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ABSTRACT

The goal is to improve recognition rate by optimisation
of Mel Frequency Cepstral Coefficients (MFCCs): modi-
fications concern the time-frequency representation used
to estimate these coefficients. There are many ways to
obtain a spectrum out of a signal which differ in the
method itself (Fourier, Wavelets,...), and in the normal-
isation. We show here that we can obtain noise resistant
cepstral coefficients, for speaker independent connected
word recognition.The recognition system is based on a
continuous whole word hidden Markov model. An error
reduction rate of approximately 50% is achieved. More-
over evaluation tests demonstrate that these results can
be obtained with smaller databases: halving the training
database have small effects on recognition rates (which
is not the case with traditional MFCCs).

1 INTRODUCTION

The subject is about optimizing cepstral estimation for
speaker independent continuous speech recognition us-
ing HMMs. These adaptations take place in the first
stage of cepstral calculation, the time frequency trans-
formation.

This paper points out that a significant gain can be
obtained by choosing the time-frequency transformation
and its normalisation. Gains are of two kinds:

o 50% Error reduction.

e 50% Training database size reduction.

We study the most often used coefficients: the MFCCs
(Mel Frequency Cepstral Coefficients). The first part of
this paper 1s a short reminder of the classical computa-
tion method for these coefficients. The second part is
the explanation of the different improvements proposed
here. The last part exposes the results and the database
used for the tests.

2 MFCC estimation

MFCCs are used to describe the short-term spectral en-
velope of a speech signal. Several studies have shown
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the importance of using a Mel frequency scale. There
are two main steps in calculating MFCCs:

e Calculating the log-magnitude spectrum out of a

filter-bank.

This step can be simulated by computing the
power spectrum, passing it through a filter-bank
and using a log function.

e (Calculating the cosine transform of the filter-bank
output.

The figure 1 presents the different stages of Cepstrum
computation. For more information see [RJ93].
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Figure 1: Signal to cepstrum

3 Possible Improvements

The power spectrum is often estimated by FFT, but
this may not be the best time-frequency transformation.
For instance a wavelet transform can be used to obtain
the spectrum, with a different time-frequency accuracy
compromise. We use here a wavelet transform defined

by M Unser [Uns94]:
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In this formula : a is the scale factor, linked to the
frequency by :
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A good choice of the scale factor a allows to simulate
a Mel scale filter bank.

We can compare this transfom with the short term
Fourier transform [Coh89] defined by:
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(where h(s) is a window, for instance a gaussian). The
latter can be seen as a Wavelet transform, with
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and g(a,f) = h(t).

The main difference is the size of the time window:
constant for Fourier and variable for wavelets. Likewise
the notion of scale in wavelets can be seen as a change
of variable in Fourier analysis.

On the two figures 2, 3 we can notice the different
time/frequency accuracy compromises between the two
methods.
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Figure 2: Fourier analysis of speech.
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Figure 3: Wavelet analysis of speech.

In the classical cepstrum calculation, a log transfor-
mation is used to modify the power spectrum. Generally
this transformation is done after the filter-bank. We will
see that performing this transformation before the filter
bank is more interesting in our case. (See figures 4 and
5 to compare the two different filtered spectra)

Moreover we can notice that in certain noisy con-
ditions this log-transformation has much too low en-
ergy dynamics (certain low energy time-frequency zones
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Figure 4: Filtered spectrum : log before filters.
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Figure 5: Filtered spectrum : log after filters.

can be interpreted as noise). Therefore other energy-
transformation functions (see figure 6) have been exper-
imented:
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Where M is the value of the maximum energy found in
the time-frequency plane, from the speech signal stud-

1ed.
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Figure 6: Different energy transformation functions.

4 Experiments and results

The test protocol was the same for all experiments, only
the speech parametrisation was different. An initialisa-
tion and a re-estimation have been made on the models
(HInit and HRest HTK(1.5) programs).

Two of these experiments have been done using
HTK’s HCode program for parametrisation, in order



to obtain references. The other experiments have been

done using a specific program (HCepstre).The Markov

model used are “left-right” models representing words.
The default HTK-like parameters used are:

o Mel scale

e Number of cepstrum coefficients : 12
o Number of filters : 24

e Cepstral liftering (sin) : 22

e Pre-emphasis coefficient : 0.98

e Frame-rate : 10 ms

e Window size :
wavelets).

