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Abstract— An assembly task is in many cases just a reverse
execution of the corresponding disassembly task. During the
assembly, the object being assembled passes consecutively from
state to state until completed, and the set of possible movements
become more and more constrained. Based on the observation
that autonomous learning of physically constrained tasks can
be advantageous, we use information obtained during learning
of disassembly in assembly. For autonomous learning of a
disassembly policy we propose to use hierarchical reinforce-
ment learning, where learning is decomposed into a high-
level decision-making and underlying lower-level intelligent
compliant controller, which exploits the natural motion in
a constrained environment. During the reverse execution of
disassembly policy, the motion is further optimized by means
of an iterative learning controller. The proposed approach was
verified on two challenging tasks - a maze learning problem and
autonomous learning of inserting a car bulb into the casing.

I. INTRODUCTION

Assembly is one of the most common, yet demanding

applications in contemporary robotics. Assembly skills are

needed not only in production plants but will also be impor-

tant for the future generation of home and service robots,

including humanoid robots. Applications for home robots

are characterized by a wide variety of different assembly

tasks. Hence, it is very important to shorten the programming

time and to increase the autonomy of learning as in home

environments we cannot relay on skilled operators. Ideally, a

robot would be able to program itself autonomously. Various

learning techniques, such as Reinforcement learning (RL)

and Iterative Learning Control (ILC) [1] were successfully

applied for policy improvement, where the initial task was

previously demonstrated by a human [2], [3], [4]. There were

very few successful attempts of completely autonomous

learning of assembly tasks in robotics [5], [6]. Applied RL

algorithms are required to efficiently scale to high dimen-

sional learning problems encountered in robotics assembly

[7]. Techniques like deep learning, learning in latent spaces,

learning of meta parameters, which more efficiently describe

the learning problem, or covariance matrix adaptation and

statistical generalization techniques can dramatically reduce

the search space in RL. However, they all require at least

a partial knowledge of a model of the process, which can

be either given apriori in an explicit form or inherited from

previous experiments.
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In the robotics community, tasks that involve interaction

with the environment are considered as extremely hard

to learn due to the unknown and possibly changing en-

vironment. On the other hand, interacting with the envi-

ronment can be advantageous to accelerate the learning

process. Namely, learning of physically constrained tasks

is easier than the learning of tasks, where a robot can

move completely freely in space. The reason is that the

environment constrains the admissible movement directions.

Consequently, the number of parameters that need to be

learned can be greatly reduced. To implement this type of

learning, we need to make use of the natural robot motion

along the constraints imposed by the environment. A suitable

framework for implementing such strategy is provided by

the compliant robot control. This concept was used in our

previous work, where we studied the autonomous learning

for opening of doors and drawers [8].

In this paper, we extend this methodology to autonomous

learning of assembly operations. For this purpose, we pro-

pose to first learn the reverse action – disassembly of an

object. In an assembled object, the set of possible mo-

tions is constrained and typically only a single motion or

operation is possible. During the disassembly, the object

passes consecutively from state to state and the set of

possible motion becomes less and less constrained until

completely disassembled, where individual parts are no more

constrained by the environment. In an assembly task the sit-

uation is opposite; the movement of individual parts changes

from completely unconstrained to constrained. Given no

previous knowledge about the nature of the task, learning of

disassembly is therefore easier than learning of the assembly

task, because of the advantages of physically constrained

tasks for learning.

This idea is in accordance with cognitive and develop-

mental studies, which show that human infants learn object

manipulation in the same sequence: they will learn to insert

a block into a container after a preceding period of merely

taking the block out of the container [9]. Analysis of how

parts interact/couple is crucial to enable the generation of

assemblies in design for assembly. Transfer of knowledge

obtained from disassembly was previously studied in the

context of engineering education [10], but to our best knowl-

edge has previously not been directly used to autonomously

generate assembly procedures.

For learning of the disassembly policy, we propose a novel

algorithm for hierarchical RL, where learning is decomposed
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process and gradually formalize it within reinforcement

learning framework. When we talk about graph, we operate

with nodes and edges, whereas when we talk about rein-

forcement learning, we talk about states and actions.

