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A sizeable literature exists on the use of frequentist power analysis in the null-hypothesis signif-
icance testing (NHST) paradigm to facilitate the design of informative experiments. In contrast,
there is almost no literature that discusses the design of experiments when Bayes factors (BFs)
are used as a measure of evidence. Here we explore Bayes Factor Design Analysis (BFDA)
as a useful tool to design studies for maximum efficiency and informativeness. We elaborate
on three possible BF designs, (a) a fixed-n design, (b) an open-ended Sequential Bayes Factor
(SBF) design, where researchers can test after each participant and can stop data collection
whenever there is strong evidence for either H1 or H0, and (c) a modified SBF design that
defines a maximal sample size where data collection is stopped regardless of the current state
of evidence. We demonstrate how the properties of each design (i.e., expected strength of evi-
dence, expected sample size, expected probability of misleading evidence, expected probability
of weak evidence) can be evaluated using Monte Carlo simulations and equip researchers with
the necessary information to compute their own Bayesian design analyses.
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“The following rule of experimentation is
therefore suggested: perform that experiment
for which the expected gain in information is
the greatest, and continue experimentation until
a preassigned amount of information has been
attained” (Lindley, 1956, p. 987)

We aim to explore Bayes Factor Design Analysis (BFDA)
as a useful tool to design studies for maximum efficiency
and informativeness. In the classical frequentist framework,
statistical power refers to the long-term probability (across
multiple hypothetical studies) of obtaining a significant p-
value in case an effect of a certain size exists (Cohen, 1988).
Classical power analysis is a special case of the broader class
of design analysis, which uses prior guesses of effect sizes
and other parameters in order to compute distributions of any
study outcome (Gelman & Carlin, 2014).1 The general prin-
ciple is to assume a certain state of reality, most importantly
the expected true effect size, and tune the settings of a re-
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search design in a way such that certain desirable outcomes
are likely to occur. For example, in frequentist power analy-
sis, the property “sample size” of a design can be tuned such
that, say, 80% of all studies would yield a p-value < .05 if an
effect of a certain size exists.

The framework of design analysis is general and can be
used both for Bayesian and non-Bayesian designs, and it can
be applied to any study outcome of interest. For example, in
designs reporting Bayes factors a researcher can plan sample
size such that, say, 80% of all studies result in a compelling
Bayes factor, for instance BF10 > 10 (De Santis, 2004; Weiss,
1997). One can also determine the sample size such that,
with a desired probability of occurrence, a highest density
interval for a parameter excludes zero, or a particular pa-
rameter is estimated with a predefined precision (Gelman &
Tuerlinckx, 2000; Kruschke, 2014). Hence, the concept of
prospective design analysis, which refers to design planning
before data are collected, is not limited to null-hypothesis
significance testing (NHST), and our paper applies the con-
cept to studies that use Bayes factors (BFs) as an index of
evidence.

The first part of this article provides a short introduction

1Other authors have used “power analysis” as a generic term for
the “probability of achieving a research goal” (e.g. Kruschke, 2010,
p. 1). In line with Gelman and Carlin (2014), we prefer the more
general term “design analysis” and reserve “power analysis” for the
special case where a design analysis aims to ensure a minimum rate
of true positive outcomes in a hypothesis test (i.e., prob(strong H1

evidence |H1), which is the classical meaning of statistical power.
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to BFs as a measure of evidence for a hypothesis (relative
to an alternative hypothesis). The second part describes how
compelling evidence is a necessary ingredient for strong in-
ference, which has been argued to be the fastest way to in-
crease knowledge (Platt, 1964). The third part of this article
elaborates on how to apply the idea of design analysis to re-
search designs with BFs. The fourth part introduces three BF
designs, (a) a fixed-n design, (b) an open-ended Sequential
Bayes Factor (SBF) design, where researchers can test after
each participant and can stop data collection when there is
strong evidence for eitherH1 orH0, and (c) a modified SBF
design that defines a maximal sample size where data col-
lection is stopped in any case. We demonstrate how to use
Monte Carlo simulations and graphical summaries to assess
the properties of each design and how to plan for compelling
evidence. Finally, we discuss the approach in terms of pos-
sible extensions, the issue of (un)biased effect size estimates
in sequential designs, and practical considerations.

Bayes Factors as an Index of Evidence

The Bayes factor is “fundamental to the Bayesian compar-
ison of alternative statistical models” (O’Hagan & Forster,
2004, p. 55) and it represents “the standard Bayesian solu-
tion to the hypothesis testing and model selection problems"
(Lewis & Raftery, 1997, p. 648) and “the primary tool used
in Bayesian inference for hypothesis testing and model se-
lection” (Berger, 2006, p. 378). Here we briefly describe the
Bayes factor as it applies to the standard scenario where a
precise, point-null hypothesis H0 is compared to a compos-
ite alternative hypothesisH1. Under a composite hypothesis,
the parameter of interest is not restricted to a particular fixed
value (Jeffreys, 1961). In the case of a t-test, for instance,
the null hypothesis specifies the absence of an effect, that is,
H0 : δ = 0, whereas the composite alternative hypothesis
allows effect size to take on nonzero values.

In order to gauge the support that the data provide for
H0 versus H1, the Bayes factor hypothesis test requires that
both models make predictions. This, in turn, requires that
the expectations under H1 are made explicit by assigning
effect size δ a prior distribution, for instance a normal dis-
tribution centered on zero with a standard deviation of 1,
H1 : δ ∼ N(0, 1).

After both models have been specified so that they make
predictions, the observed data can be used to assess each
models’ predictive adequacy (Morey, Romeijn, & Rouder,
2016; Wagenmakers, Grünwald, & Steyvers, 2006; Wagen-
makers, Morey, & Lee, 2016). The ratio of predictive ad-
equacies –the Bayes factor– represents the extent to which
the data update the relative plausibility of the competing hy-

potheses, that is:

p(H0 | data)
p(H1 | data)︸          ︷︷          ︸

Posterior plausibility
about hypotheses

=
p(H0)
p(H1)︸ ︷︷ ︸

Prior plausibility
about hypotheses

×
p(data | H0)
p(data | H1)︸          ︷︷          ︸
Bayes factor =

Predictive updating factor

(1)

In this equation, the relative prior plausibility of the compet-
ing hypotheses is adjusted in light of predictive performance
for observed data, and this then yields the relative posterior
plausibility. Although the assessment of prior plausibility
may be informative and important (e.g., Dreber et al., 2015),
the inherently subjective nature of this component has caused
many Bayesian statisticians to focus on the Bayes factor –the
predictive updating factor– as the metric of interest (Hoijtink,
Klugkist, & Boelen, 2008; Jeffreys, 1961; Kass & Raftery,
1995; Ly, Verhagen, & Wagenmakers, 2016; Mulder & Wa-
genmakers, 2016; Rouder, Morey, Speckman, & Province,
2012; Rouder, Speckman, Sun, Morey, & Iverson, 2009).

