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ABSTRACT
Stress-induced local polarization reversal was studied in La doped
BiFeO3 ceramics under the action of Berkovich-type prism indenta-
tion. Piezoresponse force microscopy was used for detailed study of
domain structure before and after local polarization reversal. Two
mechanisms of domain formation under the action of the mechan-
ical loading were revealed: (1) direct stress-induced and (2) stress
mediated by grain clamping. Critical stress value for local polariza-
tion reversal was extracted from the dependence of the switched
area on the applied loading force.
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1. Introduction

Ferroelectric materials are widely used for variety of electromechanical applications such
as transducers and actuators [1, 2], where they are protractedly exposed by electrical
and mechanical loads. While polarization reversal under the action of electric field has
been comprehensively studied for decades, influence of mechanical stress on it is still
not totally understood. Mechanical stress was shown to induce phase transitions [3–5],
modification of electromechanical properties [6, 7], and polarization reversal [8, 9] in
ferroelectric materials. By analogy with electric field induced local polarization reversal,
where non-uniform electric field is created by the biased tip of scanning probe micro-
scope (SPM), indentation of a ferroelectric with enough load can induce polarization
reversal [10–12]. This method looks attractive to go deeper in understanding of domain
wall motion under the action of mechanical loading. Indentation induced polarization
reversal was studied in the past in relaxor PMN-PT [10], BaTiO3 [13], tetragonal ZrO2

[11] and SrTiO3 [14] single crystals, as well as PZT [15] and ZrO2 [5] piezoelectric cer-
amics, where it was generally attributed to the direct influence of stress and strains
induced by the mechanical loading. Nevertheless, it must be noted that the particular
focus of the previous works was on single crystals as more simple systems [13, 16, 17].
In ferroelectric ceramics, specific conditions of domain growth exist, for example,
domain wall mobility can be limited by orientation of neighboring grains [18]. Grain
boundaries usually concentrate defects and can act both as pinning center for domain
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walls and as nucleation sites [19, 20]. In addition, specific conditions for the stress
propagation exist in ceramics that, for example, hinder the movement of a crack (so-
called, “crack grown resistance”) [15]. The stress could have indirect effect on domain
structure because of grain clamping that can mediate transfer strain from one grain
to another.
In this work, we studied indentation induced local polarization reversal in La doped

BiFeO3 (BLFO) ceramics. BiFeO3 (BFO) ceramics are perspective lead-free material for
electro-mechanical applications [21], while doping by rare earth elements stabilizes the
perovskite phase that decreases amount of secondary phases and, correspondently, leak-
age current [22, 23]. Moreover, morphotropic phase boundary is realized in some dop-
ing concentration range that improves piezoelectric properties through the anti-polar-
to-polar phase transition [24–26]. Here, we showed that indentation of BLFO ceramics
led to the visible domain structure transformation both under immediate place of
indentation and in some area around. Details of the local polarization reversal by inden-
tation were analyzed and switching mechanisms were discussed. Piezoresponse force
microscopy (PFM) was shown to be useful technique for study of the switching under
the action of mechanical load.

2. Experimental

The investigated samples of BLFO ceramics with molar La concentration 5% were pro-
duced using the two-stage solid phase synthesis [27]. The initial high purity oxides were
taken in the stoichiometric ratio and thoroughly mixed for about 30min in a planetary
mill RETSCH PM-100 using high purity isopropyl alcohol as a medium. Preliminary
synthesis was made at 800 �C for 2h, the final synthesis was performed at 900 �C for
12h. The samples were quenched from the synthesis temperature down to room tem-
perature. X-ray diffraction (XRD) measurements were made on Rigaku D/MAX-B dif-
fractometer using Cu-Ka radiation. The XRD data were processed by the Rietveld
method using the FullProf software.
Since obtained BLFO ceramics were porous, one BFLO sample was permeated by