Initially, we don’t know the graph representation of the

disassembly. The initial graph has only one node that

corresponds to the robot pose at the beginning of the

disassembly. Using the intelligent compliant controller the

robot autonomously follows the environmental constraints

in the only admissible direction, until it the movement is

fully constrained. Trajectory of this movement is encoded

as an action and represented in the graph as an edge.

When the motion is not fully constrained anymore, there

are multiple options to continue disassembly. This means

that the robot either found a new state or came to an existing

one. In the graph, this is represented as a decision node with

multiple edges connected to it. If the movement cannot be

continued in the same direction (represented with pendant

node), the robot turns back. The disassembly is complete

when the motion is unconstrained in all desired d.o.f. The

disassembled state is represented as the target node in the

graph.

During learning, a positive reward is given when the robot

has disassembled the object. Negative reward is assigned

when the robot arrived in a state where the motion could not

be continued. When the robot explores state sk, the action-

value function Q(sk, ak) is updated according to the SARSA

algorithm

Q(sk, ak) � Q(sk, ak)+α(rk+γQ(sk+1, ak+1)-Q(sk, ak)), (2)

where sk is the label of the k-th state, ak is the label of

the action taken in sk, rk is the reward obtained in state sk,

0 < α < 1 is the learning gain and 0 < γ < 1 is the discount

factor, which gives recent rewards higher importance. The

optimal policy can be obtained by applying ǫ-greedy strategy

in the form

π(s) =

{

argmax
a

Q(s, a), with probability 1− ǫ,

random action, with probability ǫ,
(3)

where parameter ǫ is the ratio between the exploration and

exploitation [15].

Note that in general there is a different set of actions for

each state. The set of possible actions in state sk is given

by an action list Ak. Actions become fully known only after

the robot explores the entire trajectory and arrives in another

state. This can be viewed as adding an edge in the graph.

The entire proposed learning procedure is summarized in

Algorithm 1.

III. CONTROLLER BASED POLICY SEARCH

In the previous section, a hierarchical RL was proposed

for learning disassembly, where the task of the lower hier-

archical level was the movement along the boundaries and

search for possible states. In this section, we propose to

use an intelligent controller for this purpose, which utilizes

Algorithm 1: Hierarchical learning algorithm

Input: Initial robot pose
Output: Learned policy π(s)

initialize Q1 with start state s1 from initial pose and
the list of admissible actions A1

1 repeat
2 while not in target state do
3 greedy selection of action ak ∈ Ak in state sk
4 if ak is not explored then
5 while not in state do
6 follow the natural constraints, and

search for state (Sec. III)

7 encode travelled trajectory as DMP+RBF
8 mark ak as explored
9 else

10 execute ak

11 if in a new state then
12 enumerate new state as sk+1

13 use detected admissible directions to
create action list Ak+1

14 if state = target state then
15 award positive reward rk
16 else if state = penalty state then
17 award negative reward rk
18 turn back
19 else
20 no reward

21 update action-value matrix Q using Eq. (2)

22 compute policy π(s) using Eq. (3)

23 until last episode

a compliant control framework. The main advantage of

utilizing the controller is that it can generate continuous

policy.
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Fig. 2. Searching path and possible states in restricted environment. (a)
shows Frenet-Serret frame attached to the robot in time sample k − 1. (b)
shows search forces applied in the normal and binormal direction. (c) shows
an instance, when the controller discovers a new state.

In general, we do not know in advance where are the

natural constraints of the system. To find a feasible motion

direction, we apply a random force in a random direction. If

this force results in a movement, we use compliant control

to continue the motion in the direction initiated by the

random force. The controller acts in tool coordinates and the

control parameters make the robot compliant in all directions

orthogonal to the direction of the motion. These directions

can be estimated by applying Frenet-Serret frames [17] to the

resulting motion trajectory. Whenever the initiated robot mo-



tion stops, we assume that this is due to the task constraints

and we try to find a new feasible motion by applying again a

random force in a random direction. Following this strategy,

the robot eventually learns how to perform the task in a form

of a parametrized policy. Whenever multiple possibilities

how to continue are identified, the controller stops and waits

for the decision of RL, in which direction it should move.

