
http://bit.ly/fsci2019

April Clyburne-Sherin, Director of Scientific Outreach, Code Ocean

FORCE11 Scholarly Communications Institute 2019, UCLA
Thursday, August 8, 2019

Preparing code and data for
computationally reproducible
collaboration and publication

http://bit.ly/fsci2019
This work is licensed under a Creative
Commons Attribution 4.0 International License.

● Participants should have:
○ A laptop or other computer.
○ A supported browser (not IE or Edge).
○ 1 x pink post-it note.
○ 1 x green post-it note.
○ 1 x workshop survey.
○ A handful of mixed candy.

● Participants should follow along with the slide deck at the bitly link.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

http://bit.ly/fsci2019

Workshop POP

● Purpose: To introduce skills and tools in organization, documentation,
automation, containerization, and dissemination of research.

● Outcome: You feel more confident applying relevant skills and tools to
guide the sharing of your research code and data.

● Process: You adapt & apply some skills or tools we discuss today next
time your share or publish your research.

● Why are we here?
● What do we hope to accomplish together?

http://bit.ly/fsci2019

Agenda
Reproducibility guidance

Organization
Exercise 1: Data collection
Exercise 2: One repository
Exercise 3: Separate code & data

Documentation
Exercise 4: Specify environment
Exercise 5: Specify dependencies
Exercise 6: Containerization
Demo: Literate programming
Demo: Create a README file + data dictionary

Automation
Exercise 7: Create a master script
Exercise 8: Create relative paths

Dissemination
Exercise 9: Specify a license
Exercise 10: Share your code!

● How will we try to accomplish our Workshop POP?
● This is an adaptable agenda:

○ We will take two breaks together.
○ Participants should feel free to take breaks whenever they wish.

http://bit.ly/fsci2019

Icebreaker

Participants are asked to stand in a line ordered from most recently coded to never
coded:

● How long has it been since you last touched research code?
● Participants must discuss with each other when they last touched research

code.

Once the line is created:
● Facilitator makes these points:

○ There is a diversity of coding experience in the room - take a look who
is near you who has less coding experience than you.

○ There are too many people in the room for one facilitator to
troubleshoot alone, and there are lots of skilled people in the room.

○ We will use the post-it notes to signal when we have completed an
exercise.

○ When you finish an exercise and switch your post-it note to green, look
to your neighbors with a pink sticky - see if they could use some help!

http://www.youtube.com/watch?v=ipvJHuKa-Ic

http://bit.ly/fsci2019

Your thoughts?

With a show of hands, ask the participants whether they think there is a reproducibility
crisis in their discipline:
1. Yes, a significant crisis.
2. Yes, a slight crisis.
3. Don’t know.
4. No, there is no crisis.

Source information:

1,500 scientists lift the lid on reproducibility

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
(2016)

“A minority of respondents reported ever having tried to publish a replication study.
When work does not reproduce, researchers often assume there is a perfectly valid
(and probably boring) reason. What's more, incentives to publish positive replications
are low and journals can be reluctant to publish negative findings. In fact, several
respondents who had published a failed replication said that editors and reviewers
demanded that they play down comparisons with the original study.”

“The survey — which was e-mailed to Nature readers and advertised on affiliated

websites and social-media outlets as being 'about reproducibility' — probably selected
for respondents who are more receptive to and aware of concerns about
reproducibility.”

http://bit.ly/fsci2019

A crisis? (Nature 2016)

● Most researchers think that reproducibility is an issue in their discipline, but
may disagree about the urgency.

http://bit.ly/fsci2019

Communication during exercises:

1. Post a pink sticky note on your laptop at the start of the exercise.

2. Switch to a green sticky note when you finish and have no questions.

3. If you finish early, find someone with a pink sticky note and see if
you can help!

4. If you are colorblind, the pink sticky note has a “p” written on it.

Pink
sticky

up!

● At the beginning of each exercise, I will remind you to put a pink sticky note on
your laptop.

● When you finish the exercise and have no questions, switch to a green sticky
note.

