [9]. The work reported in this paper is intended
partly to provide such empirical confirmation of the M8 sensor quality. We have
not carried out any precise calibration process of the sensor [5,6]. Instead, we
are assessing the sensor through the comparison of three standard point cloud
registration methods over experimental data gathered inhouse.

This paper is structured as follow: A brief presentation of the environment
where experiment was carried out and the LiDAR sensor used in it, Quanergy
M8. Next, the mathematical description of the three 3D registration methods
used in the paper: Iterative Closest Point (ICP), Coherent Point Drift (CPD)



and Normal Distribution Transform (NDT). Then, the algorithm developed to
register LiDAR data with the three methods and reconstruct an indoor surface.
Finally, experimental results are presented for each registration method and a
comparative between them in terms of root mean square error of the Euclidean
distance, path obtained and resulting surface.

2 Materials

Both the time sequence of M8 captured point clouds and the Matlab code used
to carry out the computational experiments has been published as open data
and open source code 1 in the Zenodo repository for reproducibility.

Fig. 1. Nominal path followed during the LiDAR recording.

Location and experiment setting The experiment was carried out in the third
floor of the Computer Science School of the UPV/EHU in San Sebastian. Figure
1 shows the nominal path followed by the M8 LiDAR on a manually driven
mobile platform. The actual path shows small perturbations around the nominal
path. We do not have a precise actual path measurement allowing to quantify
the error in the trajectory.

LiDAR M8 Quanergy The Quanergy M8 LiDAR sensor is a multi-laser system
with 8 2D line scanners located on a spinning head. The Figure 2 shows the M8
Quanergy LiDAR physical aspect and some of its specifications. This system is
based on Time-of-Flight (TOF) technology whose spin rate is between 5 Hz and
20 Hz and its maximum range is 100 m. The Table 1 shows the M8 LiDAR main
parameters. Besides, M8 LiDAR comes with 2 desktop applications to manage
and visualize point clouds, a SDK to record and show data in real time, and a
SDK in framework ROS.

1 http://doi.org/10.5281/zenodo.3633727



Table 1. Quanergy M8 sensor specifications

Parameter M8 sensor specifications
Detection layers 8
Returns 3
Mininum range 0.5m (80% reflectivity)
Maximum range >100m (80% reflectivity)
Spin rate 5Hz - 20Hz
Intensity 8-bits
Field of view Horizontal 306º - Vertical 20º (+3º/-17º)
Data outputs Angle, Distance, Intensity, Synchronized Time Stamps

Fig. 2. The M8 Quanergy LiDAR and diagrammatic specs.

3 Point cloud registration methods

Point cloud registration methods are composed of two steps: (a) finding the
correspondence between points in one cloud (the moving) to the points in the
other cloud (the reference), and (b) the estimation of the motion parameters
that achieve optimal match of the moving points to the reference points after
correcting for the motion. If the motion is modeled by a rigid body or an affine
transformation, then a matrix transformation common to all points is estimated.
If the motion is some non linear deformation, then we have to estimate a flow
field. In this paper we are restricted to rigid body transformations, which are
compositions of a translation and a rotation. The transformation estimation
process takes the form of a minimization problem where the energy function is
related to the quality of the correspondence achieved. Next we recall the basics
of the three point cloud registration methods.

3.1 ICP

The most popular and earlist point cloud registration method is the Iterative
Closest Point (ICP) proposed by Besl in 1992 [1]. This technique has been
exploited in many domains, giving rise to a host of variations whose relative
merits are not so easy to assess [11]. Given a point cloud P = {pi}Npi=1 and a
shape described by another point cloud X = {xi}Nxi=1 (The original paper in-
cludes the possibility to specify other primitives such as lines or triangles with



well defined distances to a point, but we will not consider them in this pa-
per.) the least squares registration of P is given by (q, d) = Q (P, Y ), where
Y = {yi}Npi=1 is the set of nearest points from X to the points in P , i.e. pi ∈
P ;yi = arg min

x∈X
‖x− pi‖2, denoted Y = C (P,X), and operator Q is the least

squares estimation of the rotation and translation mapping P to Y using quater-
nion notation, thus q = [qR | qT ]t is the optimal transformation specified by a
rotation quaternion qR and a translation qT , and d is the registration error.
The energy function minimized to obtain the optimal registration is f (q) =
1
Np

∑Np
i=1 ‖yi −R (qR)pi − qT ‖2, whereR (qR) is the rotation matrix constructed

from quaternion qR. The iteration is initialized by setting P0 = P , q0 =
[1, 0, 0, 0, 0, 0, 0]

t, and k = 0. The algorithm iteration is as follows: (1) com-
pute the closest points Yk = C (Pk, X), (2) compute the registration (qk, dk) =
Q (P0, Yk), (3) apply the registration Pk+1 = qk (P0), and (4) terminate the
iteration if the results are within a tolerance: dk − dk+1 < τ .