Depending on the order of numerator and denominator in
the ratio, the Bayes factor is either denoted as BF01 (“H0
over H1”, as in Eq. (1)) or as its inverse BF10 (“H1 over
H0”). When the Bayes factor BF01 equals 5, this indicates
that the data are five times more likely under H0 than under
H1, meaning that H0 has issued a better probabilistic pre-
diction for the observed data than did H1. In contrast, when
BF01 equals 0.25 the data support H1 over H0. Specifically,
the data are 1/BF01 = BF10 = 4 times more likely under H1
than underH0.

The Bayes factor offers several advantages for the practi-
cal researcher (Wagenmakers et al., 2016). First, the Bayes
factor quantifies evidence, both for H1 but also for H0; sec-
ond, its predictive underpinnings entail that neither H0 nor
H1 need be “true” for the Bayes factor to be useful (but see
van Erven, Grünwald, & de Rooij, 2012); third, the Bayes
factor does not force an all-or-none decision, but instead
coherently reallocates belief on a continuous scale; fourth,
the Bayes factor distinguishes between absence of evidence
and evidence of absence (e.g., Dienes, 2014, 2016); fifth,
the Bayes factor does not require adjustment for sampling
plans (i.e., the Stopping Rule Principle; Bayarri, Benjamin,
Berger, & Sellke, 2016, Berger & Wolpert, 1988, Rouder,
2014). A practical corollary is that, in contrast to p-values,
Bayes factors retain their meaning in situations common in
ecology and astronomy, where nature provides data over time
and sampling plans do not exist (Wagenmakers et al., 2016).

Although Bayes factors are defined on a continuous scale,
several researchers have proposed to subdivide the scale
in discrete evidential categories (Jeffreys, 1961; Kass &
Raftery, 1995; Lee & Wagenmakers, 2013). The scheme
originally proposed by Jeffreys is shown in Table 1. The evi-
dential categories serve as a rough heuristic whose main goal
is to prevent researchers from overinterpreting the evidence
in the data. In addition –as we will demonstrate below– the
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categories permit a concise summary of the results from our
simulation studies.

Table 1
A rough heuristic classification scheme for the interpretation
of Bayes factors BF10 (Lee and Wagenmakers 2013; adjusted
from Jeffreys 1961).

Bayes factor Evidence category

> 100 Extreme evidence forH1
30 - 100 Very strong evidence forH1
10 - 30 Strong evidence forH1
3 - 10 Moderate evidence forH1
1 - 3 Anecdotal evidence forH1
1 No evidence
1/3 - 1 Anecdotal evidence forH0
1/10 - 1/3 Moderate evidence forH0
1/30 - 1/10 Strong evidence forH0
1/100 - 1/30 Very strong evidence forH0
< 1/100 Extreme evidence forH0

The Purpose of Design Analyses: Planning for
Compelling Evidence

In the planning phase of an experiment, the purpose of
a prospective design analysis is to facilitate the design of a
study that ensures a sufficiently high probability of detect-
ing an effect if it exists. Executed correctly, this is a crucial
ingredient to strong inference (Platt, 1964), which includes
“[d]evising a crucial experiment [...], with alternative pos-
sible outcomes, each of which will, as nearly as possible,
exclude one or more of the hypotheses” (p. 347). In other
words, a study design with strong inferential properties is
likely to provide compelling evidence, either for one hypoth-
esis or for the other. Such a study generally does not leave
researchers in a state of inference that is inconclusive.

When a study is underpowered, in contrast, it most likely
provides only weak inference. Within the framework of fre-
quentist statistics, underpowered studies result in p-values
that are relatively nondiagnostic. Specifically, underpowered
studies inflate both false-negative and false-positive results
(Button et al., 2013; Dreber et al., 2015; Ioannidis, 2005;
Lakens & Evers, 2014), wasting valuable resources such as
the time and effort of participants, the lives of animals, and
scientific funding provided by society. Consequently, re-
search unlikely to produce diagnostic outcomes is inefficient
and can even be considered unethical (Emanuel, Wendler, &
Grady, 2000, Halpern, Karlawish, & Berlin, 2002; but see
Bacchetti, Wolf, Segal, & McCulloch, 2005).

To summarize, the primary purpose of a prospective de-
sign analysis is to assist in the design of studies that increase

the probability of obtaining compelling evidence, a necessary
requirement for strong inference.

Design Analysis for Bayes Factor Designs

We apply design analysis to studies that report the Bayes
factor as a measure of evidence. Note, first, that we seek
to evaluate the operational characteristics of a Bayesian re-
search design before the data are collected (i.e., a prospec-
tive design analysis). Therefore, our work centers on design,
not on inference; once specific data have been collected, pre-
data design analyses are inferentially irrelevant, at least from
a Bayesian perspective (Bayarri et al., 2016; Wagenmakers et
al., 2014). Second, our focus is on the Bayes factor as a mea-
sure of evidence, and we expressly ignore both prior model
probabilities and utilities (Berger, 1985; Lindley, 1997; Ta-
roni, Bozza, Biedermann, Garbolino, & Aitken, 2010), two
elements that are essential for decision making yet orthog-
onal to the quantification of evidence provided by the ob-
served data. Thus, we consider scenarios where “the object
of experimentation is not to reach decisions but rather to gain
knowledge about the world” (Lindley, 1956, p. 986).

Target Outcome of a Bayes Factor Design Analysis:
Strong Evidence and No Misleading Evidence

In the context of evaluating the empirical support for and
against a null hypothesis, Bayes factors quantify the strength
of evidence for that null hypothesis H0 relative to the alter-
native hypothesisH1. To facilitate strong inference, we wish
to design studies such that they are likely to result in com-
pelling Bayes factors in favor of the true hypothesis – thus,
the informativeness of a design may be quantified by the
expected Bayes factor (Cavagnaro, Myung, Pitt, & Kujala,
2009; Good, 1979; Lindley, 1956), or an entire distribution
of Bayes factors.