Let us first define a rotation matrix Rp, where the co-

ordinate frame with x coordinate specified in the desired

direction of motion, i.e., ṗ, and the other two coordinates

orthogonal to it, as illustrated in Fig. 2 a. This matrix can

be obtained by forming the Frenet-Serret frame at each

sampling time. The Frenet-Serret frame consists of three

orthogonal directions defined by the path’s tangent (direction

of motion), normal, and binormal. We obtain the following

expression for Rp =
[

tp np bp

]

with

tp =
ṗ

‖ṗ‖
, bp =

ṗ× p̈

‖ṗ× p̈‖
, np = bp × tp, (4)

where p ∈ R
3 are the measured robot end-effector positions.

The original equation requires accelerations, which are very

low and therefore very noisy during operations like assembly

and disassembly. On the other hand, for our purpose, it is

not important how the normal and bi-normal axis is chosen,

since the robot is equally compliant in both directions.

Therefore, we choose the bi-normal vector b as the arbitrary

vector that satisfies the equation tp · bp = 0. Using this

simplification, the only parameter needed is the velocity

ṗ. For robust estimation of velocity vector ṗ we applied

spatial filtering, as proposed in [18], which smooths the

noisy estimates using a first order filter and assures, that

the filtering does not affect the normalization. A discrete

time implementation of the spatial filter is

ṗ(k) = ṗ(k-1) + λ(1− ṗ(k-1)ṗT (k-1))(p(k)− p(k-1)), (5)

where λ is the filter bandwidth and k denotes the k-th time

sample. The above equations are used to set the rotation

frame attached to the positional trajectory. The correspond-

ing frame Ro is needed also for the orientation part of the

trajectory. For the specification of the robot orientation, unit

quaternions are used. We denote them as q = {η, ǫ} ∈ R
4,

where η and ǫ are the corresponding scalar and vector part

of the quaternion, respectively. Angular velocities can be

calculated from two subsequent quaternions as

ω(k) = 2 log(q(k) ∗ q̄(k − 1)), (6)

where ∗ denotes the quaternion multiplication and the quater-

nion logarithm is calculated as

log(q) = log(η, ǫ) =











arccos(η)
ǫ

‖ǫ‖
, η 6= 0

[0, 0, 0]T, otherwise.

(7)

Similar as for the positional part of the trajectory, the

smoothed angular velocity ωs can be calculated as

ωs(k) = ωs(k− 1) + dTλ(1−ωs(k− 1)ωT
s (k− 1))ω(k), (8)

and the corresponding Ro =
[

to no bo

]

with

to =
ωs

‖ωs‖
, bo =

ω × ω̇

‖ω × ω̇‖
, no = bo × to, (9)

where dT in (8) denotes the sampling frequency.

Next, we will define control law, which enables the

robot to follow the operational space path, defined with the

environmental boundaries. For this purpose, we utilized a

variant of passivity-based impedance control for manipula-

tors with flexible joints [19] and provided a modification,

which enables to set the compliance along the operational

space trajectory. The torque, which is passed to the robot

motors, is calculated as

ρc = BB
−1

Θ u+ (I−BB
−1

Θ )ρ (10)

u = JT(θ)(Ẍc + fc) + ḡ(θ) +N(θ)θ̇0 (11)

