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Abstract— An assembly task is in many cases just a reverse
execution of the corresponding disassembly task. During the
assembly, the object being assembled passes consecutively from
state to state until completed, and the set of possible movements
become more and more constrained. Based on the observation
that autonomous learning of physically constrained tasks can
be advantageous, we use information obtained during learning
of disassembly in assembly. For autonomous learning of a
disassembly policy we propose to use hierarchical reinforce-
ment learning, where learning is decomposed into a high-
level decision-making and underlying lower-level intelligent
compliant controller, which exploits the natural motion in
a constrained environment. During the reverse execution of
disassembly policy, the motion is further optimized by means
of an iterative learning controller. The proposed approach was
veri�ed on two challenging tasks - a maze learning problem and
autonomous learning of inserting a car bulb into the casing.

I. I NTRODUCTION

Assembly is one of the most common, yet demanding
applications in contemporary robotics. Assembly skills are
needed not only in production plants but will also be impor-
tant for the future generation of home and service robots,
including humanoid robots. Applications for home robots
are characterized by a wide variety of different assembly
tasks. Hence, it is very important to shorten the programming
time and to increase the autonomy of learning as in home
environments we cannot relay on skilled operators. Ideally, a
robot would be able to program itself autonomously. Various
learning techniques, such as Reinforcement learning (RL)
and Iterative Learning Control (ILC) [1] were successfully
applied for policy improvement, where the initial task was
previously demonstrated by a human [2], [3], [4]. There were
very few successful attempts of completely autonomous
learning of assembly tasks in robotics [5], [6]. Applied RL
algorithms are required to ef�ciently scale to high dimen-
sional learning problems encountered in robotics assembly
[7]. Techniques like deep learning, learning in latent spaces,
learning of meta parameters, which more ef�ciently describe
the learning problem, or covariance matrix adaptation and
statistical generalization techniques can dramatically reduce
the search space in RL. However, they all require at least
a partial knowledge of a model of the process, which can
be either given apriori in an explicit form or inherited from
previous experiments.
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In the robotics community, tasks that involve interaction
with the environment are considered as extremely hard
to learn due to the unknown and possibly changing en-
vironment. On the other hand, interacting with the envi-
ronment can be advantageous to accelerate the learning
process. Namely, learning of physically constrained tasks
is easier than the learning of tasks, where a robot can
move completely freely in space. The reason is that the
environment constrains the admissible movement directions.
Consequently, the number of parameters that need to be
learned can be greatly reduced. To implement this type of
learning, we need to make use of the natural robot motion
along the constraints imposed by the environment. A suitable
framework for implementing such strategy is provided by
the compliant robot control. This concept was used in our
previous work, where we studied the autonomous learning
for opening of doors and drawers [8].

In this paper, we extend this methodology to autonomous
learning of assembly operations. For this purpose, we pro-
pose to �rst learn the reverse action – disassembly of an
object. In an assembled object, the set of possible mo-
tions is constrained and typically only a single motion or
operation is possible. During the disassembly, the object
passes consecutively from state to state and the set of
possible motion becomes less and less constrained until
completely disassembled, where individual parts are no more
constrained by the environment. In an assembly task the sit-
uation is opposite; the movement of individual parts changes
from completely unconstrained to constrained. Given no
previous knowledge about the nature of the task, learning of
disassembly is therefore easier than learning of the assembly
task, because of the advantages of physically constrained
tasks for learning.

This idea is in accordance with cognitive and develop-
mental studies, which show that human infants learn object
manipulation in the same sequence: they will learn to insert
a block into a container after a preceding period of merely
taking the block out of the container [9]. Analysis of how
parts interact/couple is crucial to enable the generation of
assemblies in design for assembly. Transfer of knowledge
obtained from disassembly was previously studied in the
context of engineering education [10], but to our best knowl-
edge has previously not been directly used to autonomously
generate assembly procedures.

