Planned intervention: On Thursday 19/09 between 05:30-06:30 (UTC), Zenodo will be unavailable because of a scheduled upgrade in our storage cluster.
Published November 23, 2019 | Version v1
Journal article Open

Extracting the Inertia Properties of the Human Upper Body Using Computer Vision

  • 1. Centre for Robotics, MINES ParisTech, PSL Universite Paris

Description

Currently, biomechanics analyses of the upper human body are mostly kinematic i.e., they are concerned with the positions, velocities, and accelerations of the joints on the human body with little consideration on the forces required to produces them. Tough kinetic analysis can give insight to the torques required by the muscles to generate motion and therefore provide more information regarding human movements, it is generally used in a relatively small scope (e.g. one joint or the contact forces the hand applies). The problem is that in order to calculate the joint torques on an articulated body, such as the human arm, the correct shape and weight must be measured. For robot manipulators, this is done by the manufacturer during the designing phase, however, on the human arm, direct measurement of the volume and the weight is very dicult and extremely impractical. Methods for indirect
estimation of those parameters have been proposed, such as the use of medical imaging or standardized scaling factors (SF). However, there is always a trade o between accuracy and practicality. This paper uses computer vision (CV) to extract the shape of each body segment and find the inertia parameters. The joint torques are calculated using those parameters and they are compared to joint torques that were calculated using SF to establish the inertia properties. The purpose here is to examine a practical method for real-time joint torques calculation that can be personalized and accurate.

Files

Menychtas2019.pdf

Files (577.5 kB)

Name Size Download all
md5:c9c95c1ba413b75369b7cfe9ba0eaf08
577.5 kB Preview Download

Additional details

Funding

CoLLaboratE – Co-production CeLL performing Human-Robot Collaborative AssEmbly 820767
European Commission