Prior to the experiment, one may expect that in the ma-
jority of data sets that may be obtained the Bayes factor will
point towards the correct hypothesis. However, for particu-
lar data sets sampling variability may result in a misleading
Bayes factor, that is, a Bayes factor that points towards the
incorrect hypothesis. For example, even when H0 holds in
the population, a random sample can show strong evidence
in favor of H1, just by sampling fluctuations. We term this
situation false positive evidence (FPE). If, in contrast, the
data set shows strong evidence for H0, although in reality
H1 is correct, we term this false negative evidence (FNE). In
general terms, misleading evidence is defined as a situation
where the data show strong evidence in favor of the incorrect
hypothesis (Royall, 2000).

Research designs differ with respect to their probability
of generating misleading evidence. The probability of yield-
ing misleading evidence is a pre-data concept that should not
be confused with a related but different post-data concept,
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namely the probability that a given evidence in a particular
data set is misleading (Blume, 2002).

The expected strength of evidence (i.e., the expected BF)
and the probability of misleading evidence are conceptually
distinct, but practically tightly related properties of a research
design (Royall, 2000), as in general higher evidential thresh-
olds will lead to lower rates of misleading evidence (Blume,
2008; Schönbrodt, Wagenmakers, Zehetleitner, & Perugini,
2015). To summarize, the joint goal of a prospective de-
sign analysis should be a high probability of obtaining strong
evidence and a low probability of obtaining misleading evi-
dence, which usually go together.

Dealing With Uncertainty in Expected Effect Size

Power in a classical power analysis is a conditional power,
because the computed power is conditional on the assumed
true (or minimally interesting) effect size. One difficulty is
to commit to a point estimate of that parameter when there is
considerable uncertainty about it. This uncertainty could be
dealt with by computing the necessary sample size for a set
of plausible fixed parameter values. For example, previous
experiments may suggest that the true effect size is around
0.5, but a researcher feels that the true effect could as well be
0.3 or 0.7, and computes the necessary sample sizes for these
effect size guesses as well. Such a sensitivity analysis gives
an idea about the variability of resulting sample sizes.

A problem of this approach, however, is that there is no
principled way of choosing an appropriate sample size from
this set: Should the researcher aim for the conservative esti-
mate, which would be highly inefficient in case the true ef-
fect is larger? Or should she aim for the optimistic estimate,
which would lead to a low actual power if the true effect size
is at the lower end of plausible values?

Prior effect size distributions quantify uncertainty.
Extending the procedure of a sensitivity analysis, however,
one can compute the probability of achieving a research goal
averaged across all possible effect sizes. For this purpose,
one has to define prior plausibilities of the effect sizes, com-
pute the distribution of target outcomes for each effect size,
and then obtain a weighted average. This averaged prob-
ability of success has been called “assurance” (O’Hagan,
Stevens, & Campbell, 2005) or “expected Bayesian power”
(Spiegelhalter, Abrams, & Myles, 2004), and is the expected
probability of success with respect to the prior.2

In the above example, not all of the three assumed effect
sizes (i.e, 0.3, 0.5, and 0.7) might be equally plausible. For
example, one could construct a prior effect size distribution
underH1 that describes the plausibility for each choice (and
all effect sizes in between) as a normal distribution centered
around the most plausible value of 0.5 with a standard devi-
ation of 0.1: δ ∼ N(0.5, σ = 0.1), see Figure 1.

Garthwaite, Kadane, and O’Hagan (2005) give advice on
how to elicit a prior distribution from experts. These pro-
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Figure 1. A hypothetical prior distribution expressing the
uncertainty about the true effect size. Figure available at
https://osf.io/qny5x/, under a CC-BY4.0 license.

cedures help an expert to formulate his or her substantive
knowledge in probabilistic form, which in turn can be used
for Bayesian computations. Such an elicitation typically in-
cludes several steps, for example asking experts about the
most plausible value (i.e., about the mode of the prior), or
asking about the quantiles, such as ‘Please make a guess
about a very high value, such that you feel there is only a
5% probability the true value would exceed your guess’.

Morris, Oakley, and Crowe (2014) provide an online tool
that can help to fit an appropriate distribution to an experts’
input3.

Design priors vs. analysis priors. Two types of priors
can be differentiated (O’Hagan & Stevens, 2001 May-Jun;
Walley, Smith, Gale, & Woodward, 2015). Design priors
are used before data collection to quantify prior beliefs about
the true state of nature. These design priors are used to do
design analyses and in general to assist experimental design.
Analysis priors, in contrast, are used for Bayesian statistical
analysis after the data are in.

At first glance it might appear straightforward to use the
same priors for design planning and for data analysis. Both
types of priors, however, can serve different goals. The de-

2It is possible to construct an unconditional effect size prior that
describes the plausibility of effect sizes both under H1 and H0, for
example by defining a prior effect size distribution that assigns con-
siderable probability to values around zero and the opposite direc-
tion, or by using a mixture distribution that has some mass around
zero, and some mass around a non-zero effect size (Muirhead &
Şoaita, 2013). Here, in contrast, we prefer to construct a condi-
tional effect size prior under H1 and to contrast it with a point H0

that has all probability mass on zero. Hence, the result of our de-
sign analysis is a conditional average probability of success under
H1, which Eaton, Muirhead, and Soaita (2013) consider to be the
most plausible average probability for sample size planning.

