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Autonomous Learning of Assembly Tasks from the Corresponding
Disassembly Tasks

Mihael Simonc, LeonZlajpah, Ales Ude, and Bojan Nemec

Abstract—An assembly task is in many cases just a reverse In the robotics community, tasks that involve interaction
execution of the corresponding disassembly task. During the with the environment are considered as extremely hard
assembly, the object being assembled passes consecutively fromto learn due to the unknown and possibly changing en-

state to state until completed, and the set of possible movements . t on th ther hand. int i ith th .
become more and more constrained. Based on the observation VIfonment. On tne other hand, Interacting wi e envi-

that autonomous learning of physically constrained tasks can fonment can be advantageous to accelerate the learning
be advantageous, we use information obtained during learning process. Namely, learning of physically constrained tasks
of disassembly in assembly. For autonomous learning of a js easier than the learning of tasks, where a robot can
disassembly policy we propose to use hierarchical reinforce- 4y completely freely in space. The reason is that the
ment learning, where learning is decomposed into a high- . . . . .
level decision-making and underlying lower-level intelligent environment constrains the admissible movement directions.
compliant controller, which exploits the natural motion in  Consequently, the number of parameters that need to be
a constrained environment. During the reverse execution of learned can be greatly reduced. To implement this type of
disassembly policy, the motion is further optimized by means |earning, we need to make use of the natural robot motion
of an iterative learning controller. The proposed approach was  54ng the constraints imposed by the environment. A suitable
veri ed on two challenging tasks - a maze learning problem and . . : .
autonomous learning of inserting a car bulb into the casing. framework_ for implementing su_ch strategy Is prOVIde_d by
the compliant robot control. This concept was used in our

I. INTRODUCTION previous work, where we studied the autonomous learning

Assembly is one of the most common, yet demandingor opening of doors and drawers [8].
applications in contemporary robotics. Assembly skills are In this paper, we extend this methodology to autonomous
needed not only in production plants but will also be impor-learning of assembly operations. For this purpose, we pro-
tant for the future generation of home and service robotsp0se to rst learn the reverse action — disassembly of an
including humanoid robots. Applications for home robotsobject. In an assembled object, the set of possible mo-
are characterized by a wide variety of different assemblyions is constrained and typically only a single motion or
tasks. Hence, it is very important to shorten the programmingperation is possible. During the disassembly, the object
time and to increase the autonomy of learning as in hom@asses consecutively from state to state and the set of
environments we cannot relay on skilled operators. Ideally, #0ssible motion becomes less and less constrained until
robot would be able to program itself autonomously. Varioussompletely disassembled, where individual parts are no more
learning techniques, such as Reinforcement learning (RL§ONstrained by the environment. In an assembly task the sit-
and lterative Learning Control (ILC) [1] were successfully uation is opposite; the movement of individual parts changes
applied for policy improvement, where the initial task wasfrom completely unconstrained to constrained. Given no
previously demonstrated by a human [2], [3], [4]. There wereprevious knowledge about the nature of the task, learning of
very few successful attempts of completely autonomouslisassembly is therefore easier than learning of the assembly
learning of assembly tasks in robotics [5], [6]. Applied RL task, because of the advantages of physically constrained
algorithms are required to ef ciently scale to high dimen-tasks for learning.
sional learning problems encountered in robotics assembly This idea is in accordance with cognitive and develop-
[7]. Techniques like deep learning, learning in latent spacegnental studies, which show that human infants learn object
learning of meta parameters, which more ef ciently describemanipulation in the same sequence: they will learn to insert
the learning problem, or covariance matrix adaptation an@ block into a container after a preceding period of merely
statistical generalization techniques can dramatically redud@king the block out of the container [9]. Analysis of how
the search space in RL. However, they all require at leaftarts interact/couple is crucial to enable the generation of
a partial knowledge of a model of the process, which car@ssemblies in design for assembly. Transfer of knowledge
be either given apriori in an explicit form or inherited from obtained from disassembly was previously studied in the
previous experiments. context of engineering education [10], but to our best knowl-

edge has previously not been directly used to autonomously
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into a high-level decision-making and underlying lower-
level intelligent compliant controller, which exploits the
natural motion in a constrained environment. On the example
of maze learning, we show that the proposed hierarchical
RL is more efficient than classical RL in a constrained
environment.