where ρc ∈ R
N is the control torque input for the motors,

N is the number of robot joints, θ ∈ R
N is the joint position

measured at the motor side, J ∈ R
N×6 is the manipulator

Jacobian, B and BΘ ∈ R
6×6 denote the positive definite

diagonal matrix of joint and desired joint inertia, respec-

tively. ρ are measured joint torques and ḡ(θ) is the gravity

vector estimated in such a way, that it provides exact gravity

compensation in the static case using the signals measured

at the motor side [20]. N(θ) = (I− J(θ)J+(θ)) ∈ R
N×N

is the null space projection operator, J+(θ) denotes Moore-

Penrose pseudo-inverse of the Jacobian and the θ̇0 ∈ R
N is

the corresponding null-space velocity vector. fc is an addi-

tional force-torque vector in task coordinates. Basically, the

motor torque controller (10) reduces the motor inertia and

compensates for the robot non-linear dynamics, while (11)

provides for the desired impedance and damping, additional

task force and null space motion. The task command input

Ẍc = [p̈T
c , ω̇

T
c ]

T is chosen as

p̈c = −RpDpR
T
p ṗ+RpKpR

T
p ep, (12)

ω̇c = −RoDoR
T
o ω +RoKoR

T
o eq, (13)

where position and orientation tracking errors are defined as

ep=pd−p and eo=2 log(qp∗qd). Kp and Ko ∈ R
3×3 are the

diagonal matrices, which define the positional and rotational

stiffness along and around x, y, z axes, respectively. Dp and

Do ∈ R
3×3 are diagonal damping matrices, which are set

to D = 2 ∗
√
K for critically damped system.

With this control applied, the robot is able to au-

tonomously move along the environmental boundaries, given

that we apply high positional gain in the direction of

movement, which is actually x axis and low gains in the

orthogonal direction, which are y and z axes defined in

the global coordinate system. We denote this trajectory as

operational space trajectory. However, this control law alone

can not discover new states. For this purpose, we applied

short step force signals in the positive and negative directions

of the normal and bi-normal, fc,n = Rpf0[0 1 0]T for the



force in normal and fc,b = Rpf0[0 0 1]T for the force in bi-

normal direction. fo is suitably chosen scalar, which changes

sign in each test position along the operational trajectory (see

Fig. 2 b). Test positions are positions, where the algorithm

tests for possible states and are equally spaced along the

operational space trajectory. If the application of this test

signals results in motion, i.e. if |∆p · n| or |∆p · b| is

above the predefined threshold, and if the motion along the

tangential direction is also possible, the controller has found

new state. ∆p is the position displacement after applying

each test signal. In a new state, action list is generated

from admissible further movement directions, which can be

calculated from ∆p. Note that the admissible movement

directions do not have to be exactly aligned with the normal

or bi-normal, as the robot is compliant (see Fig. 2 c). In

order to improve the robustness of this search procedure,

we can further lower the K gain in the direction of the x

axis. The described search procedure as illustrated in Fig.2

applies to searching positional actions. As there are also

actions, that correspond to different robot orientations, a

similar search procedure has to be performed also for the

rotations. Depending on the number of admissible actions,

the state is categorized. If there are multiple actions, state is

labeled as a decision, if there is just one as a penalty and if

the motion is unrestricted as the target state.

The resulting operational space trajectory is encoded with

Cartesian DMPs [21], [16] together with tangential vec-

tors tp, to, captured forces and torques during disassembly,

which are encoded as RBFs, sharing common phase [21]

with DMPs. The benefit of such encoding is twofold: It

allows compact, smooth and scalable representation of a

learned policy, and, it removes the explicit time dependency

of signals, which enables to slow down or speed up the

learned assembly policy according to the specific situation

as it arises [22]. These trajectories are passed to the upper-

level hierarchical RL together with newly discovered sates.

Admissible motion continuations are then used to label new

actions in a new state. At the same time, DMP and RBF

containing the information of traveled trajectory are used to

replace the corresponding action in the previous state. Doing

so, state search is performed only once for each state.

IV. ASSEMBLY LEARNING

Once we successfully learn the disassembly policy, we

merely reverse it to perform assembly. However, assembling

is a demanding operation even for humans and there is no

guarantee, that it will be successful even if the operation

is reversible, as very small deviations in part geometry,

grasping, material, etc. can result in failure. For this, we

have to apply appropriate control together with the excep-

tion strategies, which mimic human behavior during the

assembly. All these measures are successful when the source

of error is stochastic. Errors of deterministic origin can be

eliminated by policy improvement using ILC.

