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1 Introduction 
Durability is one of the main shortcomings in state-of-the-art automotive fuel cell systems, because 
performance of proton exchange membrane (PEM) fuel cells degrades over time, which limits a 
faster commercialization of this zero-emission power technology. Many researchers worldwide are 
devoted to find a better understanding of degradation causes and mechanisms, with early detection 
of the degradation symptoms. However, diagnostics of fuel cell degradation should not only detect 
the symptoms, as early as possible, but also identify the causes and/or mechanisms, if it is possible, 
so that corrective actions could be taken [1]. There are several degradation mechanisms, typical for 
automotive applications, such as: degradation of the catalyst layer caused by carbon corrosion due to 
frequent starts and stops (air fuel front), loss of catalyst active area caused by platinum dissolution 
and sintering due to frequent voltage cycling, loss of catalyst active area due to adsorption of 
contaminants from the inlet gases, mechanical degradation due to thermal and humidity cycling 
induced by the load profile as well as by the environment in which the vehicle operates. In project 
deliverable D1.3, FESB has selected the most relevant degradation mechanisms in fuel cells for 
automotive systems, and the collected data was there used to rank and quantify each identified 
degradation pattern and devise appropriate accelerated testing techniques. Hence, the loss of 
catalyst active area caused by platinum dissolution and sintering due to frequent voltage cycling was 
selected here as the target for the laboratory experiments as the most relevant for the fuel cell 
systems in automotive application. 

The aim of this deliverable is to present ageing test protocol, characterization and measurement 
techniques and their periodicity during the accelerated degradation test of the automotive fuel cell 
system to estimate the current state of fuel cell systems. The deliverable presents the obtained 
measurement and analysis results of the accelerated ageing test protocols and different diagnostic 
methods (polarization curves, electrochemical impedance spectroscopy, cyclic voltammetry, linear 
sweep voltammetry), which were performed at FESB’s Laboratory for New Energy Technologies on 
an already conditioned 50 cm2 (single) fuel cell provided by ElringKlinger to verify the available data 
and gather any missing data points. In collaboration with SINTEF, an idea of new time-efficient 
measurement approach of low-frequency intercept in the impedance spectrum, as the quick 
indicator of catalyst degradation which can provide the possibility to determine the current state of 
the fuel cell from just one parameter value, is also briefly given at the end of this deliverable, which is 
very promising for the future implementation in the fuel cell control system, but the direct 
identification approach will be further explored. In addition, this deliverable presents three 
diagnostic strategies being developed by UFC to ensure the fuel cell system air supply State-of-Health 
(SoH) monitoring.  
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2 Accelerated degradation tests and diagnostics 
In order to correlate with the findings from the previous FCHJU project SAPPHIRE, an accelerated 
stress test (AST) has been performed on 50 cm2 active area single PEM fuel cell from ElringKlinger 
(EK), using the same MEA configuration as it will be used in the full-size stacks (Figure 1). This water-
cooled single cell was tested in co-flow configuration. It was exposed to an accelerated stress test for 
catalyst degradation during which several standard laboratory diagnostic procedures were 
periodically performed in order to monitor degradation. These diagnostic methods include 
polarization curves, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and 
linear sweep voltammetry (LSV). 

 

Figure 1: Experimental setup with investigated ElringKlinger's single PEM fuel cell. 

The AST designed to target electrocatalyst degradation, involves 40 seconds long potential cycling 
profile (Figure 2) between voltages of 0.6 V for 10 s and 0.9 V for 30 s, which is slightly modified 
version of the U.S. Department of Energy (DoE) recommended AST protocol for electrocatalyst 
degradation [2]. Instead of cycling between 0.7 V and 0.9 V, cycling was conducted between 0.6 V 
and 0.9 V, in order to speed-up the degradation process. Similar test protocols were used in the 
SAPPHIRE. The voltage was imposed on the cell at 65 °C and 0.5 bar(g) via an external instrument 
(BioLogic SP-150 potentiostat/galvanostat) as the cell was in a non-operating (“driven”) mode, i.e. 
nitrogen was used on the cathode and hydrogen on the anode side with constant flows of 0.4 SLPM 
and inlet relative humidities (RH) of 100% (dew point of 65 °C). Because the tubing material at the 
test station was limited to a maximum temperature of 80 °C, all the temperatures in these tests were 
limited to 65 °C in order to reduce the potential impact of some unwanted dissolved chemical pipe 
elements and compounds on electrocatalyst degradation in the fuel cell. However, further 
degradation testing is also planned to run at 80 °C for further comparison with these results, because 
catalyst degradation is expected to be more pronounced at higher temperatures. 
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Figure 2: Potential cycling profile in accelerated stress test for electrocatalyst degradation. 

Cell's diagnostics were performed periodically at the beginning of life (BoL), and then after 1000, 
3000, 5000 and 10000 cycles. Additionally, CVs and LSVs were also performed after 100, 300 and 500 
cycles as recommended by the DOE AST protocol. In order to investigate the reversibility phenomena 
of catalyst layer degradation, i.e. rejuvenation of the fuel cell, the experiment was stopped after 
5000 cycles (around 56 h) for 4 days as the intentional recovery period, and then is continued for 
another 5000 cycles with another intentional recovery period after 10000 cycles for 4 days. 
Additionally, the same diagnostic measurements were repeated 6 months later on the same EK’s fuel 
cell, which was lying unused and closed during these 6 months. However, analysis of these results of 
the reversible degradation will be in our further project deliverable D1.5, as a part of the WP1 
Task 1.5. 