In assembly, the learned disassembly policy is reversed
and further optimized by means of ILC using a method based
on force profiles [4]. The proposed approach is suitable
for the cases, where the assembly task is reversible. Most
assembly tasks are directly or indirectly reversible [11],
except for tasks including operations involving structural
deformations (e.g. riveting) or activation of external equip-
ment (e.g. for glueing). For the purposes of autonomous
learning of disassembly policy, unreversible operations can
be omitted and manually added to the assembly policy.
On the other hand, operations such as putting/placing, or
screwing are reversible [11]. Tasks including only reversible
operations include generic peg-in-hole task, or more applied
tasks such as electric motor assembly [12] and bayonet
bulb insertion [13]. We verified the proposed approach on
autonomous learning of inserting a model of a car bulb into
the casing.

A general scheme for disassembly learning is presented in
Section II. It is based on a lower level intelligent controller,
introduced in Section III. Assembly policy is derived from
the learned disassembly policy and needs refinement for re-
liable execution. The corresponding algorithms are given in
Section IV. Section V shows the results of the experimental
evaluation of the proposed framework. We conclude with a
critical evaluation and possible extensions of the proposed
algorithms.

II. DISASSEMBLY LEARNING

In this section we present the basics of our approach to
autonomous disassembly policy learning. We assume that
an object is composed of two parts. If the assembled object
consists of more parts, it is necessary to apply disassembly
learning on remaining parts again and again, until the object
is fully disassembled. Furthermore, we assume that the part
to be manipulated is grasped, whereas the other part is fixed.

For learning of the disassembly policy, we propose to
apply hierarchical RL [14], rather than applying classical Q-
learning or SARSA [15] to every possible discretized state
and discrete action for this problem. In this way we can
greatly reduce the number of states and obtain continuous
policies.

The proposed hierarchical RL algorithm is based on
the observation that disassembly processes usually consists
of multiple stages — units of environmentally constrained
motion. If we think in terms of these units, the learning of
disassembly can be represented with a directed graph such as
the one in Fig. 1, where nodes represent various key stages
of the disassembly process and edges represent constrained

motions. The goal of disassembly is to find a direct path
from start to the target node.

START TARGET

Fig. 1. Disassembly process illustrated as a directed graph. Edges
represent motions between several key stages of the disassembly represented
with nodes. We distinguish between different types of nodes. Start node
(colored yellow) denotes the beginning of disassembly. Decision nodes
(colored orange) correspond to the stages of disassembly where there are
multiple ways how the disassembly should be continued. Pendant nodes
(colored white) represent stages of disassembly where the motion cannot be
continued without returning back. Target node represents fully disassembled
stage.

Within the RL framework, the nodes correspond to the
states, whereas edges represent actions (c.f. Table I). The
states for reinforcement learning are specified with poses of
the robot’s end-effector in the local coordinate system of the
object to be disassembled. A state s is a tuple:

s=(p,q), 1)

where s is a state, p € R3 the position vector, and g € R*
the unit quaternion representation of orientation. Likewise,
actions are given as Cartesian space dynamic movement
primitives (DMPs) [16] encoding explored trajectories from
one state to another together with captured forces and
torques, which are encoded as radial basis functions (RBFs).
(c.f. Sec. TI).

Our hierarchical RL algorithm is decomposed into two
levels. The lower level intelligent compliant controller moves
in the admissible directions defined by physical constraints
of the environment and simultaneously identifies key states
for the upper level. The upper level then merely learns the
policy, which action should be taken in each state, but not
the trajectory itself.