3.2 CPD

The Coherent Point Drift (CPD) [10,7] registration method considers the align-
ment of two point sets as a probability density estimation problem. The first
point set X = {xi}Ni=1 is considered the data samples generated from the Gaus-
sian mixture model (GMM) whose centroids are given by the second point set
Y = {yi}Ni=1. Therefore, the CPD registration tries to maximize the likelihood
X as a sample of the probability distribution modeled by Y after the application
of the transformation T (Y, θ), where θ are the transformation parameters. The
GMM model is formulated as p (x) = ω 1

N + (1− ω)
∑M
m=1

1
M p (x |m ) assuming

a uniform distribution for the a priori probabilities P (m) = 1
M , and adding

an additional uniform distribution p (x |M + 1) = 1
N to account for noise and

outliers. All Gaussian conditional distributions are isotropic with the same vari-
ance σ2, i.e. p (x |m ) =

(
2πσ2

)−D/2
exp

(
‖x−ym‖2

2σ2

)
. The point correspondence

problem is equivalent to selecting the centroid ym with maximum a posteri-
ori probability P (m |xn ) for a given sample point xn. The CPD tries to mini-
mize the negative log-likelihood E

(
θ, σ2

)
= −

∑N
n=1 log

∑M
m=1 P (m) p (x |m ) by

an expectation-maximization (EM) algorithm. The E step corresponds to solv-
ing the point correspondence problem using the old parameters, by computing
the a posteriori probabilities with the old parameters P old (m |xn ). Let poldn,m =

exp

(
− 1

2

∥∥∥∥xn−T(yn,θ
old)

σold

∥∥∥∥), then P old (m |xn ) = poldn,m

(∑M
k=1 p

old
k,m + c

)−1
. The

M step is the estimation of the new parameters minimizing the complete negative
log-likelihood Q = −

∑N
n=1

∑M
m=1 P

old (m |xn ) log (Pnew (m) pnew (x |m )) . For
rigid transformations, the objective function takes the shape: Q

(
R, t, s, σ2

)
=

1
2σ2

∑N,M
n,m=1 P

old (m |xn ) ‖xn − sRym − t‖2+NpD
2 log σ2 such thatRTR = I,det (R) =

1. Closed forms for the transformation parameters are given in [10].



3.3 NDT [2]

The key difference of this method is the data is representation. The space around
the sensor is discretized into regular overlapped cells. The content of each cell
having more than 3 points is modelled by a Gaussian probability distribution
of mean q = 1

n

∑
i xi and covariance matrix Σ = 1

n−1
∑
i (xi − q) (xi − q)

t,
so that the probability of a LiDAR sample falling in the cell is of the form:
p (x) ∼ exp

(
− 1

2

)
(x− q)Σ−1 (x− q). Given an initial rigid body transforma-

tion T (x;p0), where p is the vector of translation and rotation parameters, a
reference point cloud {xi} modelled by the mixture of the cells Gaussian dis-
tributions, and the moving point cloud {yi} , the iterative registration process
is as follows: the new laser sample points yi are transformed into the reference
frame of the first cloud y′i = T (yi;pt−1), where we find the cell where it falls
and use its parameters (q, Σ) to estimate its likelihood p (y′i). The score of the
transformation is given by score (p) =

∑
i p (y

′
i). The maximization of the score

is carried out by gradient ascent using Newton’s method, i.e. pt = pt−1 +4p.
The parameter update is computed solving the equation H4p = −g, where H
and g are the Hessian and the gradient of the −score (pt−1) function, respec-
tively. Closed forms of H and g are derived in [2] for the 2D case. An extension
to 3D is described in [8].