2.1 Results of Accelerated Stress Test 
2.1.1 Polarization curves 
Polarization curves were recorded in descending and ascending direction with the rest time of 5 min 
at each point. Stoichiometries of anode and cathode were 2 and 4 respectively, while the relative 
humidity (RH) was set to 83.4% for both reactants (dew point of 61 °C). The resulting averaged 
polarization curves obtained during the AST are shown in Figure 3. 

 

Figure 3: Comparison of measured polarization curves during the accelerated stress test. 
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From the plotted polarization curves degradation is noticeable, but it may be quantified if the cell 
potential at different current densities is plotted vs. time or vs. number of cycles as shown in Figure 
4. Degradation is more pronounced at higher current densities. Also, what is noticeable is some 
recovery after 5000 and 10000 cycles, which means that not all of exhibited degradation is 
permanent. More efforts on elucidating this phenomenon will be applied in the next phase of this 
project. 

 

Figure 4: Degradation at different current densities during the accelerated stress test. 

2.1.2 Cyclic voltammetry 
Cycling voltammetry (CV) measurements were recorded with the anode as a counter and a reference 
electrode, and the cathode as a working electrode. Constant flows of 0.4 SLPM and 100% RH (dew 
point 65 °C) hydrogen and nitrogen were used on anode and cathode, respectively. Five cycles 
(between 0.05 and 0.6 V) with a sweep rate of 50 mV s-1 were conducted with the last one recorded 
as representative. 

The results of the CV measurements during the AST are shown in Figure 13. The purpose of CVs was 
to obtain the change of the electrochemical active surface area (ECSA) during the AST. This was 
obtained by integrating the surface under the part of the curve corresponding to H2 
electrodesorption (the “upper” part of the curve) and subtracting the contribution of the capacitive 
charging of the double layer. The obtained surface area represents the amount of charge exchanged 
during the hydrogen desorption and should be proportional to the platinum active area. The exact 
ECSA (cmPt

2 cm-2) was calculated by dividing this area by the Coulombic charge required to desorb 
hydrogen from a clean Pt surface (0.21 mC cmPt

-2) and the CV sweep rate (50 mV s-1). The calculated 
ECSA values and their loss in percentage during the AST are also given in Figure 5. 

As intended, CVs indicated a loss of the ECSA probably caused by platinum dissolution due to 
intentional frequent voltage cycling during the AST, but it is still under the target of the DOE protocol 
for CV (i.e. at least 40% loss of initial active area) and it is much smaller loss of ECSA during the AST 
than in some previous studies at FESB [1]. During the first 1000 cycles, ECSA was practically 
unchanged. After 10000 cycles, it was reduced to 78.1% of the original area (Figure 5). The loss of the 
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ECSA apparently resulted in structural changes within the catalyst layer, as the increase in resistance 
and in mass transport suggests from the subsequent analyses. 

 

Figure 5: Comparison of cyclic voltammograms with the loss of ECSA during the accelerated stress 
test: a) from BoL to 1000 cycles; b) from 1000 to 10000 cycles. 

2.1.3 Linear sweep voltammetry 
Linear sweep voltammetry (LSV) measurements were conducted with all the parameters same as 
with the CV but with a sweep rate of 2 mV s-1 between 0.1 and 0.5 V. The results of the LSV 
measurements (shown in Figure 6) indicated that hydrogen crossover, expectedly, did not change 
significantly during the AST. It was around 2.6 mA cm-2, with a slight tendency to decrease after 1000 
cycles to 10000 cycles (Figure 14b). Because this AST targeted degradation of the catalyst, there is no 
reason for hydrogen crossover to change significantly. 
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Figure 6: Comparison of linear sweep voltammograms during the accelerated stress test: a) from BoL 
to 1000 cycles; b) from 1000 to 10000 cycles. 

2.1.4 Electrochemical impedance spectroscopy 
The electrochemical impedance spectroscopy (EIS) measurements were conducted in a galvanostatic 
mode in the frequency range from 3.981 kHz to 10 mHz with AC signal amplitude of 10% of the DC 
current. A Scribner Associates 890CL Teledyne Medusa fuel cell test station, which contains both an 
electronic load and a frequency response analyzer (FRA) for full range impedance measurements up 
to 10 kHz, was used for the experiments. Each scan took around thirty minutes with additional five 
minutes of stabilization phase prior to each testing. In order to obtain the evolution of the Nyquist 
impedance plots along the polarization curve during the AST the series of three EIS measurements at 
current density of 0.3, 0.6 and 1.2 A cm-2 were measured (Figure 7), with reactants inlet RH of 83.4% 
(dew point of 61 °C) and constant stoichiometry of 4.0/2.0. The resulting Nyquist plots obtained at 
different current densities during the AST are shown in Figure 8-Figure 10. 
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Figure 7: Comparison of measured polarization curves in descending direction during the accelerated 
stress test with red-marked EIS measurement points. 

 

Figure 8: Comparison of measured impedance spectra at 0.3 A cm-2 obtained during the accelerated 
stress test. 

 

Figure 9: Comparison of measured impedance spectra at 0.6 A cm-2 obtained during the accelerated 
stress test. 
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Figure 10: Comparison of measured impedance spectra at 1.2 A cm-2 obtained during the accelerated 
stress test. 