3http://optics.eee.nottingham.ac.uk/match/uncertainty.php

https://osf.io/qny5x/
http://optics.eee.nottingham.ac.uk/match/uncertainty.php
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sign prior is used to tune the design before data collection
to make compelling evidence likely and to avoid misleading
evidence. The target audience for a design analysis is mainly
the researcher him- or herself, who wants to design the most
informed study. Hence, design priors should be based on the
researcher’s experience and can contain a lot of existing prior
information and experience to aid an optimal planning of the
study’s design. Relying on a non-central, highly informative
prior (in the extreme case, a point effect size guess as in clas-
sical power analysis) can result in a highly efficient design
(i.e., with a just large-enough sample size) if the real effect
size is close to that guess. On the other hand, it bears the
risk to end up with inconclusive evidence if the true effect is
actually smaller. A less informative design prior, in contrast,
will typically lead to larger planned sample sizes, as more
plausibility is assigned to smaller effect sizes.4

This increases the chances of compelling evidence in the
actual data analysis, but can be inefficient compared to a de-
sign that uses a more precise (and valid) effect size guess.
Researchers may balance that trade-off based on their sub-
jective certainty about plausible effect sizes, utilities about
successful or failed studies, or budget constraints. Whenever
prospective design analyses are used to motivate sample size
costs in grant applications, the design priors should be con-
vincing to the funder and the grant reviewers.

The analysis priors that are used to compute the BF, in
contrast, should be convincing to a skeptical target audience,
and therefore often are less informative than the design pri-
ors. In the examples of this paper, we will use an informed,
non-central prior distribution for the planning stage, but a
default effect size prior (which is less informative) for data
analysis.

Three Exemplary Designs for a Bayes Factor Design
Analysis

In the next sections, we will demonstrate how to conduct
a Bayes Factor Design Analyses. We consider three design
perspectives:

1. Fixed-n design: In this design, a sample of fixed size
is collected and one data analysis is performed at the
end. From this perspective, one can ask the following
design-related questions: Given a fixed sample size
and the expected effect size – what BFs can be ex-
pected? What sample size do I need to have at least
a 90% probability of obtaining a BF10 of, say, 6 or
greater? What is the probability of obtaining mislead-
ing evidence?

2. Open-ended sequential designs: Here participants are
added to a growing sample and BFs are computed un-
til a desired level of evidence is reached (Schönbrodt
et al., 2015). As long as researchers do not run out of
participants, time, or money, this approach eliminates

the possibility of ending up with weak evidence. With
this design, one can ask the following design-related
questions: Given the desired level of evidence and the
expected effect size – what distribution of sample sizes
can be expected? What is the probability of obtaining
misleading evidence?

3. Sequential designs with maximal n: In this modifica-
tion of the open-ended SBF design, participants are
added until (a) a desired level of evidence is obtained,
or (b) a maximum number of participants has been
reached. If sampling is stopped because of (b), the
evidence will not be as strong as desired initially, but
the direction and the strength of the BF can still be
interpreted. With this design, one can ask the follow-
ing design-related questions: Given the desired level of
evidence, the expected effect size, and the maximum
sample size – what distribution of sample sizes can
be expected? How many studies can be expected to
stop because of crossing the evidential threshold, and
how many because nmax has been reached? What is the
probability of obtaining misleading evidence?

As most design planning concerns directional hypotheses,
we will focus on these in this paper. Furthermore, in our ex-
amples we use the JZS default Bayes factor for a two group t-
test provided in the BayesFactor package (Morey & Rouder,
2015) for the R Environment for Statistical Computing (R
Core Team, 2014) and in JASP (JASP Team, 2016). The JZS
Bayes factor assumes that effect sizes under H1 (expressed
as Cohen’s d) follow a central Cauchy distribution (Rouder
et al., 2009). The Cauchy distribution with a scale parame-
ter of 1 equals a t distribution with one degree of freedom.
This prior has several convenient properties and can be used
as a default choice when no specific information about the
expected effects sizes is available. The width of the Cauchy
distribution can be tuned using the scale parameter, which
corresponds to smaller or larger plausible effect sizes. In our
examples below, we use a default scale parameter of

√
2/2.

This corresponds to the prior expectation that 50% of prob-
ability mass is placed on effect sizes that have an (absolute)
size smaller than

√
2/2, and 50% larger than

√
2/2. Note

that all computations and procedures outlined here are not
restricted to these specific choices and can be easily general-

4In Bayesian parameter estimation so called uninformative pri-
ors are quite common. A very wide prior, such as a half-normal
distribution with mean=0 and SD=10, however, should not be used
for design analysis, as too much probability mass is placed upon
unrealistically large effect sizes. Such a design analysis will yield
planned sample sizes that are usually too small, and consequently
the actual data analysis will most likely be uninformative. As any
design choice involves the fundamental trade-off between expected
strength of evidence and efficiency, there exists no “uninformative”
design prior in prospective design analysis.
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ized to undirected tests and all other flavors of Bayes factors
as well (Dienes, 2014).

Fixed-n Design

With a pre-determined fixed sample size, two related ques-
tions can be asked in a design analysis: (a) What is the ex-
pected distribution of obtained evidence? (b) What is the
probability of obtaining misleading evidence? (c) Sample
size determination: What is the necessary sample size that
compelling evidence can be expected with sufficiently high
probability?

Monte Carlo simulations can be used to answer these
questions easily. In our example, we focus on a test for the
difference between two population means (i.e., a Bayesian t-
test; Rouder et al., 2009). For didactic purposes, we demon-
strate this design analysis with a fixed expected effect size
(i.e., without a prior distribution). This way the design anal-
ysis is analogous to a classical power analysis in the NHST
paradigm, that also assumes a fixed effect size underH1.

The recipe for our Monte Carlo simulations is as follows
(see also Kruschke, 2014):

1. Define a population that reflects the expected effect
size under H1 and, if prior information is available,
other properties of the real data (e.g., specific distri-
butional properties). In the example given below, we
used two populations with normal distributions and a
fixed standardized mean difference of δ = 0.5.

2. Draw a random sample of size nfixed from the popula-
tions (all n refer to sample size in each group).

3. Compute the BF for that simulated data using the anal-
ysis prior that will also be used in the actual data anal-
ysis and save the result. In the example given below,
we analyzed simulated data with a Cauchy prior (scale
parameter =

√
2/2).

4. Repeat steps 2 and 3, say, 10, 000 times.

5. In order to compute the probability of false-positive
evidence, the same simulation must be done under the
H0 (i.e., two populations that have no mean differ-
ence).