25 ms for Fourier (variable for

Each MFCC vector is composed of 12 cepstral coeffi-
cients, with energy, slope, and acceleration. This leads
to a 39 elements vector per frame.

These parameters come from the HTK guideline
[Ent94]. Nothing proves that they are the best, but
they are quite widely used.

Three sub-databases have been used, two extracted
from “Polyphone” [CCLK96] and one from “Com-
puter95”. These two databases have been collected by
IDIAP and the Swiss Telecom PTT from French spoken
telephone speech. The words used are the french dig-
its (0-9) for all the three sub-databases, added with the
word “diese” (hash) and “etoile” (star) in the extracts
from “Polyphone” . The Polyphone database is low noise
(people are calling from home). Computer95 is recorded
from the annual computer forum at Lausanne, with a
high background speech noise. The three sub-databases
have different speakers (for more information see the ta-

ble 1).

speaker | words

learning (Polyphone) 498 2962
Evaluation (Polyphone) 429 2574
Test (Computer95) 376 3760

Table 1: Databases’ composition

Table 2 presents the main interesting experiments and
their results (in percentage). First we can notice the
important gain compared to the reference experiment
(1). The improvement seems larger on the Computer9h
database. In fact the gain is a reduction of 50% of the
number of errors on both Polyphone and Computer95.

We have noticed that putting the log function be-
fore the filter-banks leads to better results. Then we
have choosen, for all the other experiments, to place the
energy transformation before the filter-bank (except for
the experiment 1,3,12). More information on this choice

can be found in [Was95].

Parametrisation polyphone | Computer

1 | MFCC reference (HTK) 92.70 65.48
2 | MFCC log before filters 97.40 79.36
3 MFCC log after filters 91.18 62.13
4 MFCC sigmoid (60) 93.28 67.31
5 MFCC sigmoid (30) 96.70 75.11
6 MFCC sigmoid (15) 96.27 80.88
7 MFCC sigmoid (10) 95.18 81.33
8 MWCC, Q =9, log 96.89 80.40
9 MWCC, @ = 11, log 97.47 82.61
10 MWCC, Q = 9, log2 96.70 81.62
11 MFCC, log2 93.59 71.86
12 MFCC (HTK) with

small learning database 87.61 59.81
13 | MWCC, 2 = 11 with

small learning database 96.15 80.16

Table 2: Results
Remarks:

- MWCC are mfec calculated on a spectrum obtained by
wavelet-transform.

- log, log2, sigmoid (with a parameter) are energy trans-
formation functions.(this transformation is done before
the filter-bank, except for the experiment 1,3,12.)

- Ezperiments 12 and 13 have been made using only 45%
of the learning data base, in order to study the learning
speed (in terms of database size)

In experiments 4, 5, 6 , 7, where a sigmoid is used
instead of a log, we can notice that for the sigmoid pa-
rameter «, the best value seems to be the same on the
different databases. This may indicate the existence of
an optimal function for all conditions.

Experiments 12 and 13 indicate the possibility of
learning twice quicker, in terms of database size, with
very little loss. Even with a halved database, we reach
better results than with the classical MFCCs on the
whole database.

We may also point out that the energy normalisa-
tion function is closely linked with the time frequency
method used to obtain the spectrum. There is a dif-
ference of 3% on Polyphone and 10% on Computer95
between the couples (MWCC, log2) and (MFCC, log2).

A context re-estimation (using HTK’s HERest) with
390 new speakers (2340 words) taken from Polyphone
database leads to the results reported in table 3.

Parametrisation Polyphone | Computer95
1 | MFCC reference (HTK) 96.81 76.54
MWCC, Q = 11, log 97.98 83.48

Table 3: Results after context re-estimation

The new parametrisation is again better. The differ-
ence becomes very short on the Polyphone database but
is always important on the Computer95 database. The



important thing i1s that context re-estimation is nearly
useless with the new parametrisation.

5 Conclusion

The cepstrum computation in its widely used form, ap-
pears clearly not to be an optimal solution. By keeping
the same theoretical framework and calculating coeffi-
cients with more care, the cepstrum may give better
results both for recognition rate and learning speed (re-
lated to database size). This can be very interesting in
terms of cost reduction for training databases.
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