TABLE I
DUALITY BETWEEN THE GRAPH REPRESENTATION AND HRL

Graph Upper level RL Lower level controller

Start node Start state (disassembly  Searching for admissible
begins) directions

Edge Action (specified by Moving along natural
DMP+RBF) constraints

Decision node
Pendant node

Target node

Decision state (multiple
actions can be taken)
Penalty state (movement
cannot be continued)
Target state (where dis-
assembly is finished)

Searching for admissible
directions

Robot turns back

Robot stops

We exploit the duality between the graph representation
and hierarchical RL to first graphically describe the learning



process and gradually formalize it within reinforcement Algorithm 1: Hierarchical learning algorithm

learning framework. When we talk about graph, we operaté |nput: Initial robot pose

with nodes and edges, whereas when we talk about rein- Output: Learned policy (s)

forcement learning, we talk about states and actions. initialize Q; with start states; from initial pose and
Initially, we don't know the graph representation of the the list of admissible actions ;

disassembly. The initial graph has only one node thatt repeat

corresponds to the robot pose at the beginning of th¢ | While notin target statedo
disassembly. Using the intelligent compliant controller thef1
robot autonomously follows the environmental constraintss
in the only admissible direction, until it the movement is s
fully constrained. Trajectory of this movement is encoded
as an action and represented in the graph as an edge.
When the motion is not fully constrained anymore, theres
are multiple options to continue disassembly. This means
that the robot either found a new state or came to an existinlg0
one. In the graph, this is represented as a decision node with
multiple edges connected to it. If the movement cannot b§
continued in the same direction (represented with pendant
node), the robot turns back. The disassembly is completg
when the motion is unconstrained in all desired d.o.f. Thes
disassembled state is represented as the target node in the
graph. 17
During learning, a positive reward is given when the robolig
has disassembled the object. Negative reward is assigngg

greedy selection of actioax 2 A ¢ in statesy
if ax is not exploredthen
while not in statedo
follow the natural constraints, and
search forstate(Sec. ll)

encode travelled trajectory as DMP+RBF
mark ax as explored
else
| executeax

if in a new statehen

enumerate new state ag.;

use detected admissible directions to
create action lisA y+1

f state = target statehen
award positive rewardy
Ise if state = penalty stat¢hen
award negative rewart
turn back
else
| no reward

o__

when the robot arrived in a state where the motion cquld nat update action-value matrix Q using Eq. (2)
be continued. When the robot explores statethe action- -

value functionQ(sy; ax) is updated according to the SARSA 22 | compute policy (s) using Eq. (3)
algorithm 23 until last episode

Q(sk;ak)  Q(sk;ak)+ (rkt Q (Sk+1;ak+1)-Q(sk;a)); (2)

wheresy is the label of thek-th state,a is the label of 5 compliant control framework. The main advantage of
the action taken i, ri is the reward obtained in sta$®, ilizing the controller is that it can generate continuous
0< < 1listhelearninggainand< < 1is the discount olicy.

factor, which gives recent rewards higher importance. The
optimal policy can be obtained by applyingyreedy strategy

in the form

( argmax Q(s;a); with probabilityl ;
(S) = a

©)

random action,  with probability;

where parameter is the ratio between the exploration and
exploitation [15].

Note that in general there is a different set of actions forFig. 2. Searching path and possible states in restricted environment. (a)
each state. The set of possible actions in statés given shows Frenet-Serret frame attached to the robot in time saknpld. (b)

L . shows search forces applied in the normal and binormal direction. (c) shows

by an action listA. ACtIOQS beCQme fully known on.ly after an instance, when the controller discovers a new state.
the robot explores the entire trajectory and arrives in another )
state. This can be viewed as adding an edge in the graph.!n general, we do not know in advance where are the