epoxy under vacuum to decrease porosity and to facilitate the realization of the experi-
ments. Further, both as-sintered and permeated by epoxy samples were rigorously pol-
ished by the diamond paste with abrasive size decreasing from 6 to 0.25 lm. Fine
polishing was performed with colloidal silica (SF1 Polishing Suspension, Logitech, UK).
Indentation of investigated samples was realized on scanning nano-hardness tester
“NanoScan-4D” (FSBI «TISNCM», Russia) by application of local mechanical loading
with diamond indenter of Berkovich type, trihedral pyramid, with 65.3� angle between
the axis of the pyramid and face, and 70.32� equivalent angle of the cone. The curvature
radius of the indenter was less than 100 nm.
Domain structure before and after indentation was studied by vector piezoresponse

force microscopy (VPFM) realized in scanning probe microscope Asylum MFP-3D
(Asylum Research, Oxford Instruments, UK). MikroMasch NSC18/Pt probes with
30 nm tip radius, 75 kHz free resonance frequency and 2.8 N/m spring constant were
used. Measurements were done with 20 kHz 5 VAC voltage applied to the tip. R�cosH
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PFM signal was corrected by phase angle rotation in such a way that minimizes R�sinH
signal and further plotted as image. We further address these images as piezoresponse.

3. Results and discussion

The grain size in BLFO ceramics was about 6–8 lm. VPFM images of BLFO demon-
strated mostly piezoelectrically active rhombohedral (R3c) phase [28]. Domain structure
consisted of prolong lamellar domains converging to one side with non-180-degree
domain walls and irregular shaped watermark areas with 180-degree domain walls (Fig.
1). Piezoresponse distribution had discrete values of the measured signal (contrasts) cor-
responding to the different types of domains allowed by rhombohedral symmetry condi-
tions. Non-180-degree domain walls are clearer seen in the in-plane phase signal, while
out-of-plane signal was mostly corresponded to boundaries of watermark areas.
In order to study polarization reversal under the action of mechanical load, we made

the indentation within matrix of points with linear growth of applied force from 10 to
50mN. The scheme of indentation experiments is presented in Fig. 2a. During indenta-
tion, the loading curves F¼ f(h) (Fig. 2b) were built. These curves are real experimental
analog of stress-strain curve r ¼ f(e). It consists of three sections: (1) loading, when
polarization switching occurs, (2) delay – holding at the constant load, and (3) upload-
ing, when elastic relaxation of the loaded state occurs. At the uploading stage, back-
switching of stress-induced domains can happen [12]. It is speculated that
backswitching can give an impact to pop-up event at the finish of uploading [17]. As a
result of indentation, Young modulus and hardness of BLFO ceramics were obtained:
80 ± 10GPa and 2.5 ± 0.2GPa, correspondently.
Local polarization reversal under the action of indentation results in two principal

changes of the domain structure: (1) immediate change in the area of plastic deform-
ation and (2) change in the vicinity of the area of plastic deformation. Example of typ-
ical indentation and corresponding domain structure change inside the indentation area
is presented in Fig. 3. Local polarization reversal led to appearance of a dense net of
nanoscale domains in the area of plastic deformation (Fig. 2a, red area). For maximal
loading in the corners of the prism, both out-of-plane and in-plane PFM revealed pie-
zoresponse reduction caused by pressure-induced phase transformation to orthorhombic
phase [29].
The other part of switching happened out of the area of plastic deformation. Three

possible sources of the switching can be considered: (1) strain created by indentation,
(2) indirect strain caused by grain clamping by the neighboring grains, and (3) electric
field created by charge induced by piezoelectric effect as a result of indentation at the
enclosing of plastic deformation area [30]. It was noticed that impact of the charge
induced by piezoelectric effect was negligible in our experiment, because we observed
mostly the motion of non-180-degree domain walls and shrinkage of in-plane domains
(Fig. 4), while electric field was usually created by the irregular shape domains with
180-degree walls [31]. Both other two phenomena were observed in our experiments.
Areas with domain switched under the direct stress action were located in the proximity
of the indent or indentation induced crack (Fig. 4, blue and green arrows). These
domains spread in direction from the region of plastic deformation. It must be noted
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that usually new domains were formed inside the initial domain structure. Growth of
previously formed domain structure was observed rarely for polarization reversal by dir-
ect stress. Even domains with one direction of polarization often did not completely
merge and residual domains remained (Fig. 4, blue and green arrows). The polarization
reversal under the indirect stress by neighboring grains was responsible for shrinking
initial ferroelastic domains (Fig. 4, red arrow).
Noticeable change of the domain structure was obtained at loads above 10mN, strong