Researchers do not know in advance whether and to what
extent the data will support H1 or H0; therefore, all sim-
ulations must be carried out both under H1 and H0 (see
step 5). Figure 2 provides a flow chart of the simulations
that comprise a Bayes factor design analysis. For stan-
dard designs, readers can conduct their own design analy-
ses simulations using the R package BFDA (Bayes factor
design analysis; Schönbrodt, 2016, see https://github.com/

nicebread/BFDA).5

The proposed simulations provide a distribution of ob-
tained BFs under H1, and another distribution under H0.
For these distributions, one can set several thresholds and
retrieve the probability that a random study will provide a
BF in a certain evidential category. For example, one can set
a single threshold at BF10 = 1 and compute the probability
of obtaining a BF with the wrong direction. Or, one can aim
for more compelling evidence and set thresholds at BF10 = 6
and BF10 = 1/6. This means evidence is deemed inconclusive
when 1/6 < BF10 < 6. Furthermore, one can define asymmet-
ric thresholds under H0 and H1. Depending on the analysis
prior in the computation of the BF, it can be expensive and
time-consuming to gather strong evidence for H0. In these
cases one can relax the requirements for strong H0 support
and still aim for strong H1 support, for example by using
thresholds 1/6 and 20 (Weiss, 1997).

Expected distribution of BFs and rates of misleading
evidence. Figure 3 compares the BF10 distribution that can
be expected underH1 (top row) and underH0 (bottom row).
The simulations were conducted with two fixed sample sizes:
n = 20 (left column) and n = 100 (right column). Evidence
thresholds were defined at 1/6 and 6. If an effect of δ = 0.5
exists and studies with n = 20 are conducted, 0.3% of all
simulated studies point towards the (wrong) H0 (BF < 1/6).
This is the rate of false negative evidence, and it is visual-
ized as the dark grey area in the top density of Figure 3A.
Conversely, 21.1% of studies show H1 support (BF10 > 6;
light gray area in the top density), which is the probability of
true positive results. The remaining 78.5% of studies yield
inconclusive evidence (1/6 < BF10 < 6; medium grey area in
the top density).

If, however, no effect exists (see bottom density of Fig-
ure 3A), 0.9% of all studies will yield false-positive evidence
(BF10 > 6), and 13.7% of all studies correctly support H0
with the desired strength of evidence (BF10 < 1/6). A large
majority of studies (85.5%) remain inconclusive under H0
with respect to that threshold. Hence, a design with that fixed
sample size has a high probability of being uninformative un-
derH0.

With increasing sample size the BF distributions under
H1 and H0 diverge (see Figure 3B), making it more likely
to obtain compelling evidence for either hypothesis. Conse-
quently, the probability of misleading evidence and the prob-
ability of inconclusive evidence is reduced. At n = 100 and
evidential thresholds of 6 and 1/6 the rate of false negative
evidence drops from 0.3% to virtually 0%, and the rate of
false positive evidence drops from 0.9% to 0.6%. The prob-
ability to detect an existing effect of δ = 0.5 increases from
21.1% to 84.0%, and the probability to find evidence in favor
of a trueH0 increases from 13.7% to 53.4%.

Sample size determination. For sample size determi-
nation, simulated sample sizes can be adjusted until the com-

5The R code is also available on the OSF (https://osf.io/qny5x/).

https://github.com/nicebread/BFDA
https://github.com/nicebread/BFDA
https://osf.io/qny5x/
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Figure 2. Overview of the planning and analysis stages in a Monte Carlo Bayes factor design analysis. Figure available at
https://osf.io/qny5x, under a CC-BY4.0 license.

puted probability of achieving a research goal under H1 is
close to the desired level. In our example, the necessary sam-
ple size of achieving a BF10 > 6 underH1 with a probability
of 95% would be n = 146. Such a fixed-n Bayes factor design
with n = 146 implies a false negative rate of virtually 0%,
and, underH0, a false positive rate of 0.4% and a probability
of 61.5% to correctly supportH0.

In a pre-data design perspective the focus is on the fre-
quentist properties of BFs. We should mention that this can

be complemented by investigating the Bayesian properties of
BFs. From that perspective, one can look at the probability
of a hypothesis being true given a certain BF (Rouder, 2014).
WhenH1 andH0 have equal prior probability, and when the
analysis prior equals the design prior, then a single study with
a BF10 of, say, 6 has 6:1 odds of stemming fromH1.

The goal of obtaining strong evidence can be achieved
by planning a sample size that ensures a strong enough BF
with sufficient probability. There is, however, an easier way

https://osf.io/qny5x
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Figure 3. Distributions of BF10 for a fixed-n design with a true effect size of δ = 0.5 underH1 and a fixed n of 20 (left column),
resp. 100 (right column). Distributions were categorized at BF thresholds of 1/6 and 6. Figure available at https://osf.io/qny5x,
under a CC-BY4.0 license.

that guarantees compelling evidence: Sample sequentially
and compute the BF until the desired level of evidence is
achieved. This design will be explained in the next section.

Open-ended Sequential Bayes Factor Design: SBF

In the planning phase of an experiment, it is often difficult
to decide on an expected or minimally interesting effect size.
If the planned effect size is smaller than the true effect size,
the fixed n will be inefficient. More often, presumably, the
effect size is overestimated in the planning stage, leading to
a smaller actual probability to detect a true effect.

A proposed solution that is less dependent on the true ef-
fect size is the Sequential Bayes Factor (SBF) design (Schön-
brodt et al., 2015). In this design, the sample size is increased
until the desired level of evidence for H1 or H0 has been
reached (see also Berger, Brown, & Wolpert, 1994, Dienes,
2008, Kass & Raftery, 1995, Lindley, 1956, Wald, 1945).
This principle of “accumulation of evidence” is also cen-
tral to optimal models for human perceptual decision making
(e.g., random walk models, diffusion models; e.g., Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006, Forstmann, Rat-
cliff, & Wagenmakers, 2016). This accumulation principle
allows a flexible adaption of the sample size based on the
actual empirical evidence.

In the planning phase of a SBF design, researchers define
an a priori threshold that represents the desired grade of ev-
idence, for example a BF10 of 6 for H1 and the reciprocal
value of 1/6 for H0. Furthermore, an analysis prior for the
effect sizes under H1 is defined in order to compute the BF.
Finally, the researcher may determine a minimum number
of participants to be collected regardless, before the optional
stopping phase of the experiment (e.g., nmin = 20 per group).