For learning of the disassembly policy, we propose a novel
algorithm for hierarchical RL, where learning is decomposed
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process and gradually formalize it within reinforcement
learning framework. When we talk about graph, we operate
with nodes and edges, whereas when we talk about rein-
forcement learning, we talk about states and actions.

Initially, we don't know the graph representation of the
disassembly. The initial graph has only one node that
corresponds to the robot pose at the beginning of the
disassembly. Using the intelligent compliant controller the
robot autonomously follows the environmental constraints
in the only admissible direction, until it the movement is
fully constrained. Trajectory of this movement is encoded
as an action and represented in the graph as an edge.
When the motion is not fully constrained anymore, there
are multiple options to continue disassembly. This means
that the robot either found a new state or came to an existing
one. In the graph, this is represented as a decision node with
multiple edges connected to it. If the movement cannot be
continued in the same direction (represented with pendant
node), the robot turns back. The disassembly is complete
when the motion is unconstrained in all desired d.o.f. The
disassembled state is represented as the target node in the
graph.

During learning, a positive reward is given when the robot
has disassembled the object. Negative reward is assigned
when the robot arrived in a state where the motion could not
be continued. When the robot explores statesk , the action-
value functionQ(sk ; ak ) is updated according to the SARSA
algorithm

Q(sk ; ak ) � Q(sk ; ak )+� (r k +
Q (sk +1 ; ak +1 )-Q(sk ; ak )) ; (2)

where sk is the label of thek-th state,ak is the label of
the action taken insk , r k is the reward obtained in statesk ,
0 < � < 1 is the learning gain and0 < 
 < 1 is the discount
factor, which gives recent rewards higher importance. The
optimal policy can be obtained by applying� -greedy strategy
in the form

� (s) =

(
arg max

a
Q(s; a); with probability 1 � �;

random action, with probability�;
(3)

where parameter� is the ratio between the exploration and
exploitation [15].

Note that in general there is a different set of actions for
each state. The set of possible actions in statesk is given
by an action listA k . Actions become fully known only after
the robot explores the entire trajectory and arrives in another
state. This can be viewed as adding an edge in the graph.
The entire proposed learning procedure is summarized in
Algorithm 1.

III. C ONTROLLER BASED POLICY SEARCH

In the previous section, a hierarchical RL was proposed
for learning disassembly, where the task of the lower hier-
archical level was the movement along the boundaries and
search for possible states. In this section, we propose to
use an intelligent controller for this purpose, which utilizes

Algorithm 1: Hierarchical learning algorithm
Input: Initial robot pose
Output: Learned policy� (s)

initialize Q1 with start states1 from initial pose and
the list of admissible actionsA 1

1 repeat
2 while not in target statedo
3 greedy selection of actionak 2 A k in statesk

4 if ak is not exploredthen
5 while not in statedo
6 follow the natural constraints, and

search forstate(Sec. III)

7 encode travelled trajectory as DMP+RBF
8 mark ak as explored
9 else

10 executeak

11 if in a new statethen
12 enumerate new state assk +1

13 use detected admissible directions to
create action listA k +1

14 if state = target statethen
15 award positive rewardr k

16 else if state = penalty statethen
17 award negative rewardr k

18 turn back
19 else
20 no reward

21 update action-value matrix Q using Eq. (2)

22 compute policy� (s) using Eq. (3)
23 until last episode

a compliant control framework. The main advantage of
utilizing the controller is that it can generate continuous
policy.
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Fig. 2. Searching path and possible states in restricted environment. (a)
shows Frenet-Serret frame attached to the robot in time samplek � 1. (b)
shows search forces applied in the normal and binormal direction. (c) shows
an instance, when the controller discovers a new state.

In general, we do not know in advance where are the
natural constraints of the system. To �nd a feasible motion
direction, we apply a random force in a random direction. If
this force results in a movement, we use compliant control
to continue the motion in the direction initiated by the
random force. The controller acts in tool coordinates and the
control parameters make the robot compliant in all directions
orthogonal to the direction of the motion. These directions
can be estimated by applying Frenet-Serret frames [17] to the
resulting motion trajectory. Whenever the initiated robot mo-



tion stops, we assume that this is due to the task constraints
and we try to �nd a new feasible motion by applying again a
random force in a random direction. Following this strategy,
the robot eventually learns how to perform the task in a form
of a parametrized policy. Whenever multiple possibilities
how to continue are identi�ed, the controller stops and waits
for the decision of RL, in which direction it should move.