destruction of ceramics began for loads above 30mN. Linear increase in the indentation
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Figure 1. PFM images of the initial domain structure in BLFO ceramics: (a) topography; (b) deflection;
amplitude: (c) out-of-plane and (d) in-plane; phase: (e) out-of-plane and (f) in-plane; piezoresponse:
(g) out-of-plane and (h) in-plane.
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force from 10 up to 30mN led to linear increase in switching area (Fig. 5, red line).
Critical value of stress can be found by the analysis of the switching area dependence
on the load force (Fig. 5). From linear fitting, critical force necessary for polarization
reversal was found Fc ¼ 1.9mN. This load force corresponded to penetration of the
indenter about 75 nm into the ceramics surface and 0.13 lm2 indentation area. Thus,
critical stress rc¼14.6MPa can be evaluated. This value is close to those obtained for
single crystals and calculated from the first principals [6]. It must be noted that partial
backswitching can happen after indenter uploading and thereby critical stress can be
slightly different from one extracted from the fitting [12].
BLFO embedded in epoxy glue behave significantly different as compared with initial

BLFO (Fig. 5). Local polarization reversal by indentation can be realized only by 30mN,
but more stress could be applied without complete grain destroying, up to 50mN.
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Figure 2. (a) Scheme of indentation by Berkovich type indenter. F – load force, h – penetration
depth of indenter. Red semi-circle corresponds to the region with plastic deformation. (b) Typical
loading curve for BLFO with 20mN loading force.

Figure 3. PFM images of the domain structure change in the indentation area. Topography: (a)
before indentation and (b) after indentation; piezoresponse: out-of-plane (c) before indentation and
(d) after indentation; in-plane (e) before indentation and (f) after indentation.

FERROELECTRICS 5

denis
Вычеркивание

denis
Записка
larger

denis
Вычеркивание

denis
Записка
destruction of the grain



Domain structure after indentation was significantly less modified under the action of
mechanical load (Fig. 5). That fact can be attributed to grain clamping, that is produced
due to compression of epoxy and mediates stress to the grains of the ceramics. Stress-
induced domains must change their size due to the piezoelectric effect and consequently
overcome stress created by the grain clamping.
Significant increase in the force necessary for local polarization reversal can be attrib-

uted to backswitching under the action of compressive strain of epoxy binder. That is
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Figure 4. PFM images of the domain structure change in the vicinity of the indentation area.
Topography: (a) before indentation and (b) after indentation; piezoresponse: out-of-plane (c) before
indentation and (d) after indentation; in-plane (e) before indentation and (f) after indentation.

Figure 5. Dependence of the switching area on the load force for the initial BLFO ceramics (red color)
and BLFO ceramics embedded in epoxy glue (blue line). Dots are responsible for the experimental
data, while lines are fitting by linear function.

6 A. S. ABRAMOV ET AL.

denis
Вычеркивание

denis
Записка
This fact



why real critical force is hard to be evaluated in that case. Both switching mechanisms
were observed in epoxy embedded ceramics as well: switching by direct stress (Fig. 5,
blue arrows) and switching by indirect stress from neighboring grain (Fig. 5, red
arrows). Due to the fact that polarization reversal was realized immediately near the
grain boundary, nucleation of the new domains at the grain boundary under the action
of clamping stress was observed (Fig. 5, red arrows).

4. Conclusion

Local polarization reversal under the action of mechanical load realized by Berkovich
type prism indentation was studied in BLFO ceramics. Nanoscale domain structure and
polar-to-nonpolar phase transition was observed in the area of plastic deformation. In
the vicinity of the area of plastic deformation stress-induced ferroelastic domains
appeared driving by conditions of mechanical energy minimization. Indirect action of
grain clamping by neighboring grain resulted in shrinkage of existed ferroelastic
domains and nucleation of new domains in the area of grain boundaries. Area of
switching was found dependent linearly on the applied load force. The value of the crit-
ical stress rc ¼ 14.6MPa for indentation induced local polarization reversal was eval-
uated from fitting. Obtained experimental results are significant for understanding
mechanical stress mediated depolarization effects in ferroelectric ceramics (Fig. 6).Q1
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