● Since we are a large group and we can learn from each other, see if a
neighbor who is still working is interested in some help.

http://bit.ly/fsci2019

Your experience? (Nature 2016)

● However, we are going to frame this question in a different way.
○ With a show of hands, how many participants have had difficulty

reproducing someone else’s work?
○ And how many participants have had difficulty reproducing your own

work a few weeks, months, or years later?

http://bit.ly/fsci2019

A common experience (Nature 2016)

● This is how I prefer to frame issues about reproducibility.
● Difficulty reproducing our own work or the work of peers is very, very common

in research.
● Many of the steps that a researcher can take to address irreproducibility of

published research also improves the reusability of their research for
themselves, labmates, and close collaborators.

http://bit.ly/fsci2019

An opportunity to help your future self

…

Peng, R.D. (2011) Science

● Therefore, when thinking about adopting best practices to tackle
reproducibility, adopt first those practices that will benefit yourself first - as your
future self is the most frequent reuser of your research.

● Remember that, like reproducibility generally, computational reproducibility is a
spectrum. Integrating one or two new practices into your research will make
your research more reproducible - it is not all or nothing. And each of these
steps will benefit yourself first!

http://bit.ly/fsci2019

“An article about computational science in
a scientific publication is not the
scholarship itself, it is merely advertising
of the scholarship. The actual scholarship
is the complete software development
environment and the complete set of
instructions which generated the figure.”

- Buckheit and Donoho (1995)’s distillation of
Claerbout and Karrenbach (1992)

Computational reproducibility

● Professor Stodden et al. talked a lot about reproducibility yesterday
and I just assume you were there

● For our purposes, computational reproducibility is the ability for a new
researcher to rerun the data and code of the original research to create
the same figures, tables, and values shared by the original researcher.

○ Almost all research relies on software and code for some
aspect of its methods. Computational reproducibility relies on
the sharing of that software and code in addition to a published
narrative of the methods. This is why the founders of our idea of
reproducibility describe a published article as just an advertising
of the research. The actual research includes our research
software and code.

● Unavailable code and methods is a barrier to computational
reproducibility. So to improve computational reproducibility, we want to
know how best to share our methods and code.

●

http://bit.ly/fsci2019

Exercise 1: Data Collection - Candy Trade

● Pre-trade (Trade 0): Review your selection of candy. Rate how happy you are with your
selection on a scale from 1 (unhappy) to 10 (very happy).

○ In this google form, record your first name, your candy happiness rating, and select
trade number "0".

● Trade 1: Find one trading partner. Trade the candy you don't like for candy you do like with
that partner only. Rate how happy you are with your selection on a scale from 1 (unhappy) to
10 (very happy).

○ In this google form, record your first name, your candy happiness rating, and select
trade number "1".

● Trade 2: Now trade with everyone in the room. Trade candy you don't like for candy you do
like. Rate how happy you are with your selection on a scale from 1 (unhappy) to 10 (very
happy).

○ In this google form, record your first name, your candy happiness rating, and select
trade number "2".

Pink
sticky

up!

● Because some participants did not bring their own data and code, we will run
a short data collection exercise.

● This exercise is followed by a 10 minute break.
● Instructor: During the break:

○ Download the responses:
https://docs.google.com/forms/d/13_i1jKlyTwhl0UaUkmqhfZuG-M9i4l5
_6Q81vz54Ypw/edit#responses.

○ Remove the “Timestamp” column.
○ Save as a CSV file.
○ Upload to CSV file, named “data.csv”, to this github repo:

https://github.com/aprilcs/candy_trade. Be sure to delete the existing
“data.csv” file if there already is one in the repo.

https://goo.gl/forms/Mxi2fKrOYc9UCB9j1
https://goo.gl/forms/Mxi2fKrOYc9UCB9j1
https://goo.gl/forms/Mxi2fKrOYc9UCB9j1
https://docs.google.com/forms/d/13_i1jKlyTwhl0UaUkmqhfZuG-M9i4l5_6Q81vz54Ypw/edit#responses
https://docs.google.com/forms/d/13_i1jKlyTwhl0UaUkmqhfZuG-M9i4l5_6Q81vz54Ypw/edit#responses
https://github.com/aprilcs/candy_trade

http://bit.ly/fsci2019

10 MINUTE BREAK

 Tools we will use:

● Github https://github.com/
● Code Ocean https://codeocean.com/
● Binder (does not need account)

● Instructor: During the break:
○ Download the responses:

https://docs.google.com/forms/d/13_i1jKlyTwhl0UaUkmqhfZuG-M9i4l5
_6Q81vz54Ypw/edit#responses.