Let us �rst de�ne a rotation matrixR p, where the co-
ordinate frame withx coordinate speci�ed in the desired
direction of motion, i.e.,_p, and the other two coordinates
orthogonal to it, as illustrated in Fig. 2 a. This matrix can
be obtained by forming the Frenet-Serret frame at each
sampling time. The Frenet-Serret frame consists of three
orthogonal directions de�ned by the path's tangent (direction
of motion), normal, and binormal. We obtain the following
expression forR p =

h
t p n p bp

i
with

t p =
_p

k _pk
; bp =

_p � •p
k _p � •pk

; n p = bp � t p ; (4)

wherep 2 R3 are the measured robot end-effector positions.
The original equation requires accelerations, which are very
low and therefore very noisy during operations like assembly
and disassembly. On the other hand, for our purpose, it is
not important how the normal and bi-normal axis is chosen,
since the robot is equally compliant in both directions.
Therefore, we choose the bi-normal vectorb as the arbitrary
vector that satis�es the equationt p � bp = 0 . Using this
simpli�cation, the only parameter needed is the velocity
_p. For robust estimation of velocity vector_p we applied
spatial �ltering, as proposed in [18], which smooths the
noisy estimates using a �rst order �lter and assures, that
the �ltering does not affect the normalization. A discrete
time implementation of the spatial �lter is

_p(k) = _p(k-1) + � (1 � _p(k-1) _pT (k-1))( p(k) � p(k-1)); (5)

where� is the �lter bandwidth andk denotes thek-th time
sample. The above equations are used to set the rotation
frame attached to the positional trajectory. The correspond-
ing frameR o is needed also for the orientation part of the
trajectory. For the speci�cation of the robot orientation, unit
quaternions are used. We denote them asq = f �; � g 2 R4,
where� and � are the corresponding scalar and vector part
of the quaternion, respectively. Angular velocities can be
calculated from two subsequent quaternions as

! (k) = 2 log( q(k) � �q(k � 1)); (6)

where� denotes the quaternion multiplication and the quater-
nion logarithm is calculated as

log(q) = log( �; � ) =

8
><

>:

arccos(� )
�

k� k
; � 6= 0

[0; 0; 0]T ; otherwise:
(7)

Similar as for the positional part of the trajectory, the
smoothed angular velocity! s can be calculated as

! s (k) = ! s (k � 1) + dT � (1 � ! s (k � 1)! T
s (k � 1))! (k); (8)

and the correspondingR o =
h

t o n o bo

i
with

t o =
! s

k! sk
; bo =

! � _!
k! � _! k

; n o = bo � t o ; (9)

wheredT in (8) denotes the sampling frequency.
Next, we will de�ne control law, which enables the

robot to follow the operational space path, de�ned with the
environmental boundaries. For this purpose, we utilized a
variant of passivity-based impedance control for manipula-
tors with �exible joints [19] and provided a modi�cation,
which enables to set the compliance along the operational
space trajectory. The torque, which is passed to the robot
motors, is calculated as

� c = BB � 1
� u + ( I � BB � 1

� )� (10)

u = JT (� )( •Xc + f c) + �g(� ) + N (� ) _� 0 (11)

where� c 2 RN is the control torque input for the motors,
N is the number of robot joints,� 2 RN is the joint position
measured at the motor side,J 2 RN � 6 is the manipulator
Jacobian,B and B � 2 R6� 6 denote the positive de�nite
diagonal matrix of joint and desired joint inertia, respec-
tively. � are measured joint torques and�g(� ) is the gravity
vector estimated in such a way, that it provides exact gravity
compensation in the static case using the signals measured
at the motor side [20].N (� ) = ( I � J(� )J+ (� )) 2 RN � N