The entire proposed learing procedure is summarized iRatural constraints of the system. To nd a feasible motion
Algorithm 1. direction, we apply a random force in a random direction. If

this force results in a movement, we use compliant control
Il. CONTROLLER BASED POLICY SEARCH to continue the motion in the direction initiated by the
In the previous section, a hierarchical RL was proposedandom force. The controller acts in tool coordinates and the
for learning disassembly, where the task of the lower hiercontrol parameters make the robot compliant in all directions
archical level was the movement along the boundaries andrthogonal to the direction of the motion. These directions
search for possible states. In this section, we propose toan be estimated by applying Frenet-Serret frames [17] to the
use an intelligent controller for this purpose, which utilizesresulting motion trajectory. Whenever the initiated robot mo-



h i

tion stops, we assume that this is due to the task constraingd the correspondinB, = to no b, with
and we try to nd a new feasible motion by applying again a
random force in a random direction. Following this strategy, N S :
: to K bo ki K No o o, 9)
the robot eventually learns how to perform the task in a form kl's o

of a parametrized policy. Whenever multiple possibilities,yheredT in (8) denotes the sampling frequency.

how to continue are identi ed, the controller stops and waits Next, we will de ne control law, which enables the

for the decision of RL, in which direption it should move. 4ot to follow the operational space path, de ned with the
Let us rst de ne a rotation matrixR,, where the co-  gnyironmental boundaries. For this purpose, we utilized a

ordinate frame withx coordinate specied in the desired \ariant of passivity-based impedance control for manipula-

direction of m(_)tlon, ie.p, and_the_other two_coordmates tors with exible joints [19] and provided a modi cation,

orthogonal to it, as illustrated in Fig. 2 a. This matrix canyhich enables to set the compliance along the operational

be obtained by forming the Frenet-Serret frame at eaclp,ce trajectory. The torque, which is passed to the robot
sampling time. The Frenet-Serret frame consists of threg,,iors is calculated as

orthogonal directions de ned by the path's tangent (direction

of motion), normal, gnd binormal. e obtain the following c=BB 'u+(l BB 1 (20)
expression foR, = t, n, b, with u=J"T()Re+fe)+g( )+ N( )= (112)
N - : where . 2 RN is the control torque input for the motors,
tp kp_k y bp kp_ p k N n p bp tp ) (4) C q p

N is the number of robot joints, 2 RN is the joint position
wherep 2 R® are the measured robot end-effector positionsmeasured at the motor sidé,2 RN © is the manipulator
The original equation requires accelerations, which are vergyacobianB andB 2 R® & denote the positive de nite
low and therefore very noisy during operations like assemblyliagonal matrix of joint and desired joint inertia, respec-
and disassembly. On the other hand, for our purpose, it iBvely. are measured joint torques agl ) is the gravity
not important how the normal and bi-normal axis is chosenyector estimated in such a way, that it provides exact gravity
since the robot is equally compliant in both directions.compensation in the static case using the signals measured
Therefore, we choose the bi-normal vediaas the arbitrary  at the motor side [20]N( )=(I J()I*( ) 2RV N
vector that satis es the equatiorp, bp, = 0. Using this is the null space projection operatdr, ( ) denotes Moore-
simpli cation, the only parameter needed is the velocity Penrose pseudo-inverse of the Jacobian andgt@ RN is
p. For robust estimation of velocity vectqr we applied the corresponding null-space velocity vectioy.is an addi-
spatial Itering, as proposed in [18], which smooths thetional force-torque vector in task coordinates. Basically, the
noisy estimates using a rst order lter and assures, thatmotor torque controller (10) reduces the motor inertia and
the Itering does not affect the normalization. A discrete compensates for the robot non-linear dynamics, while (11)
time implementation of the spatial lter is provides for the desired impedance and damping, additional

o(k) = pk-1)+ (1 pk-Dp’ (k-1)(pk) pk-1)); (5) tasli forgg aTn? null space motion. The task command input