From the results of the EIS measurements taken during the AST at three different current densities, 
catalyst degradation during the first 5000 cycles is visible in every case, which is even more clearly 
displayed in Figure 9. However, due to rejuvenation of the fuel cell during the intentional recovery 
period of 4 days between 5000 and 10000 cycles, impedance spectra in Figure 8-Figure 10 also show 
some reversibility, i.e. reduction/improvement of the impedance curves from 5000 to 10000 cycles. 
Therefore, comparison of the measured impedance spectra at different current densities in Figure 11 
is given at the beginning of life (BoL) and after the first 5000 cycles of the accelerated stress test. 

 

Figure 11: Comparison of measured impedance spectra at different current densities obtained at the 
beginning of life (BoL) and after 5000 cycles of accelerated stress test. 

The semicircles’ high-frequency branches are more tilted/distorted with degradation, indicating an 
increase in the catalyst layer (CL) ionic resistance, while the low-frequency loops, representing mass 
transport losses, are getting bigger. As a result, the rightmost real-axis intercept on the Nyquist 
diagram around 0.5 Hz or lower (the point with maximum real impedance and the highest resistive 
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losses), defined here as the total resistance (Total R), increased most significantly, while the 
membrane resistance (the leftmost real-axis intercept at high frequencies) showed a slight increase, 
as the EIS measurements were performed with not fully-hydrated reactants (83.4% RH). Obviously, 
there is a mixture of increase in activation losses (related to the loss of the cathode electrochemical 
active surface area, ECSA) and mass transport losses. This concurs also with the findings (at least 
qualitatively) of cycling voltammetry and the polarization change curves analysis (subsection 2.2.1). 

2.2 Analyses of Accelerated Stress Test Results 
2.2.1 Polarization change curves 
Polarization change curves, defined as a difference between the polarization curve at the beginning 
of life (BoL) and the actual polarization curve after the cell has been operational for some time, were 
used to analyze degradation of a PEM fuel cell exposed to voltage cycling as an accelerated stress 
test for electrocatalyst degradation, using methodology developed in the SAPPHIRE project [1]. 

The resulting polarization change curves are shown in Figure 12. The polarization change curves are 
close to straight lines so with linear regression it is possible to calculate the intercept on the y-axis 
and the slope of each curve. From the intercept on y-axis it is possible to calculate the loss of the 
ECSA, and from the slope the increase in resistance. The results are shown in Figure 13 and Figure 14. 
The loss of ECSA shows similar pattern to that measured independently by cyclic voltammetry (Figure 
13). What is puzzling in that pattern is the loss of ECSA during the recovery period after 5000 cycles. 
This needs to be investigated further. 

A majority of resistance increase during AST seems to be recoverable during both recovery periods 
after 5000 and 10000 cycles (Figure 14). It should be mentioned that high frequency resistance did 
not change during the AST, which is visible from EIS experiments (Figure 8-Figure 11). Also, the 
charge transfer resistance did not change during the AST (as it will be shown below) so the visible 
increase in resistance is almost solely due to the increase of resistance in the catalyst layer which 
degraded. 
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Figure 12: Polarization change curves resulting from polarization curves in Figure 3. 

 

Figure 13: Comparison of the ECSA change during accelerated stress test calculated from cyclic 
voltammetry (CV) and those calculated from polarization change curves analysis (PC). 
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Figure 14: Resistance increase during accelerated stress test. 

2.2.2 Application of 11-element impedance model to fuel cell degradation study 
A novel equivalent circuit model of PEM fuel cell, consisting of 11 elements (Figure 15) was 
developed and validated by a series of experiments varying the operating conditions and current 
density [3]. This model originally developed to capture the processes that cause the low-frequency 
inductive loop in the impedance spectra [4] may be used as tool for further diagnostic purposes to 
identify the main degradation behaviors and their causes in order to define or improve suited control 
strategies in exploitation. Therefore, it has been applied here on the periodical impedance 
measurements to monitor performance degradation through the changes of model element values 
during the AST at three different current densities. The fit and numerical values of the model 
parameters for each impedance spectrum were estimated through the commercially available 
software ZView® 3.0 (Scribner Associates, Inc.), which is basically a least-square optimization 
procedure yielding the solution with the minimum sum of errors (differences between measured and 
calculated impedances for each of the frequencies) squared. The model elements of anode activation 
(R2 and C2) were held constant in the whole fitting procedure (anode activation is always present 
with a small contribution, but its diameter is completely independent of the current density and 
cathode catalyst degradation, as it is mainly related to the hydrogen oxidation reaction), while the 
other model elements were simultaneously fitted for every impedance spectra, successively for every 
step of the AST from the initial one at the BoL. In Figure 16, the model fitting results (light colored 
lines) are compared with the experimental EIS data (dark colored lines) at different current densities 
during the AST. 

 

Figure 15: A novel 11-element equivalent circuit model that includes inductive behavior [3]. 
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Figure 16: Comparison of measured and simulated impedance spectra during the accelerated stress 
test at: a) 0.3 A cm-2; b) 0.6 A cm-2; c) 1.2 A cm-2. 
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As it can be seen in all of the Nyquist plots in Figure 16, a very good agreement between simulation 
and experimental data was achieved in the whole frequency range including the low-frequency 
capacitive loop followed by the inductive loop at every measured current density. Also, a good 
agreement between the slope of the steady-state polarization curves and the impedance 
extrapolated to zero perturbation frequency (DC point) was obtained.  