○ Remove the “Timestamp” column.
○ Save as a CSV file.
○ Upload to CSV file, named “data.csv”, to this github repo:

https://github.com/aprilcs/candy_trade. Be sure to delete the existing
“data.csv” file if there already is one in the repo.

https://github.com/
https://codeocean.com/
https://docs.google.com/forms/d/13_i1jKlyTwhl0UaUkmqhfZuG-M9i4l5_6Q81vz54Ypw/edit#responses
https://docs.google.com/forms/d/13_i1jKlyTwhl0UaUkmqhfZuG-M9i4l5_6Q81vz54Ypw/edit#responses
https://github.com/aprilcs/candy_trade

http://bit.ly/fsci2019

Lessons learned: testing computational reproducibility

● PMC “jupyter OR ipynb” -> 107 papers
● “My initial thought was that analysing

the validity of the notebooks would
simply involve searching the text of
each article for a notebook reference,
then downloading and executing it …
It turned out that this was
hopelessly naive…”

Mark Woodbridge, Daniel Sanz, Daniel Mietchen, & Ross Mounce (2017). Jupyter Notebooks and
reproducible data science, https://markwoodbridge.com/2017/03/05/jupyter-reproducible-science.html.

● We mentioned before the break that sharing code, data, and methods is
necessary for computational reproducibility.

● However, sharing just the code and methods does not ensure reproducibility.
This was demonstrated by an informal study by Woodbridge et al. to
reproduce code from published papers in the form of Jupyter Notebooks.

● They were able to successfully execute only one of the ~25 notebooks that we
downloaded.

● We don’t have to be naive like them - we can learn from their attempt.

If people do not know what a jupyter notebook is, you can talk about the uses of
notebooks:

● Documentation of analyses
○ A Modularized Efficient Framework for Non-Markov Time Series

Estimation:
https://codeocean.com/2018/01/16/a-modularized-efficient-framework-f
or-non-markov-time-series-estimation/code

● Programming or statistical education
○ Fractal Generation with L-Systems:

https://codeocean.com/2017/12/08/fractal-generation-with-l-systems/co
de

https://markwoodbridge.com/2017/03/05/jupyter-reproducible-science.html
https://codeocean.com/2018/01/16/a-modularized-efficient-framework-for-non-markov-time-series-estimation/code
https://codeocean.com/2018/01/16/a-modularized-efficient-framework-for-non-markov-time-series-estimation/code
https://codeocean.com/2017/12/08/fractal-generation-with-l-systems/code
https://codeocean.com/2017/12/08/fractal-generation-with-l-systems/code

● Executable article
○ On Writing Reproducible and Interactive Papers:

https://codeocean.com/2018/06/28/on-writing-reproducible-and-interact
ive-papers/code

https://codeocean.com/2018/06/28/on-writing-reproducible-and-interactive-papers/code
https://codeocean.com/2018/06/28/on-writing-reproducible-and-interactive-papers/code

http://bit.ly/fsci2019

What Woodbridge et al. found:

● Files, data, dependencies needed to execute analyses
were often missing.

● The first thing that Mark Woodbridge and his colleagues learned was that the
files, data, and dependencies needed to execute analyses were often missing
from the publication or accompanying repository.

http://bit.ly/fsci2019

We can organize for reproducibility:

● Bundle dependencies and include them in your
repository rather than retrieve on demand.

● Link to repositories, not just files.
● Archive the exact versions of materials used and

include them in your repository.

Learning from Woodbridge’s finding, we can organize for reproducibility:
● Archive the exact versions of data used and include them in your repository.
● Bundle dependencies and include them in your repository rather than retrieve

on demand.
● Link to repositories rather than individual code files or data files.

http://bit.ly/fsci2019

Exercise 2:

● Create one repository that holds all related
research files:
○ Data
○ Code
○ Notebooks
○ Documentation
○ etc.

So, the first way to overcome the risk of missing files, data, or dependencies that
Woodbridge found is to put everything in one repository.