4 Registration and SLAM algorithm

Figure 3 presents a flow diagram of the general algorithm that we have applied
to obtain the registration of the LiDAR point clouds recorded at each time point
t = {1, . . . , T} while the sensor is being displaced manually in the environment
according to the approximate path in Figure 1. The final result of the process is
a global point cloud M (T ) that contains all the recorded 2D points registered
relative to the first acquired point cloud N (0), and the estimation of the LiDAR
recording positions relative to the initial position. These recording positions are
given by the composition of the point cloud registration transformations esti-
mated up to this time instant. The trajectories displayed below all start from
the XY plane origin for this reason. The process is as follows: For each acquired
point cloud N (t) at time t, firstly we remove the ego-vehicle points denoting
N (1) (t) the new point cloud. Secondly we remove the ground plane applying a
threshold on the height, obtaining N (2) (t). Thirdly, we downsample the point
cloud to decrease the computation time and improve accuracy registration, ob-
taining N (3) (t). For the initial point cloud at t = 0, N (3) (t) becomes the
global merged cloud M (0). For subsequent time instants t > 0, the fourth step
is to estimate the transformation Tt of the aquired data N (3) (t) to the previous
global point cloudM (t− 1). For this estimation, after applying we use any of the
registration algorithms described above to register Tt−1 (N (3) (t)) to M (t− 1)
obtaining Tt. We then apply this trasformation to the acquired point cloud pre-
vious to downsampling N (4) (t) = Tt (N (2) (t)), which is used to obtain the new
global registed point cloud by merging M (t) = merge (M (t− 1) , N (4) (t)).



Fig. 3. Flow diagram of the registration algorithm. N(i)(t) is the point cloud at time
t after the i-th step of processing. M(t) is the overal point cloud up after merging all
the registered point clouds processed up to time t.



5 Results

Figure 4 presents the evolution of the registration error of the SLAM algorithm
described in Figure 3 of the point clouds recorded along the path shown in Figure
1 using the three registration methods described in Section 3 alternatively. The
plot is logarithmic scale in order to be able to represent the three error plots in the
same scale. The NDT algorithm gives the minimal error all along the path. The
error of both NDT and CPD registration methods remains bounded, however
the error of the ICP method explodes after a point in the trajectory, specifically
the turning point at the end of the main hallway in Figure 1. Figure 5(right)
shows the overall cloud point obtained at the end of the SLAM porcess, and the
estimated trajectory (white points). After some point in the trajectory, the ICP
registration loses track and gives random looking results. Figure 5(right) shows
the results of the ICP registration up to the turning point, which are comparable
with the results of the other algorithms. Figure 6(right) shows the results of the
CPD algorithm in terms of the registered and merged overall cloud of points
and the trajectory estimation (white points). It can also be appreciated that the
SLAM process gets lost after the path turning point, however the registration of
point clouds does not become unwieldly. Finally, Figure 7(up) shows the results
of the NDT algorithm. The trajectory (white points) is quite accurate to the
actual path followed by the sensor. The trajectroy turning point was in fact as
smoth as shown in the figure. The overal registered and merged point cloud has
a nice fit of the actual hallway walls, as can be appreciated in Figure 7(bottom),
including a communication swhich closet signaled in the figure with an arrow,
that is not present in the original floor plan.

Fig. 4. Evolution of the registration error (log plot) for NDT (blue dots), CPD (green
dots), and ICP (red dots).



Fig. 5. Estimated trajectory (white points) and registered cloud of points using ICP
(right). Registration of the cloud points before reaching the turning point (left).

6 Conclusion

In this paper we report a comparison between three registration methods for
3D point clouds, namely the Iterative Closest Point (ICP), Coherent Point Drift
(CPD) and Normal Distributions Transform (NDT). To collect point sets, we
have located the M8 Quanergy LiDAR sensor on a manually driven mobile plat-
form through the third floor of the Computer Science School of the UPV/EHU in
San Sebastian. The registration algorithm followed in this paper includes prepro-
cessing (detect and remove ego-vehicle and floor, and downsample), registration,
transformation and merger point cloud. For each method described in this paper,
we have obtained the registration error, the estimation of the path traversed by
the sensor, and the reconstructed point cloud. For the ICP and CPD methods,
the error is larger than for the NDT method. Besides, after the turning point in
the nominal path, ICP and CPD obtained path and resulting point cloud are in-
correct. NDT registration obtains coherent experimental results and an accurate
trayectory compared with the nomical path followed.



Fig. 6. Estimated trajectory (white points) and registered cloud of points using CPD
(right). Registration of the cloud points before reaching the turning point (left).



Fig. 7. Estimated trajectory (white points) and registered cloud of points using NDT
(Above). Projection of the NDT registered point cloud on the plan of stage 3 of the
building.



A future works would be to combine the three methods described in this
paper to obtain a better result than obtained separately.
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