As the trends of changes of model element values are very similar at different current densities, an 
influence of catalyst degradation on each extracted model element is given here only at 0.6 A cm-2 in 
Figure 17. 

 

Figure 17: Changes of model element values at 0.6 A cm-2 during the accelerated stress test. 
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The results of the extracted model element values indicate that cathode catalyst layer resonant loop 
parameters (R4, L4 and C4) change the most during the accelerated stress test, also like the cathode 
charge transfer resistance (R3) and cathode double-layer capacitance (C3) that contribute to the 
cathode activation processes, which was expected as the target of the conducted AST was the 
cathode catalyst layer degradation due to loss of the ECSA, and this concurs also with the findings of 
the other diagnostic tests. As expected, cathode charge transfer resistance (R3) turns out larger than 
the anode charge transfer resistance (R2), because of slower kinetics of the oxygen reduction 
reaction (ORR), and it increased during the AST, also like the cathode catalyst layer resistance (R4). 
Therefore, the cathode catalyst layer capacitance (C4) significantly decreased during the AST, also 
like the cathode double-layer capacitance (C3). Cathode inductance (L4) is higher than the anode's 
(L1), probably because oxygen, as a bigger molecule than hydrogen, is more inert to dissolve in water 
or ionomer in the CL, and it increased significantly during the AST. The faster increase in the cathode 
inductance with the degradation would also be expected as the degradation test caused structural 
damage to the cathode CL, which should even further impede the oxygen absorption and dissolution 
process. Therefore, a higher inductance value can be an indicator of the increasing instability in cell 
operation (i.e. ECSA loss). The ohmic resistance (R0) also increased during the AST, as the EIS 
measurements were performed with not fully-hydrated reactants (83.4% RH). Changes of the anode 
catalyst layer resonant loop parameters (R1, L1 and C1) were either insignificant and/or probably 
within the error of the measurements and numerical methods involved in their calculation. 

On the other hand, the low-frequency intercept (Total R) is the sum of all model resistors [3] and it 
shows a rising trend during the AST at every measured current density (Figure 18), but their overall 
values in the same point of AST are lower at higher current densities (of course, it can be stated only 
for this particular cell in the observed current density range). Also, the rising trends of the Total R 
during the AST are similar at all current densities, which can be an another sign of ECSA loss (e.g. 
voltage decay rates decrease with time and are almost constant at all current densities). 

 

Figure 18. Comparison of measured and simulated low-frequency intercepts at different current 
densities during the accelerated stress test. 

From the EIS experiments (Figure 18) it appears that the low frequency intercept, representing the 
sum of all resistances in a fuel cell equivalent circuit (thus it may be called the low frequency 
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resistance, LFR), may be used as an indication of fuel cell performance degradation due to catalyst 
layer degradation. Increase in resistance during the AST obtained by the polarization change curves 
analysis, basically represents the increase in the catalyst layer resistance. The difference between the 
resistance, R, obtained by fitting the polarization curves to equation: 

V = Vo – b ln (i/io) – iR 

and the high frequency resistance (HFR) represents the catalyst layer resistance. It is noticeable from 
Figure 19 that it is the catalyst layer resistance that increased during the AST. HFR representing the 
membrane and other ohmic resistances did not change, and neither the charge transfer resistance 
(difference between dV/di and R) changed during the AST, thus leaving the catalyst layer resistance 
as the only resistance that changed (which is expectable because the AST was designed to degrade 
the catalyst layer). Why exactly the catalyst layer resistance increases during the AST remains to be 
explained, but it may be speculated that the AST caused certain morphological changes in the 
catalyst layer, which resulted in redistribution of the ionic and electronic pathways within the 
catalyst layer, thus resulting in increased resistance. 

 

Figure 19: Change in resistance during the accelerated stress test. 

2.2.3 A new direct measurement approach of low-frequency EIS intercept 
From Figure 19 it seems that the LFR, as a sum of all the resistances, also includes the catalyst layer 
resistance, and therefore may be used as an indication of fuel cell performance degradation due to 
catalyst layer degradation. 

In order to obtain the whole desired frequency range (down to 10 mHz), previously used 
measurement approach has to be repeated multiple of times, which is time consuming (cca. half an 
hour for every impedance spectra) and even inappropriate for on-line monitoring of real operational 
fuel cell system in practice. As the obtained impedance at the low-frequency intercept (i.e. Total R) is 
purely real and shows the most significant change with degradation, together with SINTEF who works 
on integration of diagnostics in the system control, we propose to develop a new on-line algorithm 
for direct impedance estimation, based on relay excitation feedback [5]. With this, it will be possible 
to find the appropriate frequency at intercept and calculate the impedance. The algorithm 
establishes a stable limit cycle oscillation with specified small amplitude and it will converge quite 
fast to the frequency with the desired phase properties of the impedance, in this case at the crossing 
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of the Nyquist curve and the real axis. The algorithm can be implemented in ordinary fuel cell control 
systems, eliminating the need for specialized EIS equipment. The actual frequencies that are in the 
ballpark of 0.1-10 Hz can easily be handled by standard measurement sampling rates without the 
need for special high-frequency data logging. Thus, catalyst degradation can be monitored without 
the need of measuring the whole EIS impedance spectrum and it will provide the possibility to 
determine the current state of the fuel cell from just one parameter value, which is very promising 
for the future implementation in the fuel cell control system. The direct identification approach will 
be further developed and tested in a fuel cell with known impedance properties in the continuation 
of this project. 