is the null space projection operator,J+ (� ) denotes Moore-
Penrose pseudo-inverse of the Jacobian and the_� 0 2 RN is
the corresponding null-space velocity vector.f c is an addi-
tional force-torque vector in task coordinates. Basically, the
motor torque controller (10) reduces the motor inertia and
compensates for the robot non-linear dynamics, while (11)
provides for the desired impedance and damping, additional
task force and null space motion. The task command input
•Xc = [ •pT

c ; _! T
c ]T is chosen as

•pc = � R pD pR T
p _p + R pK pR T

p ep; (12)

_! c = � R oD oR T
o ! + R oK oR T

o eq; (13)

where position and orientation tracking errors are de�ned as
ep= pd � p andeo=2 log(qp � qd). K p andK o 2 R3� 3 are the
diagonal matrices, which de�ne the positional and rotational
stiffness along and aroundx; y; z axes, respectively.D p and
D o 2 R3� 3 are diagonal damping matrices, which are set
to D = 2 �

p
K for critically damped system.

With this control applied, the robot is able to au-
tonomously move along the environmental boundaries, given
that we apply high positional gain in the direction of
movement, which is actuallyx axis and low gains in the
orthogonal direction, which arey and z axes de�ned in
the global coordinate system. We denote this trajectory as
operational space trajectory. However, this control law alone
can not discover new states. For this purpose, we applied
short step force signals in the positive and negative directions
of the normal and bi-normal,f c;n = R pf 0[0 1 0]T for the



force in normal andf c;b = R pf 0[0 0 1]T for the force in bi-
normal direction.f o is suitably chosen scalar, which changes
sign in each test position along the operational trajectory (see
Fig. 2 b). Test positions are positions, where the algorithm
tests for possible states and are equally spaced along the
operational space trajectory. If the application of this test
signals results in motion, i.e. ifj� p � n j or j� p � bj is
above the prede�ned threshold, and if the motion along the
tangential direction is also possible, the controller has found
new state.� p is the position displacement after applying
each test signal. In a new state, action list is generated
from admissible further movement directions, which can be
calculated from� p. Note that the admissible movement
directions do not have to be exactly aligned with the normal
or bi-normal, as the robot is compliant (see Fig. 2 c). In
order to improve the robustness of this search procedure,
we can further lower theK gain in the direction of thex
axis. The described search procedure as illustrated in Fig.2
applies to searching positional actions. As there are also
actions, that correspond to different robot orientations, a
similar search procedure has to be performed also for the
rotations. Depending on the number of admissible actions,
the state is categorized. If there are multiple actions, state is
labeled as a decision, if there is just one as a penalty and if
the motion is unrestricted as the target state.

The resulting operational space trajectory is encoded with
Cartesian DMPs [21], [16] together with tangential vec-
tors t p; t o, captured forces and torques during disassembly,
which are encoded as RBFs, sharing common phase [21]
with DMPs. The bene�t of such encoding is twofold: It
allows compact, smooth and scalable representation of a
learned policy, and, it removes the explicit time dependency
of signals, which enables to slow down or speed up the
learned assembly policy according to the speci�c situation
as it arises [22]. These trajectories are passed to the upper-
level hierarchical RL together with newly discovered sates.
Admissible motion continuations are then used to label new
actions in a new state. At the same time, DMP and RBF
containing the information of traveled trajectory are used to
replace the corresponding action in the previous state. Doing
so, state search is performed only once for each state.

IV. A SSEMBLY LEARNING

Once we successfully learn the disassembly policy, we
merely reverse it to perform assembly. However, assembling
is a demanding operation even for humans and there is no
guarantee, that it will be successful even if the operation
is reversible, as very small deviations in part geometry,
grasping, material, etc. can result in failure. For this, we
have to apply appropriate control together with the excep-
tion strategies, which mimic human behavior during the
assembly. All these measures are successful when the source
of error is stochastic. Errors of deterministic origin can be
eliminated by policy improvement using ILC.

