

En quoi consiste PLASMA?

Un serveur performant:

- Puissance : pour stocker les données massives et les analyser simultanément par un grand nombre d'étudiants
- Redondance : pour assurer une sauvegarde et explorer de nouvelles pédagogies sans risque

80 coeurs 768 Go de RAM 30 To de stockage

13 14 15 16 17 18 19 20 21 22 X Y

Pourquoi PLASMA?

Enseigner de manière réaliste la génétique et la génomique, dans des conditions similaires au laboratoire :

- analyses sur données massives réelles (génomes entiers)
- analyses statistiques possibles sur un grand nombre d'échantillons
- procédures complètes avec enchainement de toutes les étapes
- adossement à la recherche

Les notebooks Jupyter proposent :

- une interface web unique et facile à utiliser
- des analyses en temps réel
- des graphiques interactifs
- un apprentissage actif de la programmation (Python, R)
- une connexion à distance

Pour voir un exemple de Notebook Jupyter :

Un Jupyter Hub pour :

- la distribution multi-utilisateurs des notebooks Jupyter interactifs
- la gestion de l'accès aux données massives et des ressources de calcul

Une documentation open source complète pour :

- faciliter l'installation de cette solution
- étendre ce type de plateforme d'enseignement :
 - à d'autres cursus
 - à d'autres composantes d'Université de Paris
 - à d'autres établissements

Qui porte PLASMA?

Claire Vandiedonck **UFR Médecine**

Pierre Poulain **UFR Sciences du Vivant**

Sandrine Caburet **UFR Sciences du Vivant**

Jupyter Hub et développement d'extensions dédiées

Sylvain Corlay

Financements (150 000 €):

Axe stratégique Formation d'excellence Projets nouveaux cursus et pédagogie innovante