2.3 Conclusions on fuel cell degradation diagnostics and future work 
One of the main goals of the conducted experiments and further analysis was to get the first-hand 
experience on the catalyst degradation phenomena of the ElringKlinger’s (single) PEM fuel cell during 
the AST consisting of frequent voltage cycling between 0.6 and 0.9 V. The observed fuel cell 
moderately degraded during the AST after 10000 cycles.  

Polarization change curves analysis indicated slight loss of ECSA and slight increase in resistance. 
Also, they could not be explained at current densities lower than 300 mA cm-2 (probably due to 
constant flow rate/high stoichiometry). 

The catalyst degradation was diagnosed with impedance periodical measurements taken during the 
AST at three different current densities and appropriate modeling, which yielded lower 
electrochemical activity in the electrodes visible through the EIS analysis as a mixture of increase in 
activation and mass transport losses. The applied 11-element impedance model managed to extract 
contributions of different phenomena responsible for the cell degradation, which were in accordance 
with the expected behavior, regarding their physical interpretations. The low-frequency intercept 
(Total R) increased most significantly during the AST with a rising and similar trend at every measured 
current density, whereas the membrane resistance increased only slightly. This concurs also with the 
findings (at least qualitatively) of the polarization change curves analysis and CV measurements, 
which indicated a slight loss of the ECSA caused by platinum dissolution due to intentionally frequent 
voltage cycling. The loss of the ECSA apparently resulted in structural changes within the CL, as the 
increase in mass transport in EIS suggests. 

  



   

Diagnostic methods for automotive fuel cell systems Page 19 of 31 

3 Implemented FCSAL diagnostic strategies 
Franche-Comté University/FCLab contribution in WP1 is to develop diagnostic strategies to ensure 
the FC System Air Line (FCSAL) State-of-Health (SoH) monitoring. Three diagnostic strategies are 
implemented and validated on data gathered from previous FC LAB projects. They differ in the level 
of instrumentation required and the complexity of the analyzes / calculations to be carried out. In 
this work, the diagnostic approaches are based on data-driven diagnostic techniques. Algorithms are 
fed by physical signals such as stack voltage and pressure signal measurements. Guidelines for 
implementation of each strategy in the Giantleap project on data to be recorded on FCEB prototype 
from Bosch will be described. 

3.1 Strategy Nr. 1: Diagnostic strategy based on stack voltage analysis 
In order to achieve a fast and low-cost diagnostic, we propose a tool in which the FCSAL diagnostic is 
made by the observation of only one parameter – the stack voltage. The method adopted is based on 
the pointwise singularity analysis of the FC stack voltage, which is a typical non-linear signal. Actually, 
it is reasonable to assume that the operation of a FC under severe conditions affects the morphology 
of its voltage. The analysis of its local fluctuations can therefore provide direct information on the 
dynamics of the device and on its state-of-health as well. To perform a right characterization of these 
complex signals, some appropriate and robust techniques are obviously necessary. 

We adopted morphological analysis of stack voltage based on wavelet leaders [6] in order to extract 
some latent information hidden in the signal and then to identify the signature of singularities for 
different fault operations. Indeed, the multifractal features can fully display the distribution of signal 
singularities, while the geometric characteristics and the local scaling behaviors are described more 
precisely. The developed diagnostic algorithm was tested and validated on rich databases built in the 
framework of FC LAB / UFC third party IFSTTAR previous projects. 

3.1.1 Singularity Spectrum as a diagnostic tool 
The singularity analysis, also named “multifractal analysis” allows the characterization of data by 
describing globally and geometrically the fluctuations of local regularity, usually measured by means 
of the Hölder exponent h. The numerical implementation of the mathematical formula basis of this 
method can be achieved using the wavelet leaders multifractal formalism. Detailed descriptions of 
the theoretical and practical relevance and benefits of the use of wavelet leaders for singularity 
analysis are depicted in [6-8]. 

3.1.2 FC diagnostic results and discussion 
For the stack PEMFCAuto, 10 scenarios are analyzed (normal and abnormal conditions including one 
fault or more complex situations with 2 or 3 faults occurred simultaneously). For the stack 
PEMFCµCHP, 9 operating conditions (normal and abnormal conditions) are studied. In this aim, we use 
30 voltage profiles for each FC operating condition; each voltage profile covers 1000 voltage samples 
acquired at a frequency fs =11 Hz using the monitoring data system of the FC experimental test 
bench. Some examples of stack voltage signals recorded during various operating conditions 
corresponding to different fault scenarios are displayed in Figure 4. 

The average SS computed using WLMA and related with the various faults shown in Figure 20 are 
plotted in Figure 21. 
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Figure 20: Examples of PEMFC stack voltages (V) vs. time acquired in different operating conditions. 

 

Figure 21: Average Singularity Spectra (SS) computed on 30 signals /operating conditions related with 
the different faults exhibited in Figure 20. 