Xe=[pe;!lc] ischosen as
where is the Iter bandwidth andk denotes thé-th time
sample. The above equations are used to set the rotation Pe = RpD pRg|O_+ RpK pRgep; (12)
_frame attache_d to the positional traject_ory. The correspond- Lo = RoDoR{! + RoKoR! & (13)
ing frameR , is needed also for the orientation part of the
trajectory. For the speci cation of the robot orientation, unit where position and orientation tracking errors are de ned as
quaternions are used. We denote thengasf ; g2 R* &=ps P ande,=21og(q, qq). Kp andK, 2 R3 3 arethe
where and are the corresponding scalar and vector pargiagonal matrices, which de ne the positional and rotational
of the quaternion, respectively. Angular velocities can bestiffness along and aroundy; z axes, respectivelyp , and
calculated from two subsequent quaternions as D, 2 R® 3 are diagonal damping matrices, which are set
| (k) =2log(q(k) q(k 1)): © ©D=2 K for critically damped system.
With this control applied, the robot is able to au-

where denotes the quaternion multiplication and the quatertopnomously move along the environmental boundaries, given

nion logarithm is calculatgd as that we apply high positional gain in the direction of
2 arccos()—: 60 movement, which is actuallx axis and low gains in the
log(q) = log( ; )= k k (7y  orthogonal direction, which arg and z axes de ned in
> [0:0:0]"; otherwise: the global coordinate system. We denote this trajectory as

operational space trajectory. However, this control law alone
can not discover new states. For this purpose, we applied
short step force signals in the positive and negative directions
Ps(k)=1s(k 1+dT @ !s(k 1!I(k 1) (k); (8  of the normal and bi-normaf,c;, = R,fo[0 1 O] for the

Similar as for the positional part of the trajectory, the
smoothed angular velocity s can be calculated as



force in normal and ¢, = Rpfo[0 0 1] for the force in bi- Disassembly policy is encoded with DMPs. DMPs are
normal directionf , is suitably chosen scalar, which changesdynamical system and as such become unstable when they
sign in each test position along the operational trajectory (seare executed with reverse time. Therefore, it is necessary
Fig. 2 b). Test positions are positions, where the algorithnto learn the time reverse policy with another DMP [23].
tests for possible states and are equally spaced along tfidis is, however, not necessary for tangential vectgrs
operational space trajectory. If the application of this teseindt, and forces and torques, encoded with RBFs. They
signals results in motion, i.e. if p njorj p bjis are used for on-line calculation of the rotation matriégs
above the prede ned threshold, and if the motion along thendR ,, needed for the compliant control. For assembly, we
tangential direction is also possible, the controller has foundise identical compliance settings as for disassembly with
new state. p is the position displacement after applying one exception; when the manipulated part is not constrained
each test signal. In a new state, action list is generateldy the environment anymore, which happens at the end of
from admissible further movement directions, which can behe disassembly graph, we set high stiffness in all spatial
calculated from p. Note that the admissible movement directions. This assures precise path tracking during e.g. an
directions do not have to be exactly aligned with the normabpproach motion in assembly. Additional force vectqr
or bi-normal, as the robot is compliant (see Fig. 2 c). Inis set to zero during the assembly. During the assembly,
order to improve the robustness of this search procedureye also observe the measured contact forces and torques
we can further lower th& gain in the direction of thex ~ and compare them with measured forces and torques during
axis. The described search procedure as illustrated in Figd@isassembly. Note that the forces and torques during assem-
applies to searching positional actions. As there are alsbly have the opposite sign in relation to those measured
actions, that correspond to different robot orientations, at disassembly. When a high deviation occurs, we slow
similar search procedure has to be performed also for thdown the DMP integration, as described in [22], [4]. If,
rotations. Depending on the number of admissible actiondjowever, the forces/torques are still increasing, we carry
the state is categorized. If there are multiple actions, state But a trajectory in the opposite direction for some time and
labeled as a decision, if there is just one as a penalty and ihen try again, as suggested in [11]. Moving in the reverse
the motion is unrestricted as the target state. direction, we have to switch between the two DMPs as
The resulting operational space trajectory is encoded witlklescribed in [23].
Cartesian DMPs [21], [16] together with tangential vec- Finally, we apply ILC in order to improve the policy
torsty;to, captured forces and torques during disassemblygbtained with the disassembly learning and to tune it to
which are encoded as RBFs, sharing common phase [2&ventual change in part geometry and materials, whose
with DMPs. The benet of such encoding is twofold: It origin is deterministic. The aim of this adaptation is to
allows compact, smooth and scalable representation of kring forces/torques during assembly close to those detected
learned policy, and, it removes the explicit time dependencyluring disassembly by commanding the desired positions
of signals, which enables to slow down or speed up th@nd orientations [24].
learned assembly policy according to the speci c situation
as it arises [22]. These trajectories are passed to the upper- _ _
level hierarchical RL together with newly discovered sates. \We rst veri ed the proposed architecture on the example
Admissible motion continuations are then used to label nef maze learning in simulation. Maze learning was selected
actions in a new state. At the same time, DMP and RBFES it has many similarities with the disassembly process. In
containing the information of traveled trajectory are used td?0th cases, the robot has to nd an optimal policy from the
replace the corresponding action in the previous state. Doinﬁta” state, which corresponds to starting position in the maze