Therefore, exercise 2 will be to create one repository for all our research materials.
We will use Code Ocean in this workshop, but you could do this locally with a file
folder or using a git repository.

http://bit.ly/fsci2019

Exercise 3:

● Organize your research to separate
code from data.

Resource on reproducible organization:

● Karl Broman: http://kbroman.org/steps2rr/pages/organize.html

Pink
sticky

up!

http://kbroman.org/steps2rr/pages/organize.html

http://bit.ly/fsci2019

Join our Candy Swap project Pink
sticky

up!

R: https://github.com/aprilcs/sips-workshop

Python: https://github.com/aprilcs/sips-workshop-py

https://github.com/aprilcs/sips-workshop
https://github.com/aprilcs/sips-workshop-py

http://bit.ly/fsci2019

Checklist

● Create one repository or directory that
holds all related research files.

● Organize your research to separate
data, code, and results.

● Save results explicitly.
● Identify a strategy for sensitive data.

Tools

● Open Science Framework: collaborative
project organization tool

● GitHub: collaborative coding, and
project management

● eLNs: free or paid, lab organization
● Code Ocean: built in best practices

Resources

● Strategies for sensitive data sharing:
Code Ocean Summary

● Harvard eLN Features Matrix:
https://docs.google.com/spreadsheets
/d/1ar8fgwagOh30E31EAPL-Gorwn_g6
XNf81g3VDQnQ_I8/edit?usp=sharing

Reference
Slide

How do we organize for reproducibility?
● For your reference, we have created these reference slides within the slide

deck with key points, tools, and resources.
● We won’t spend time on these reference slides as they are intended for your

future reference, and will just go over the main points.

Reproducible organization includes:
● Creating one repository for all your research materials.

● Separating data and code.

● And saving your results explicitly as a function of your data and code.

Free tools are available to help organize your research materials:
● The OSF is a free, open source, collaboration tool.

● Github provides free public repositories for collaborative coding and project
management.

● Electronic lab notebooks help to organize a lab, and Harvard’s Features Matrix
is a great place to start comparing them.

● Code Ocean structures their repository to separate data and code and save
results explicitly.

https://docs.google.com/document/d/11wb9zs9pPYsfe-4uL84w23iYTi_236WptfsarDNd9rg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ar8fgwagOh30E31EAPL-Gorwn_g6XNf81g3VDQnQ_I8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ar8fgwagOh30E31EAPL-Gorwn_g6XNf81g3VDQnQ_I8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ar8fgwagOh30E31EAPL-Gorwn_g6XNf81g3VDQnQ_I8/edit?usp=sharing

http://bit.ly/fsci2019

What Woodbridge et al. found:

● There is no way to directly express dependencies of
published code.

http://bit.ly/fsci2019

We can publish using containers:

● Use container technology to directly express
dependencies.

● Configure an image for your analyses with Docker,
binder, WholeTale, or Code Ocean.

●

http://bit.ly/fsci2019

The terms:

● Dockerfile: Readable instructions for how to build an image.
● Image: Everything your application needs to run, all bundled

together (includes Dockerfile, libraries, and code).
● Layer: A Dockerfile directs Docker to build the initial image

layer from a base image, and then other layers are built on
top.

● Container: Started and created from an image.
● Registry: Images are stored and retrieved from registries.

Hale, Jeff. Learn Enough Docker to be Useful. https://towardsdatascience.com/learn-enough-docker-to-be-useful-b7ba70caeb4b

●

https://towardsdatascience.com/learn-enough-docker-to-be-useful-b7ba70caeb4b

http://bit.ly/fsci2019

The metaphor: PIZZA!

● Dockerfile: The recipe.
● Image: The recipe and the ingredients combined as

an all-in-one pizza-making-kit.
● Layer: The ingredients are the layers. You’ve got

crust, sauce, and cheese for this pizza.
● Container: Cooked pizza. Cooked by Docker (the

oven).
● Registry: All-in-one pizza-making-kit factories?