After a sample of nmin participants has been collected, a
BF is computed. If this BF does not exceed theH1 threshold
or the H0 threshold, the sample size is increased as often as
desired and a new BF computed at each stage (even after each
participant). As soon as one of the thresholds is reached or
exceeded, sampling can be stopped. One prominent advan-
tage of sequential designs is that sample sizes are in most
cases smaller than those from fixed-n designs with the same
error rates.6 For example, in typical scenarios the SBF design
for comparing two group means yielded about 50% smaller

6For a procedure related to the SBF, the sequential probability
ratio test (SPRT; Wald, 1945), it has been proven that this test of
two simple (point) hypotheses is an optimal test. That means that of
all tests with the same error rates it requires the fewest observations
on average (Wald & Wolfowitz, 1948), with sample sizes that are
typically 50% lower than the best competing fixed-n design.

https://osf.io/qny5x
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samples on average compared to the optimal NHST fixed-n
design with the same error rates (Schönbrodt et al., 2015).

With regard to design analysis in a SBF design, one can
ask: (a) What is the probability of obtaining misleading ev-
idence by stopping at the wrong threshold? (b) What is the
expected sample size until an evidential threshold is reached?

In the example for the SBF design, we use a design prior
for the a priori effect size estimate: d ∼ N(0.5, σ = 0.1) (see
Figure 1). In our hypothetical scenario this design prior is in-
spired by relevant substantive knowledge or results from the
published literature. Again, Monte Carlo simulations were
used to examine the operational characteristics of this design:

1. Define a population that reflects the expected effect
size under H1 and, if prior information is available,
other properties of the real data. In the example given
below, we used two populations with normal distribu-
tions and a standardized mean difference that has been
drawn from a normal distribution N(0.5, σ = 0.1) at
each iteration.

2. Draw a random sample of size nmin from the popula-
tions.

3. Compute the BF for that simulated data set, using the
analysis prior that will also be used in the actual data
analysis (in our example: a Cauchy prior with scale
parameter =

√
2/2). If the BF exceeds the H1 or the

H0 threshold (in our example: > 6 or < 1/6), stop
sampling, and save the final BF and the current sam-
ple size. If the BF does not exceed a threshold yet,
increase sample size (in our example: by 1 in each
group). Repeat step 3 until one of both thresholds is
exceeded.

4. Repeat steps 1 to 3, say, 10,000 times.

5. In order to compute the rate of false-positive evidence
and the expected sample size underH0, the same simu-
lation must be done under theH0 (i.e., two populations
that have no mean difference).

This design can completely eliminate weak evidence, as
data collection is continued until evidence is conclusive in ei-
ther direction. The consistency property ensures that BFs ul-
timately drift either towards 0 or towards ∞ and every study
ends up producing compelling evidence – unless researchers
run out of time, money, or participants (Edwards, Lindman,
& Savage, 1963). We call this design “open-ended” because
there is no fixed termination point defined a priori (in contrast
to the SBF design with maximal sample size, which is out-
lined below). “Open-ended”, however, does not imply that
data collection can continue forever without hitting a thresh-
old; in contrast, the consistency property of BFs guarantees
that the possibility of collecting samples indefinitely is zero.

Figure 4 (top) visualizes the evolution of the BF10 in sev-
eral studies where the true effect size follows the prior dis-
tribution displayed in Figure 1. Each grey line in the plot
shows how the BF10 of a specific study evolves with increas-
ing n. Some studies hit the (correct) H1 boundary sooner,
some later, and the distribution of stopping-ns is visualized
as the density on top of the H1 boundary. Although all tra-
jectories are guaranteed to drift towards and across the cor-
rect threshold in the limiting case, some hit the wrong H0
threshold prematurely. Most misleading evidence happens at
early stages of the sequential sampling. Consequently, in-
creasing nmin also decreases the rate of misleading evidence
(Schönbrodt et al., 2015). Figure 4 (bottom) shows the same
evolution of BFs underH0.

Expected rates of misleading evidence. If one updates
the BF after each single participant under this H1 of d ∼
N(0.5, σ2 = 0.12) and evidential thresholds at 6 and 1/6,
97.2% of all studies stop at the correctH1 threshold (i.e., the
true positive rate), 2.8% stop incorrectly at the H0 threshold
(i.e., the false negative rate). Under theH0, 93.8% terminate
at the correct H0 threshold, and 6.2% at the incorrect H1
threshold (i.e., the false positive rate).

The algorithm above computes the BF after each single
participant. The more often a researcher checks whether the
BF has exceeded the thresholds, the higher the probability
of misleading evidence, because the chances are increased
that the stop is at a random extreme value. In contrast to
NHST, however, where the probability of a Type-I error can
be pushed towards 100% if enough interim tests are per-
formed (Armitage, McPherson, & Rowe, 1969), the rate of
misleading evidence has an upper limit in the SBF design.
When the simulations are conducted with interim tests after
each single participant, one obtains the upper bound on the
rate of misleading evidence. In the current example this leads
to a maximal FPE rate of 6.2%. If the BF is computed after
every 5 participants, the rate is reduced to 5.2%, after every
10 participants to 4.5%. It should be noted that these changes
in FPE rate are, from an inferential Bayesian perspective, ir-
relevant (Rouder, 2014).

Expected sample size. In the above example, the aver-
age sample size at the stopping point (across both threshold
hits) under H1 is n = 53, the median sample size is n = 36,
and 80% of all studies stop with fewer than 74 participants.
Under H0, the sample size is on average 93, median = 46,
and 80% quantile = 115. Hence, although the SBF design has
no a priori defined upper limit of sample size, the prospec-
tive design analysis reveals estimates of the expected sample
sizes.

Furthermore, this example highlights the efficiency of the
sequential design. A fixed-n Bayes factor design that also
aims for evidence with BF10 ≥ 6 (resp. ≤ 1/6) with the same
true positive rate of 97.2% requires n = 241 participants (but
will have different rates of misleading evidence).
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Figure 4. The open-ended Sequential Bayes Factor design. The density of sample sizes at the stopping point and the example
trajectories are based on a true effect size of δ ∼ N(0.5, σ = 0.1) under H1 and evidential thresholds at 6 and 1/6. Figure
available at https://osf.io/qny5x, under a CC-BY4.0 license.

Sequential Bayes Factor With Maximal n: SBF+maxN

The SBF design is attractive because a study is guaranteed
to end up with compelling evidence. A practical drawback of
the open-ended SBF design, however, is that the BF can me-
ander in the inconclusive region for hundreds or even thou-
sands of participants when effect sizes are very small (Schön-

brodt et al., 2015). In practice, researchers do not have un-
limited resources, and usually want to set a maximum sample
size based on budget, time, or availability of participants.