As we can see, each operating fault gives its own stamp on the stack voltage morphology. This 
behavior is revealed by the shape and the location of the corresponding singularity spectra (Figure 
21). So, when the obtained SS is shifted to the left, that means a high irregularity of the voltage signal 
and conversely, when shifted to the right that reveals a more regular signal. 
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On one hand, the voltage signals associated to the FSC fault (single fault or combination of faults) 
contain sharp and impulsive variations (Figure 20) with relatively close magnitudes. This behavior is 
established by reduced singularity spectra (tiny concave arcs) and a high irregularity (Figure 21). On 
the other hand, large spectra are obtained with the FSA and P faults, which reveal the presence of 
several fluctuations sub-sets of points with various magnitudes on the voltage signals. 

Based on these results, the classification of the obtained multifractal features is performed using 
Machine Learning approach named k Nearest Neighbors (kNN). The kNN are a non-parametric 
learning algorithm, which consists in assigning unlabeled features to the class of the most similar 
labeled examples. The similarity can be estimated by using Euclidean metric for example. To improve 
the performance of the fault classification method, the Minimum Redundancy - Maximum Relevance 
(MRMR) technique [9] is used to select some relevance features offering the best classification rates. 

As we can see in Table 1 and Table 2, the proposed diagnostic strategy identifies successfully several 
complex operating faults (i.e, slight deflections from the nominal operating conditions. and even 
combination of faults) for both PEMFCAuto and PEMFCµCHP. Especially. faults introduced in the FCSAL 
(cathode flow faults) are identified at 100% in the case of the two investigated FC stacks. These 
results will be published in International Journal of Hydrogen Energy and more details will be 
available in [8]. 

Table 1: Confusion matrix of the good classification rates obtained with MRMR and kNN from the VSS 
computed with the stack voltage signals of the PEMFCAuto. The studied FC operating conditions are: 
Ref: normal conditions - DFSC: cathode flow fault (slight air starvation) - DFSA: anode flow fault 
(slight H2 starvation) - DP: gas pressure fault (lower gas pressure) - DT: cooling circuit temperature 
fault (lower stack temperature) - DCO: carbon monoxide poisoning (H2+CO). 

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 

Ref 87.5 0 0 12.5 0 0 0 0 0 0 

DFSC 0 100 0 0 0 0 0 0 0 0 

DFSA 0 0 100 0 0 0 0 0 0 0 

DP 50 0 0 50 0 0 0 0 0 0 

DT 0 0 0 0 100 0 0 0 0 0 

DCO 0 0 0 0 0 100 0 0 0 0 

DFSC & DP 0 0 0 0 0 0 100 0 0 0 

DFSA & DP 0 0 0 0 0 0 0 71.43 28.57 0 

DFSC & DFSA 0 0 0 0 0 0 0 0 100 0 

DFSC & DFSA & DP 0 0 0 0 0 0 0 0 0 100 

With: 𝐶𝐶0 ≡ 𝑅𝑅𝑅𝑅𝑅𝑅� .𝐶𝐶1 ≡ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� .𝐶𝐶2 ≡ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� .𝐶𝐶3 ≡ 𝐷𝐷𝐷𝐷� .𝐶𝐶4 ≡ 𝐷𝐷𝐷𝐷� .𝐶𝐶5 ≡ 𝐷𝐷𝐷𝐷𝐷𝐷� .𝐶𝐶6 ≡ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 & 𝐷𝐷𝐷𝐷� . 

 𝐶𝐶7 ≡ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 & 𝐷𝐷𝐷𝐷� .𝐶𝐶8 ≡ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 & 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� .𝐶𝐶9 ≡ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 & 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 & 𝐷𝐷𝐷𝐷� . 
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Table 2: Confusion matrix of the good classification rates obtained with MRMR and kNN from the VSS 
computed with the stack voltage signals of the PEMFCµCHP. The studied FC operating conditions are: 
Ref : normal conditions - DFSC↗: cathode flow fault (air over-supply) - DFSC↘: cathode flow fault 
(slight air starvation) - DFSA↗: anode flow fault (H2 over-supply) - DFSA↘ : anode flow fault (H2 
starvation) - DT↗: cooling circuit temperature fault (higher temperature) - DT↘ : cooling circuit 
temperature fault (lower stack temperature) - DRH↗: gas dew point temperature fault (higher dew 
point temperatures) - DRH↘: gas dew point temperature fault (lower dew point temperatures). 

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 

Ref 100 0 0 0 0 0 0 0 0 

DFSC↗ 0 100 0 0 0 0 0 0 0 

DFSC↘ 0 0 100 0 0 0 0 0 0 

DFSA↗ 0 0 0 90 0 10 0 0 0 

DFSA↘ 0 0 0 0 90 0 0 0 10 

DT↗ 0 0 0 20 0 80 0 0 0 

DT↘ 0 0 0 0 0 0 100 0 0 

DRH↗ 0 0 0 0 0 0 0 100 0 

DRH↘ 0 0 0 0 0 0 0 0 100 

With: 𝑪𝑪𝟎𝟎 ≡ 𝑅𝑅𝑅𝑅𝑅𝑅� .  𝑪𝑪𝟏𝟏 ≡ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷↗� .  𝑪𝑪𝟐𝟐 ≡ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷↘� .  𝑪𝑪𝟑𝟑 ≡ DFSA↗� .  𝑪𝑪𝟒𝟒 ≡ DFSA↘� .  𝑪𝑪𝟓𝟓 ≡ 𝐷𝐷𝐷𝐷↗� .  𝑪𝑪𝟔𝟔 ≡ 𝐷𝐷𝐷𝐷↘� .  