Disassembly policy is encoded with DMPs. DMPs are

dynamical system and as such become unstable when they

are executed with reverse time. Therefore, it is necessary

to learn the time reverse policy with another DMP [23].

This is, however, not necessary for tangential vectors tp
and to and forces and torques, encoded with RBFs. They

are used for on-line calculation of the rotation matrices Rp

and Ro, needed for the compliant control. For assembly, we

use identical compliance settings as for disassembly with

one exception; when the manipulated part is not constrained

by the environment anymore, which happens at the end of

the disassembly graph, we set high stiffness in all spatial

directions. This assures precise path tracking during e.g. an

approach motion in assembly. Additional force vector fc
is set to zero during the assembly. During the assembly,

we also observe the measured contact forces and torques

and compare them with measured forces and torques during

disassembly. Note that the forces and torques during assem-

bly have the opposite sign in relation to those measured

at disassembly. When a high deviation occurs, we slow

down the DMP integration, as described in [22], [4]. If,

however, the forces/torques are still increasing, we carry

out a trajectory in the opposite direction for some time and

then try again, as suggested in [11]. Moving in the reverse

direction, we have to switch between the two DMPs as

described in [23].

Finally, we apply ILC in order to improve the policy

obtained with the disassembly learning and to tune it to

eventual change in part geometry and materials, whose

origin is deterministic. The aim of this adaptation is to

bring forces/torques during assembly close to those detected

during disassembly by commanding the desired positions

and orientations [24].

V. EXPERIMENTAL EVALUATION

We first verified the proposed architecture on the example

of maze learning in simulation. Maze learning was selected

as it has many similarities with the disassembly process. In

both cases, the robot has to find an optimal policy from the

start state, which corresponds to starting position in the maze

and the fully assembled object, to the target state, which

corresponds to exiting the maze and to the disassembled

object. As in disassembly, the robot only has to decide how

to continue when multiple actions are possible. We created

a 6×9 maze with corridors that restrict the robot movement,

as shown in the upper part of Fig. 3. In this case state for

learning is fully defined by robot position in the maze and

actions are defined by sequences of movement directions.

We applied both classical SARSA learning and the proposed

hierarchical RL algorithm for exiting the maze. The lower

part of Fig. 3 shows learning statistics of 100 runs of each

setup.

This simple example clearly shows the benefit of the

proposed hierarchical learning, since the optimal policy is

learned in very few roll-outs. Furthermore, by connecting
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Dotted lines denote disassembly forces and torques. Solid lines denote
optimized assembly forces and torques after 5 cycles of ILC

After learning the disassembly policy, we generated the

corresponding assembly policy as described in Section IV

and applied ILC, which additionally diminished the forces

and torques during the disassembly. We obtained 100%

disassembly and assembly success rate in 20 experiments.

VI. CONCLUSIONS

In this paper, we presented a novel approach, which

autonomously learns an assembly task from initial disassem-

bly. The disassembly-assembly process was represented as

a directed graph, where the aim was to find the optimal

path from the start node to the target node. To this end

we propose to apply hierarchical RL, where the upper level

is composed of standard SARSA algorithm and the lower

level is assigned to the intelligent controller. The output

of the learning process is smooth time-continuous policy,

appropriate for precise tasks such as assembly.

We first verified the proposed approach on the well-known

problem of maze learning, which has many similarities with

disassembly-assembly learning. Final experiment showed

that the autonomous learning of the bulb insertion can be

successfully accomplished and simplified using information

gained during disassembly.

The proposed approach has some similarities with the

learning of door opening [8], where statistical RL algorithm

was applied. However, in [8] force based policy was gener-

ated, which is less appropriate for precise tasks. Additionally,

the approach proposed in this paper is able to generate

compliant and scalable assembly primitives, which can be

reused in similar cases. Our future research will focus on

autonomous assembly learning for objects, composed of

multiple parts.
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