The SBF+maxN design extends the SBF design with such
an upper limit on the sample size. Data collection is stopped
whenever one of both evidential thresholds has been ex-
ceeded, or when the a priori defined maximal sample size has

https://osf.io/qny5x
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been reached. When sampling is stopped because nmax has
been reached, one can still interpret the final BF. Although
it has not reached the threshold for compelling evidence, its
direction and strength can still be interpreted.

When planning an SBF+maxN design, one can ask: (a)
How many studies can be expected to stop because of cross-
ing an evidential threshold, and how many because of reach-
ing nmax?, (b) What is the probability of obtaining mislead-
ing evidence?, (c) If sampling stopped at nmax: How many of
these studies have a BF that points into the correct direction?
( d) What distribution of sample sizes can be expected?

Again, Monte Carlo simulations can be used to examine
the operational characteristics of this design. The compu-
tation is equivalent to the SBF design above, with the only
exception that step 3 is terminated when the BF exceeds the
H1 orH0 threshold, or n reaches nmax.

To highlight the flexibility and practicality of the
SBF+maxN design, we consider a hypothetical scenario in
which a researcher intends to test as efficiently as possible,
has practical limitations on the maximal sample size, and
wants to keep the rate of false positive evidence low. To
achieve this goal, we introduce some changes to the example
from the open-ended SBF design above: Asymmetric bound-
aries, a different minimal sample size, and a maximum sam-
ple size.

False positive evidence happens when the H1 boundary
is hit prematurely although H0 is true. As most misleading
evidence happens at early terminations of a sequential de-
sign, the FPE rate can be reduced by increasing nmin (say,
nmin = 40). Furthermore, the FPE rate can be reduced by a
highH1 threshold (say, BF10 >= 30). With an equally strong
threshold for H0 (1/30), however, the expected sample size
can easily go into thousands under H0 (Schönbrodt et al.,
2015). To avoid such a protraction, the researcher may set a
lenient H0 threshold of BF10 < 1/6. Finally, due to budget
restrictions, the maximum affordable sample size is defined
as nmax = 100. With these settings, the researcher trades in
a higher expected rate of false negative evidence (caused by
the lenient H0 threshold), and some probability of weak ev-
idence (when the study is terminated at nmax) for a smaller
expected sample size, a low rate of false positive evidence
and the certainty that the sample size does not exceed nmax.

To summarize, in this final example we set evidential
thresholds for BF10 at 30 and 1/6, nmin = 40, and nmax = 100.
The uncertainty about the effect size underH1 is expressed as
δ ∼ N(0.5, σ = 0.1). Figure 5 visualizes the trajectories and
stopping point distributions under H1 (results under H0 not
shown). The upper and lower densities show the distribution
of n for all studies that hit a threshold. The distribution on
the right shows the distribution of BF10 for all studies that
stopped at nmax.

Expected stopping threshold (H1, H0, or nmax) and ex-
pected rates of misleading evidence. Under H1 of this

example, 70.6% of all studies hit the correct H1 threshold
(i.e., the true positive rate), 1.6% hit the wrongH0 threshold
(i.e, the false negative rate). The remaining 27.8% of studies
stopped at nmax and remained inconclusive with respect to the
a priori set thresholds.

One goal in the example was a low FPE rate. Under
H0 (not displayed), 70.9% of all studies hit the correct H0
threshold and 0.6% hit the wrongH1 threshold (i.e., the false
positive rate). The remaining 28.5% of studies stopped at
nmax and remained inconclusive with respect to the a priori
set thresholds.

Again, these are the maximum rates of misleading evi-
dence, when a test after each participant is computed. More
realistic sequential tests, such as testing after every 10 partic-
ipants, will lower these rates.

Distribution of evidence at nmax. The BF of studies
that did not reach the a priori threshold for compelling evi-
dence can still be interpreted. In the current example, we cat-
egorize the inconclusive studies into results that show at least
moderate evidence for either hypothesis (BF < 1/3 or BF > 3)
or are completely inconclusive (1/3 < BF < 3). Of course any
other threshold can be used to categorize the non-compelling
studies; in general a BF of 3 provides only weak evidence for
a hypothesis and implies, from a design perspective, a high
rate of misleading evidence (Schönbrodt et al., 2015).

In the current example, underH1, 15.5% of all studies ter-
minated at nmax with a BF10 > 3, meaning that these studies
correctly indicated at least moderate evidence forH1. 11.6%
of studies remained inconclusive (1/3 < BF10 < 3), and 0.7%
pointed towards the wrong hypothesis (BF10 < 1/3). Under
H0, 1.1% incorrectly pointed towards H1, 10.8% towards
H0, and 16.6% remained inconclusive.

Expected sample size. The average expected sample
size underH1 (combined across all studies, regardless of the
stopping condition) is n = 69, with a median of 65. The
average expected sample size under H0 is n = 66, with a
median of 56. Hence, the average expected sample size is
under both hypotheses considerably lower than nmax, which
has been defined at n = 100.

Discussion

We explored the concept of a Bayes Factor Design Anal-
ysis, and how it can help to plan a study for compelling ev-
idence. Pre-data design analyses allow researchers to plan
a study in a way that strong inference is likely. As in fre-
quentist power analysis, one has to find a trade-off between
the rates of misleading evidence, the desired probability of
achieving compelling evidence, and practical limits concern-
ing sample size. Additionally, in order to compute the ex-
pected outcomes of future studies, one has to make explicit
one’s assumption for several key parameters, such as the ex-
pected effect size under H1. Any pre-data analysis is con-
ditional on these assumptions, and the validity of the results
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Figure 5. The Sequential Bayes Factor With Maximal n design under H1 (results under H0 not shown). The densities and
example trajectories are based on a true effect size of δ ∼ N(0.5, σ = 0.1), evidential thresholds at 30 and 1/6, and nmax = 100
in each group. Figure available at https://osf.io/qny5x, under a CC-BY4.0 license.

depends on the validity of the assumptions. If reality does not
follow the assumptions, the actual operational characteristics
of a design will differ from the results of the design analysis.
For example, if the actual effect size is smaller than antic-
ipated, a chosen design has actually higher FNE rates and,
in the sequential case, larger expected sample sizes until a
threshold is reached.