Hale, Jeff. Learn Enough Docker to be Useful. https://towardsdatascience.com/learn-enough-docker-to-be-useful-b7ba70caeb4b

●

https://towardsdatascience.com/learn-enough-docker-to-be-useful-b7ba70caeb4b

http://bit.ly/fsci2019

Containers solve:

● Dependency Hell - install, error, google, install, error…
○ Provides other researchers with a binary image in which all the

software has already been installed, configured, and tested.

● Imprecise documentation - missing installation info.
○ Dockerfile provides a human readable summary of the necessary

software dependencies needed to execute the code. Dependencies
are automatically documented as they are installed.

● Code rot - dependencies change, the code breaks
○ Reduced risk with archiving images

Boettiger, Carl. An introduction to Docker for reproducible research. 10.1145/2723872.2723882

●

https://doi.org/10.1145/2723872.2723882

http://bit.ly/fsci2019

Create a Code Ocean account

● https://codeocean.com/
● You can delete it and

opt out of any
communications if you
wish! For completing the
exercises only. :)

● You will need to verify
your email address

Pink
sticky

up!

● Everyone put your pink sticky up!
● We are going to create a Code Ocean account to create a repository, called a

“capsule”, on Code Ocean for all research materials.
● Participants should:

○ Go to https://codeocean.com/
○ Sign up
○ They will need to verify their email address (sometimes they will need

to resend this several times).
● Participants can delete their account and opt out of any communications if you

wish! There is a check box on the survey where they should select “No” to
receiving news if they wish.

● Code Ocean is for completing the exercises only, but the exercises can make
code more reproducible no matter which platform participants which to use for
themselves in the future.

● Once they have successfully created an account, they should switch to a
green sticky.

https://codeocean.com/
https://codeocean.com/

http://bit.ly/fsci2019

Duplicate this capsule:
R: http://bit.ly/r-example
Python: http://bit.ly/py-example

Pink
sticky

up!

● Click
“Capsule”

● Select
“Duplicate”

● Everyone put your pink sticky up!
● Participants should

○ Ensure they are in “Classic” Code Ocean mode for the workshop.
○ Select the ellipses [...].
○ Click Duplicate

● Duplicating this capsule creates a copy owned by you, and you know you are
successful when you have a capsule named “____ Workshop (copy)”

● Once they have successfully duplicated the capsule, they should switch to a
green sticky.

About this capsule:
● This is an example and reference capsule for the workshop.
● It is a skeleton example of where are headed with our exercises.
● It also includes 3 papers that can be great resources for computational

reproducibility if you wish to read further.

http://bit.ly/r-example
http://bit.ly/py-example

http://bit.ly/fsci2019

Create a new compute capsule Pink
sticky

up!

1. Click “Code Ocean” logo
2. Click “Dashboard”
3. Click “Import Git Repository”

Import Git Repository:
R: https://github.com/aprilcs/sips-workshop
Python: https://github.com/aprilcs/sips-workshop-py

https://github.com/aprilcs/sips-workshop
https://github.com/aprilcs/sips-workshop-py

http://bit.ly/fsci2019

Exercise 4:

● Specify the run environment for your
analyses.

Example: Base Environment: R (3.5.3) or Python (3.7.0)

Pink
sticky

up!

This comes with miniconda and is called conda.

Python --version, when you open a terminal and type
python

http://bit.ly/fsci2019

Exercise 5:

● Specify your packages and dependencies with
versions.
○ Python: pip freeze > /requirements.txt
○ R: install.r and runtime.txt

R packages: apt-get pandoc; CRAN bitops, markdown, caTools, ggplot2, knitr, rprojroot

Python packages: conda matplotlib, pandas, numpy, jupyter

Resource on documenting dependencies:

● Binder: https://mybinder.readthedocs.io/en/latest/config_files.html

Pink
sticky

up!

https://mybinder.readthedocs.io/en/latest/config_files.html

http://bit.ly/fsci2019

Exercise 6:

● Use container technology to create an image of
your complete computational environment.
○ Code Ocean
○ Binder

Export your capsule to see how an image and Dockerfile were created through your specifications.

Inspect the Dockerfile.

We will demonstrate building a container with repo2docker using mybinder and github.