 𝑪𝑪𝟕𝟕 ≡ DRH↗ � .  𝑪𝑪𝟖𝟖 ≡ DRH↘� . 

3.1.3 Guidelines for implementing the diagnostic strategy in the Giantleap project 
Figure 22 shows a simplified scheme of the FCSAL architecture developed for Giantleap project and 
coupled to the proposed diagnostic module based on strategy Nr. 1. 

 

Figure 22: Simplified scheme of FCSAL coupled with the diagnostic module based on strategy Nr. 1. 
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Faults will be introduced in the air line side of the FC system prototype at Bosch facilities.  

In this study, three FC operating scenarios will be investigated (viz. Ref., DFSC, and DP). Indeed, the 
failure scenarios will be experimented by the tuning of the auxiliary operating points to modify, 
namely: cathode stoichiometry factor ‘FSC’ and air pressure ‘P’. The summary of the 
experimentations to be carried out on Bosch FC test bench is given in Table 3.  

These tests duplicate faults, which are representative of any possible FCSAL dysfunctions. They 
include: 

• Failure of the air supply system reflected by abnormal value of FSC parameter. This 
dysfunction may be related with a bad adjustment of the compressor speed, a compressor 
damage, a mass flow meter dysfunction, a control problem, flow-field channels obstruction 
by liquid water, etc. 

• Failure of the air pressure, which can be caused by compressor dysfunction, back pressure 
valve damage, etc. 

Collected PEMFC voltage signal data serve for supplying the developed diagnostic algorithm. 

Table 3: Summary of experimentations to be carry out on Bosch FC test bench. 

Parameters Algorithm needs 
Useful signal Stack voltage 
Sampling frequency 1 kHz  
Voltage resolution  0.2 mV (16 bits)* 

Operating conditions Normal and abnormal 
Changing Parameters   

1. Air stoichiometry rate 
 FC normal operation : 
𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 =  𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

 
 FC abnormal operation : 
𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 =  𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ± 10% 
𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 =  𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ± 20% 
𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 =  𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ± 30% 

 
2. Air Inlet Pressure 
 FC normal operation : 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

 
 FC abnormal operation : 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ± 10% 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ± 20% 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ± 30% 

 
Additional parameters to be 
recorded 

Inlet air temperature : 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 
Stack temperature : 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
H2 stoichiometry rate: 𝐹𝐹𝐹𝐹𝐹𝐹𝐻𝐻2 

* 0.2 mV (16 bits) for voltage and pressure signals (sensors outlet resolution) based on full scale measurement of 10 V. 
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3.2 Strategy Nr. 2: Diagnostic strategy based on signal analysis of inlet air pressure 
We propose a tool in which the FCSAL diagnostic is made by the analysis of the FC inlet pressure 
sensor signal. The adopted method is based on statistical analysis combined with pattern recognition 
approach. 

In order to elaborate the air pressure signal diagnostic strategy, a test bench has been developed in 
the FC platform in Belfort to emulate FCSAL. It includes the following components: 

- compressor 
- air mass flowmeter. BROOKS 5863S 
- pneumatic back pressure valve 
- pressure sensor KELLER PR 23S 
- temperature sensor thermocouple type K.  

The monitoring and the control of the FCSAL test-bench parameters are done through a National 
Instruments embedded controller and a dedicate control software developed with LabVIEW. In 
Figure 23, a picture of the developed test bench is shown. It is dedicated to compressor flow range 
up to 300Nl/min and 3b pressure. 

 

Figure 23: Air compressor test bench from UFC (FC LAB). 

In this study, four air line operating scenarios are investigated. The introduced fault scenarios are 
considered as common occurred faults in the air line part of a FC system. In the case of the Normal 
Operation (NO) scenario, air line ancillaries operate without any failure (no fault is introduced). In the 
case of the three other operating scenarios, faults are introduced and are related to the following air 
line dysfunctions: 

- Compressor Speed Control Faults (CSCF): a drop in the compressor speed set point is 
voluntary caused.  
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- Air Leakage Fault (ALF): an air leakage is deliberately caused by opening partially a dedicated 
valve in the air duct.  

- Inlet Air Fault (IAF): in this test, the air line inlet of the compressor is partially clogged. 

The pressure signal is recorded for the four experimentations, with a sampling frequency fs = 1 kHz. 
The data serve to supply the diagnostic algorithm based on the statistical analysis. 

3.2.1 Statistical analysis of pressure signal combined with kNN 
The diagnostic strategy is based on the statistical analysis of the recorded pressure signals during the 
experimentation and carried out for the four operating scenarios. The first step of the algorithm 
includes feature extraction. Feature extraction is the process of defining a set of features, which will 
most efficiently or meaningfully represent the information that is important for analysis and 
classification. Indeed, first order statistics or moments of the pressure signal are computed on a 
scanning window, such as: 

- Maximum and Minimum values of the pressure amplitude. 
- Mean value of the pressure. 
- Variance of pressure samples. 
- Kurtosis of the signal. Kurtosis is used for describing or estimating a distribution’s peakedness 

and frequency of extreme values. 
- Skewness of the signal. Skewness is a measure of the asymmetry of the pressure data around 

the mean sample. 