In contrast to p-values, the interpretation of Bayes fac-
tors does not depend on stopping rules (Rouder, 2014). This
property allows researchers to use flexible research designs
without the requirement of special and ad-hoc corrections.
For example, the proposed SBF+maxN design stops abruptly
at nmax. An alternative procedure is one where the evi-
dential thresholds gradually move closer together as n in-
creases. This implies that a lower grade of evidence is ac-
cepted when sampling was not already stopped at a strong
evidential threshold, and puts a practical (but not fixed) up-
per limit on sample size (for an application in response time
modeling see Boehm, Hawkins, Brown, van Rijn, & Wagen-
makers, 2015). The properties of this special design (or of
any sequential or non-sequential BF design) can be evaluated
using the same simulation approach outlined in this paper.
This further underscores the flexibility and the generality of
the sequential Bayesian procedure.

From the Planning Stage to the Analysis Stage

This paper covered the planning stage, before data are col-
lected. After a design has been chosen, based on a careful
evaluation of its operational characteristics, the actual study
is carried out (see also Figure 2). A design analysis only re-
lates to the actual inference if the same analysis prior is used
in the planning stage and in the analysis stage. Addition-
ally, the BF computation in the analysis stage should contain
a sensitivity analysis, which shows whether the inference is
robust against reasonable variations in the analysis prior.

It is important to note that, in contrast to NHST, the infer-
ence drawn from the actual data set is entirely independent
from the planning stage (Berger & Wolpert, 1988; Dienes,
2011; Wagenmakers et al., 2014). All inferential information
is contained in the actual data set, the analysis prior, and the
likelihood function. Hypothetical studies from the planning
stage (that have not been done) cannot add anything. From
that perspective, it would be perfectly fine to use a different
analysis prior in the actual analysis than in the design anal-
ysis. This would not invalidate the inference (as long as the
chosen analysis prior is defensible); it just would disconnect
the pre-data design analysis, which from a post-data perspec-
tive is irrelevant anyway, from the actual analysis.

https://osf.io/qny5x
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Unbiasedness of Effect Size Estimates

Concerning the sequential procedures described here,
some authors have raised concerns that these procedures re-
sult in biased effect size estimates (e.g., Bassler et al., 2010,
Kruschke, 2014). We believe these concerns are overstated,
for at least two reasons.

First, it is true that studies that terminate early at the
H1 boundary will, on average, overestimate the true effect.
This conditional bias, however, is balanced by late termi-
nations, which will, on average, underestimate the true ef-
fect. Early terminations have a smaller sample size than
late terminations, and consequently receive less weight in a
meta-analysis. When all studies (i.e., early and late termina-
tions) are considered together, the bias is negligible (Berry,
Bradley, & Connor, 2010; Fan, DeMets, & Lan, 2004; Good-
man, 2007; Schönbrodt et al., 2015). Hence, across multiple
studies the sequential procedure is approximately unbiased.

Second, the conditional bias of early terminations is con-
ceptually equivalent to the bias that results when only sig-
nificant studies are reported and non-significant studies dis-
appear into the file drawer (Goodman, 2007). In all ex-
perimental designs –whether sequential, non-sequential, fre-
quentist, or Bayesian– the average effect size inevitably in-
creases when one selectively averages studies that show a
larger-than-average effect size. Selective publishing is a con-
cern across the board, and an unbiased research synthesis re-
quires that one considers significant and non-significant re-
sults, as well as early and late terminations.

Although sequential designs have negligible uncondi-
tional bias, it may nevertheless be desirable to provide a prin-
cipled “correction” for the conditional bias at early termi-
nations, in particular when the effect size of a single study
is evaluated. For this purpose, Goodman (2007) outlines a
Bayesian approach that uses prior expectations about plausi-
ble effect sizes (see also Pocock & Hughes, 1989). This ap-
proach shrinks extreme estimates from early terminations to-
wards more plausible regions. Smaller sample sizes are nat-
urally more sensitive to prior-induced shrinkage, and hence
the proposed correction fits the fact that most extreme devia-
tions from the true value are found in very early terminations
that have a small sample size (Schönbrodt et al., 2015).

Practical Considerations

Many granting agencies require a priori computations for
the determination of sample size. This ensures that proposers
explicitly consider the expected or minimally relevant effect
size. Such calculations are necessary to pinpoint the amount
of requested money to pay participants.

The SBF+maxN design seems especially suitable for a
scenario where researchers want to take advantage of the
high efficiency of a sequential design but still have to define
a fixed (maximum) sample size in a proposal. For this pur-

pose, one could compute a first design analysis based on an
open-ended SBF design to determine a reasonable nmax. If,
for example, the 80% quantile of the stopping-n distribution
is used as nmax in a SBF+maxN design, one can expect to
hit a boundary before nmax is reached in 80% of all studies.
Although there is a risk of 20% that a study does not reach
compelling evidence within the funding limit, this outcome
is not a “failure” as the direction and the size of the final
BF can still be interpreted. In a second design analysis one
should consider the characteristics of that SBF+maxN design
and evaluate whether the rates of misleading evidence are ac-
ceptable.

This approach enables researchers to define an informed
upper limit for sample size, which allows them to apply for
a predefined amount of money. Still, one can save resources
if the evidence is strong enough for an earlier stop, and in al-
most all cases the study will be more efficient than a fixed-n
NHST design with comparable error rates (Schönbrodt et al.,
2015).

Conclusion

In the planning phase of a study it is essential to carry
out a design analysis in order to formalize one’s expecta-
tions and facilitate the design of informative experiments. A
large body of literature is available on planning frequentist
designs, but little practical advice exists for research designs
that employ Bayes factors as a measure of evidence. In this
contribution we elaborate on three BF designs –a fixed-n de-
sign, an open-ended Sequential Bayes Factor (SBF) design,
and an SBF design with maximal sample size– and demon-
strate how the properties of each design can be evaluated us-
ing Monte Carlo simulations. Based on the analyses of the
operational characteristics of a design, the specific settings
of the research design can be balanced in a way that com-
pelling evidence is a likely outcome of the to-be-conducted
study, misleading evidence is an unlikely outcome, and sam-
ple sizes are within practical limits.
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