Pink
sticky

up!

http://bit.ly/fsci2019

Demo:

● Consider using literate programming to document
the analysis narrative with the code.
○ Jupyter Notebooks
○ RMarkdown

Explore Jupyter notebooks in this example capsule: http://bit.ly/uiuc-example

Explore RMarkdown in this example capsule: http://bit.ly/rmarkdown-example

Pink
sticky

up!

http://bit.ly/uiuc-example
http://bit.ly/rmarkdown-example

http://bit.ly/fsci2019

● Create a README file and data dictionary.

Documenting your file overview and dependencies in your README:

● AJPS Replication Package:
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EZSJ1S

Documenting your data in a codebook or data dictionary:

● DataONE: https://www.dataone.org/best-practices/create-data-dictionary

Resource on using markdown:

● GitHub: https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Pink
sticky

up!

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EZSJ1S
https://www.dataone.org/best-practices/create-data-dictionary
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

http://bit.ly/fsci2019

Checklist

● Consider literate programming.
● Document each element or variable

in your dataset with a data dictionary /
codebook.

● Create a README file.

Tools

● Version control: git and GitHub tracks
changes to documents and metadata

● Literate programming: knits
documentation with code (Jupyter)

● Document & share metadata: Code
Ocean renders documentation,
notebooks, and records metadata

Resources

● DataONE:
https://www.dataone.org/best-practices/creat
e-data-dictionary

● Cornell:
https://data.research.cornell.edu/content/read
me

● Digital Curation Center:
http://www.dcc.ac.uk/resources/how-guides/li
cense-research-data

● OSI: https://opensource.org/licenses

Reference
Slide

●

https://www.dataone.org/best-practices/create-data-dictionary
https://www.dataone.org/best-practices/create-data-dictionary
https://data.research.cornell.edu/content/readme
https://data.research.cornell.edu/content/readme
http://www.dcc.ac.uk/resources/how-guides/license-research-data
http://www.dcc.ac.uk/resources/how-guides/license-research-data
https://opensource.org/licenses
https://codeocean.com/2018/01/16/a-modularized-efficient-framework-for-non-markov-time-series-estimation/code

http://bit.ly/fsci2019

Checklist

● Specify your computational
environment and package versions.

● Configure a container to make your
analysis portable and reusable.

Tools

● Container technology: packages data,
code, metadata, & computational
environment for portable analyses

● Docker: container technology for devs
● Code Ocean: easy configuring,

preservation, & reuse of containers for
researchers

● Binder: configure & share containers

Resources

● Documenting dependencies:
http://mybinder.readthedocs.io/en/latest/usin
g.html#preparing-a-repository-for-binder

● Specifying environments:
https://help.codeocean.com/getting-started/th
e-computational-environment/selecting-a-base
-environment

Reference
Slide

●

http://mybinder.readthedocs.io/en/latest/using.html#preparing-a-repository-for-binder
http://mybinder.readthedocs.io/en/latest/using.html#preparing-a-repository-for-binder
https://help.codeocean.com/getting-started/the-computational-environment/selecting-a-base-environment
https://help.codeocean.com/getting-started/the-computational-environment/selecting-a-base-environment
https://help.codeocean.com/getting-started/the-computational-environment/selecting-a-base-environment

http://bit.ly/fsci2019

What Woodbridge et al. found:

● Manual manipulation or setup was needed to
reproduce results, often without documentation of
how the results were produced.

●

http://bit.ly/fsci2019

We can automate the execution of our analyses:

● Create a master script to execute all analyses.
● Reproduce results automatically as a function of the

data & the code; Save results explicitly.
● Use relative paths.

http://bit.ly/fsci2019

Exercise 7:

● Create a master script to execute your code.

● In R, use a run.r or main.r master script
○ Use source() to run your scripts
○ Run your install.r script

● In Python, use a main.py or run.sh master script
○ In your run.sh script, use nbconvert to execute your notebook into the results directory.

● Case study: https://www.practicereproducibleresearch.org/core-chapters/3-basic.ht

Pink
sticky

up!

https://www.practicereproducibleresearch.org/core-chapters/3-basic.ht

http://bit.ly/fsci2019

Exercise 8:

● Change absolute paths to relative paths.

Resource explaining paths:

● Karl Broman: http://kbroman.org/steps2rr/pages/organize.html

Pink
sticky

up!