Disassembly policy is encoded with DMPs. DMPs are
dynamical system and as such become unstable when they
are executed with reverse time. Therefore, it is necessary
to learn the time reverse policy with another DMP [23].
This is, however, not necessary for tangential vectorst p

and t o and forces and torques, encoded with RBFs. They
are used for on-line calculation of the rotation matricesR p

andR o, needed for the compliant control. For assembly, we
use identical compliance settings as for disassembly with
one exception; when the manipulated part is not constrained
by the environment anymore, which happens at the end of
the disassembly graph, we set high stiffness in all spatial
directions. This assures precise path tracking during e.g. an
approach motion in assembly. Additional force vectorf c

is set to zero during the assembly. During the assembly,
we also observe the measured contact forces and torques
and compare them with measured forces and torques during
disassembly. Note that the forces and torques during assem-
bly have the opposite sign in relation to those measured
at disassembly. When a high deviation occurs, we slow
down the DMP integration, as described in [22], [4]. If,
however, the forces/torques are still increasing, we carry
out a trajectory in the opposite direction for some time and
then try again, as suggested in [11]. Moving in the reverse
direction, we have to switch between the two DMPs as
described in [23].

Finally, we apply ILC in order to improve the policy
obtained with the disassembly learning and to tune it to
eventual change in part geometry and materials, whose
origin is deterministic. The aim of this adaptation is to
bring forces/torques during assembly close to those detected
during disassembly by commanding the desired positions
and orientations [24].

V. EXPERIMENTAL EVALUATION

We �rst veri�ed the proposed architecture on the example
of maze learning in simulation. Maze learning was selected
as it has many similarities with the disassembly process. In
both cases, the robot has to �nd an optimal policy from the
start state, which corresponds to starting position in the maze
and the fully assembled object, to the target state, which
corresponds to exiting the maze and to the disassembled
object. As in disassembly, the robot only has to decide how
to continue when multiple actions are possible. We created
a 6� 9 maze with corridors that restrict the robot movement,
as shown in the upper part of Fig. 3. In this case state for
learning is fully de�ned by robot position in the maze and
actions are de�ned by sequences of movement directions.
We applied both classical SARSA learning and the proposed
hierarchical RL algorithm for exiting the maze. The lower
part of Fig. 3 shows learning statistics of 100 runs of each
setup.

This simple example clearly shows the bene�t of the
proposed hierarchical learning, since the optimal policy is
learned in very few roll-outs. Furthermore, by connecting
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Fig. 6. Mean forces and torques of 20 disassembly and assembly runs.
Dotted lines denote disassembly forces and torques. Solid lines denote
optimized assembly forces and torques after 5 cycles of ILC

After learning the disassembly policy, we generated the
corresponding assembly policy as described in Section IV
and applied ILC, which additionally diminished the forces
and torques during the disassembly. We obtained 100%
disassembly and assembly success rate in 20 experiments.

VI. CONCLUSIONS

In this paper, we presented a novel approach, which
autonomously learns an assembly task from initial disassem-
bly. The disassembly-assembly process was represented as
a directed graph, where the aim was to �nd the optimal
path from the start node to the target node. To this end
we propose to apply hierarchical RL, where the upper level
is composed of standard SARSA algorithm and the lower
level is assigned to the intelligent controller. The output
of the learning process is smooth time-continuous policy,
appropriate for precise tasks such as assembly.

We �rst veri�ed the proposed approach on the well-known
problem of maze learning, which has many similarities with
disassembly-assembly learning. Final experiment showed
that the autonomous learning of the bulb insertion can be
successfully accomplished and simpli�ed using information
gained during disassembly.

The proposed approach has some similarities with the
learning of door opening [8], where statistical RL algorithm
was applied. However, in [8] force based policy was gener-
ated, which is less appropriate for precise tasks. Additionally,
the approach proposed in this paper is able to generate
compliant and scalable assembly primitives, which can be
reused in similar cases. Our future research will focus on
autonomous assembly learning for objects, composed of
multiple parts.
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