so, state search is performed only once for each state. and the fully assembled object, to the target state, which
corresponds to exiting the maze and to the disassembled

object. As in disassembly, the robot only has to decide how
to continue when multiple actions are possible. We created
Once we successfully learn the disassembly policy, wa6 9 maze with corridors that restrict the robot movement,
merely reverse it to perform assembly. However, assemblings shown in the upper part of Fig. 3. In this case state for
is a demanding operation even for humans and there is nearning is fully de ned by robot position in the maze and
guarantee, that it will be successful even if the operatioractions are de ned by sequences of movement directions.
is reversible, as very small deviations in part geometryWe applied both classical SARSA learning and the proposed
grasping, material, etc. can result in failure. For this, wehierarchical RL algorithm for exiting the maze. The lower
have to apply appropriate control together with the exceppart of Fig. 3 shows learning statistics of 100 runs of each
tion strategies, which mimic human behavior during thesetup.
assembly. All these measures are successful when the sourceThis simple example clearly shows the benet of the
of error is stochastic. Errors of deterministic origin can beproposed hierarchical learning, since the optimal policy is
eliminated by policy improvement using ILC. learned in very few roll-outs. Furthermore, by connecting

V. EXPERIMENTAL EVALUATION

IV. ASSEMBLY LEARNING
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Fig. 6. Mean forces and torques of 20 disassembly and assembly runs.

Dotted lines denote disassembly forces and torques. Solid lines denotﬁg]
optimized assembly forces and torques after 5 cycles of ILC

After learning the disassembly policy, we generated thefm]
corresponding assembly policy as described in Section IV
and applied ILC, which additionally diminished the forces
and torques during the disassembly. We obtained 10001’31]
disassembly and assembly success rate in 20 experiments.

VI. CONCLUSIONS [12]

In this paper, we presented a novel approach, which
autonomously learns an assembly task from initial disassem-
bly. The disassembly-assembly process was represented [&s]
a directed graph, where the aim was to nd the optimal
path from the start node to the target node. To this end
we propose to apply hierarchical RL, where the upper levell4]
is composed of standard SARSA algorithm and the lower
level is assigned to the intelligent controller. The outputfis)
of the learning process is smooth time-continuous policy
appropriate for precise tasks such as assembly.

We rst veri ed the proposed approach on the well-known
problem of maze learning, which has many similarities with
disassembly-assembly learning. Final experiment showeld”
that the autonomous learning of the bulb insertion can be
successfully accomplished and simpli ed using information[18]
gained during disassembly.

The proposed approach has some similarities with theg
learning of door opening [8], where statistical RL algorithm
was applied. However, in [8] force based policy was gener-
ated, which is less appropriate for precise tasks. Additionallyjpg)
the approach proposed in this paper is able to generate
compliant and scalable assembly primitives, which can be
reused in similar cases. Our future research will focus on
autonomous assembly learning for objects, composed d#1]
multiple parts.

f16]
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