Show an example of changing a path:
● In the python code “fig1_happiness_of_individuals”

○ Change “data = pd.read_csv('../data/data.csv')” to “data =
pd.read_csv('C:/Users/SomeOne/Projects/data/data.csv')”

http://kbroman.org/steps2rr/pages/organize.html

http://bit.ly/fsci2019

Checklist

● Use relative rather than absolute paths.
● Create a master script that runs your

scripts in sequence.

Tools

● Docker: share automated code for devs
● Code Ocean: easy configuring,

preservation, & reuse of automated
code

● Binder: share automated code for using
containers

Resources

● Karl Broman on paths:
http://kbroman.org/steps2rr/pages/or
ganize.html

● Resource on automation using a
master script:
https://www.practicereproducibleresea
rch.org/core-chapters/3-basic.html

Reference
Slide

http://kbroman.org/steps2rr/pages/organize.html
http://kbroman.org/steps2rr/pages/organize.html
https://www.practicereproducibleresearch.org/core-chapters/3-basic.html
https://www.practicereproducibleresearch.org/core-chapters/3-basic.html

http://bit.ly/fsci2019

What Woodbridge et al. found:

● There is no standardized way of attaching code to
published articles.

● Therefore it is difficult to discover and retrieve code.

http://bit.ly/fsci2019

We can embed or link code persistently:

● Obtain a DOI for your repository and use this link
throughout your article.
○ Example: Github -> Binder -> Zenodo -> DOI linked in article
○ Example: CodeOcean -> DOI in article

● Cross link repository with published article in
metadata of each.

● Embed executable capsule within the article.
○ Example: https://doi.org/10.1017/bpp.2018.25

https://zenodo.org/account/settings/github/
http://www.mdpi.com/2411-5150/2/3/29
https://www.cambridge.org/core/journals/behavioural-public-policy/article/contact-hypothesis-reevaluated/142C913E7FA9E121277B29E994124EC5/core-reader

http://bit.ly/fsci2019

Exercise 9:

● Specify a license for your data and your code.
Resource on choosing a data licence:

Digital Curation Center: http://www.dcc.ac.uk/resources/how-guides/license-research-data

Resources on choosing a code licence:

● Karl Broman: http://kbroman.org/steps2rr/pages/licenses.html
● License picker: https://choosealicense.com/
● Open Source Initiative: https://opensource.org/licenses

Pink
sticky

up!

Add a licence.txt file to your project or select one in the
metadata section (CO or GitHub)

● Consider Creative Commons licenses for data and text,
either CC-0 or CC-BY.

● For software, we recommend a permissive open source
license such as the MIT, BSD, or Apache license

http://www.dcc.ac.uk/resources/how-guides/license-research-data
http://kbroman.org/steps2rr/pages/licenses.html
https://choosealicense.com/
https://opensource.org/licenses

http://bit.ly/fsci2019

Exercise 10:

● Share your code!

● Check whether your container is ready to publish by hitting "Run".

Pink
sticky

up!

●

http://bit.ly/fsci2019

Reproducibility support
Workshops & Webinars

● Theory or hands-on
● Customized to researcher needs
● Request a workshop or webinar at

https://codeocean.com/events

1:1 Computational Reproducibility Consult

● In person
○ Lab meeting
○ Office visit

● Virtual
● Request at april@codeocean.com or

https://doodle.com/codeocean

■

https://codeocean.com/events
mailto:april@codeocean.com
https://doodle.com/codeocean

http://bit.ly/fsci2019

Reproducibility community
Reproducibility Ambassador Program

● Scholarships to present your research
at conferences

● Support for lab events, journal clubs,
meetups

● Training, mentorship, and community
forum

● Opportunities to share your
perspective on reproducibility

● Co-development role to help us meet
your needs and try out new features

Preprint journal club

● Build peer review skills including code
review

● Contribute feedback to new research

●

http://bit.ly/fsci2019

Thank you for your time :)

April Clyburne-Sherin
Code Ocean

april@codeocean.com

codeocean.com CodeOceanHQ

Please fill out an evaluation so we can keep improving!
http://bit.ly/workshop-survey-2019

http://bit.ly/workshop-survey-2019