The plots of the statistical features estimated on the pressure signal by applying a scanning window 
size of 500 samples are given in Figure 24. 

 

Figure 24: Plots of statistical features estimated on an example of pressure signal for the four 
investigated operating scenarios of a FCSAL. Applied scanning window size = 500 samples. 
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The second step of the algorithm applies pattern recognition approach, called k-Nearest Neighbors 
(kNN), in order to separate the studied operating scenarios into four classes, namely. NO class, CSCF 
class, ALF class and IAF class. Figure 25 illustrates the principle steps of the elaborated diagnostic 
strategy. 

 

Figure 25: Steps of the diagnosis strategy based on statistical analysis combined with kNN of pressure 
data. 

3.2.2 Diagnostic results and discussion 
We assess a performance of the proposed algorithm by applying it to the collected pressure data. 
kNN is a supervised classification method, the classification algorithm is organized in two phases: a 
training phase and a test one. Actually, a matrix of 500 observations × 6 descriptors is used to 
generate a training database and a matrix of 200 new observations × 6 descriptors serves as a test 
data.  

The confusion matrix of the best results obtained on each class thanks to a scanning window size of 
500 samples is shown in Table 4. 

Table 4: Confusion matrix of the good classification rate (%), obtained for the 4 classes. 

Class NO ALF IAF CSCF 
NO 100 0 0 0 
ALF 0 100 0 0 
IAF 0 0 100 0 
CSCF 0 0 0 100 

Number of class = 4. 
Training set = 500 observations. 
Test set = 200 new observations. 
Number of statistical descriptors = 6. 
Scanning window size = 500 samples. 
Computing time = 1.24 seconds for both training and test steps.  
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3.2.3 Guidelines for implementing the diagnostic strategy in the Giantleap project 
Figure 26 shows a simplified scheme of the FCSAL architecture developed for Giantleap project and 
coupled to the proposed diagnostic module based on strategy Nr. 2.  

 

Figure 26: Simplified scheme of FCSAL coupled with the diagnostic module based on strategy Nr. 2. 

Experimentations of air leakage fault, control compressor speed and inlet air partially clogged will be 
carried out from experimentations on the FC system prototype at Bosch facilities. Collected pressure 
data will feed the implemented diagnostic algorithm for validation.  

3.3 Strategy Nr. 3: Diagnostic strategy based on compressor speed estimation 
In the last diagnostic strategy, the work is devoted to implement a law that estimates the compressor 
speed from pressure data measurements.  

A compressor technology is experimented using a test bench shown in Figure 23, for different 
pressure (in mbar) and Air Flow (AF in Nl/min) values. Some examples of AF and pressure data 
recorded with fs = 1 kHz are given in Figure 27. During the experimentation, AF value is kept stable 
while P varies of about five stages. The higher speed of the experimented compressor technology 
reaches 1500 rpm. 
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Figure 27: Typical curves of AF and P data recorded during a compressor experimentation. 

3.3.1 Compressor speed estimation 
Pressure data gathered during the experimentation are analyzed in the frequency domain. Spectral 
analysis is performed in order to estimate the frequency signature described by the fundamental and 
the harmonics containing in the signal. 

Estimates of fundamental, 2nd and 3rd harmonics for different pairs (AF, P) values are plotted in Figure 
28. Results show an increase tendency of frequency components according to AF and P amplitudes. 

Detailed values of frequency components are incorporated to the experimental design garnered 
from the experimentation phase (see Table 5). 

 

Figure 28: Typical curves of frequency components according to P amplitude, for different AF values. 
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As one can see in the last column of Table 5, an average error of 13 rpm is computed between the 
set point of the compressor speed 𝑣𝑣c and the estimated value 𝑣𝑣e. 

Table 5: Frequency signatures for different pairs (AF, P). 

 

 

Figure 29: Compressor map of the implemented compressor in the FCEB prototype. 
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3.3.2 Guidelines for implementing the diagnostic strategy in the Giantleap project 
The main idea of the diagnostic strategy is to compare the value of the compressor speed estimated 
for each pair (AF, P) to a reference lookup table. In this study, the lookup table is the C15-20 
compressor map given in Figure 29. In FCEB application, the compressor speed can exceed 120,000 
rpm. In this case, the acquisition frequency needed for the algorithm operation is at least 10 kHz. 

Figure 30 shows a simplified scheme of the FCSAL architecture in the FCEB from VDL, coupled to the 
diagnostic module based on strategy Nr. 3. 

 

Figure 30: Simplified scheme of the FCSAL coupled with the diagnostic module based on strategy 
Nr. 3. 

3.4 Summary of proposed diagnostic strategies 
• Diagnostic strategy Nr. 1 
 Based on the stack voltage analysis. 
 Already applied successfully in the framework of previous projects (implemented in 

Matlab environment). 
 Strategy validation on Bosch system data is pending. 

 
• Diagnostic strategy Nr. 2 
 Based on the inlet pressure signal analysis. 
 Strategy tested with success in compressor experiments conducted at FC LAB.  
 Strategy validation on Bosch system data is pending. 

 
• Diagnostic strategy Nr. 3 
 Based on the compressor speed estimation.  
 Strategy tested on two compressor technologies at FC LAB. 
 Validation on Bosch system data probably difficult due to the needs of the developed 

algorithm (ex. high sampling frequency = up to 10 kHz).  
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