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Abstract—This paper presents a technique for selecting online
the coefficients to be updated in a digital predistorter (DPD)
based on direct learning. The proposed method, which is based
on a combination of matching pursuit (MP) and least squares
(LS) techniques (and is therefore named MP-LS method) allows
to improve the power amplifier (PA) linearization performance
of a fixed number of DPD coefficients, due to the fact that at
each DPD iteration the coefficients to be updated are properly
chosen. The proposed technique is compared to a conventional LS
estimation, and experimental results demonstrate that the MP-LS
method can provide a performance improvement in relation to
a DPD with fixed-preselected coefficients. The method could be
especially useful in DPD systems that have hardware restrictions
in the resources to be used by the update subsystem in the
feedback path. That is the case of DPDs based on FPGA devices
implementing a QR algorithm in the programmable logic (PL)
side.

Index Terms—Digital predistortion, matching pursuit, power
amplifier linearization.

I. INTRODUCTION

Digital predistortion (DPD) [1] becomes a common strategy
to deal with the trade-off between linearity and efficiency
of power amplifiers in wireless communication systems. In
new generation of wireless communication systems, such as
4G and 5G, where the bandwidth and the peak-to-average
power ratios (PAPR) of the signals is ever-growing, the number
of parameters of the DPD linearizers has to be increased
to eliminate the PAs’ unwanted nonlinear distortion effects.
This leads not only to the upgrowth of the computational
complexity, but also to the uncertainty of the LS estimation in
DPD linearization.

Recently, many efforts have been made to decrease the
number of basis functions of the DPD linearizers to avoid
the uncertainty and overfitting of the LS calculation [2], [3],
[4]. Among the proposed techniques, orthogonal matching
pursuit (OMP) [2] is a popularly used solution for DPD order
reduction. Thus, OMP is usually calculated offline to select
the most relevant basis functions for the DPD linearizer in the
forward path. However, due to the high computational cost of
OMP, it becomes inefficient to be implemented online in the
DPD feedback path to reduce the number of DPD parameters.

Therefore, this paper presents a proposed approach that
combines matching pursuit (MP) and LS to extract the DPD
parameters in the feedback path. Matching pursuit, that has
lower computational cost, is an ideal solution for selecting
the most important basis functions of DPD feedback path. It

enables to reduce the number of DPD parameters and avoid
the overfitting and uncertainty of LS estimation.

II. OVERVIEW ON MATCHING PURSUIT TECHNIQUES

A. Matching Pursuit and Orthogonal Matching Pursuit

The problem is stated as follows: Given a signal y and a
dictionary U = {u1,u2, ...,uM} where um, m = 1, 2, ...,M ,
are normalized functions (i.e. ||um||2 = 1), find a linear
expansion of the signal y in terms of functions um

y =

M∑
m=1

amum (1)

where am is the scalar weighting factor for the function um.
In order to solve the problem (1), the basic idea is to find an
approximate representation of y as a sum of functions uk as
following

y ≈ ŷ =

K∑
k=1

akuk (2)

It is expected that the residual of the signal y and its approx-
imation in (2) is minimum. That is

r = ||y− ŷ||2 = ||y−
K∑

k=1

akuk||2 = min (3)

The criterion (3) is a combinatorial-explosion problem since it
requires to examine all the possible K-function combinations
(i.e. subsets of K functions) from the dictionary U that
includes M functions.

Matching pursuit, firstly proposed by Mallat and Zhang in
[5], is an iterative procedure finding the sub-optimal solution
for (3). At each iteration, the selected element is determined
based on the inner product between the current approximation
error r and the functions (i.e. columns) in U. The matching
pursuit algorithm is summarized in Algorithm 1.

On the other hand, orthogonal matching pursuit (OMP)
differs from MP in the way how the residual error is evaluated
at each iteration, being calculated the residual error orthogonal
to the subspace created by the selected basis. OMP is compu-
tationally more expensive than MP but provides a better basis
sorting.



Algorithm 1 Matching Pursuit
1: procedure MP(U, y,K)
2: initialization:
3: r(0) = y; S(0) = {}; n = 0;

4: for n = 1 to K do
5: i(n) ← argmaxi|U

H
{i}r(n−1)|;

6: S(n)← S(n− 1)
⋃
{i(n)};

7: an ← UH
{i}r(n−1);

8: r(n) ← r(n−1) − anU{i};
9: end for

10: Return S
11: end procedure
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Fig. 1. NMSE of a PA modeling in relation to the number of selected OMP
basis (the training has been done offline by only using the signal in blue).

B. Orthogonal Matching Pursuit and Sorting Robustness

Fig. 1 shows the evolution of the NMSE of a PA identifi-
cation procedure when the OMP sorting is obtained from an
initial training signal and later is evaluated by using another
set of signals, different from the one used for training but
of the same characteristics. These experimental results have
been obtained by using the testbed described in Section IV.
According to Fig. 1, there is a not significant degradation in
the performance of the OMP selected basis. Therefore, we
can consider the offline training procedure good enough for
selecting the necessary OMP basis to be used for the DPD
system.

III. STRUCTURE OF THE PROPOSED DPD

First, in the DPD forward path, the number of coefficients is
reduced by applying offline OMP to choose the most relevant
basis functions of U. Second, in the feedback path, one of
the most popular solution is to extract the best coefficients,
according to a LS solution, by means of the QR algorithm.

A. Forward Path

The input-output relationship of the DPD block in the
forward path of the DPD system (see Fig. 1) is as follows

x = u− Uw (4)

in which, u = (u[0], · · · , u[n], · · · , u[N − 1])T , where
n = 0, · · · , N − 1, is the N × 1 input signal; x =
(x[0], · · · , x[n], · · · , x[N − 1])T is the N × 1 predistorted

signal; w =
(
w1[n], · · · , wi[n], · · · , wM [n]

)T
is the vector

of coefficients at time n with dimensions M × 1, and with
M being the number of original basis functions describing
a particular behavioral model. The N ×M data matrix U is
defined as

U = (ϕu[0], · · · ,ϕu[n], · · · ,ϕu[N − 1])T (5)

where ϕu
T [n] =

(
φu1 [n], · · · , φui [n], · · · , φuM [n]

)
is the vec-

tor containing the specific basis functions φui [n] (with i =
1, · · · ,M ) at time n. The general definition in (5) can be
particularized for any DPD behavioral model. In our paper,
the generalized memory polynomial (GMP) behavioral model
[6] is used to generate U for linearization purposes. The
OMP algorithm is applied to choose the most important basis
functions from the original set of basis functions generated by
the GMP.

B. Online DPD Estimation/Adaptation with MP and LS in
Feedback Path

In a DPD feedback path subsystem (see Fig. 2), the iterative
update of the DPD coefficients is expressed as follows

wi+1 = wi + dw (6)

with wi being the M × 1 vector of coefficients of the DPD
model at the ith iteration. The coefficients’ increment dw is
commonly estimated solving LS

dw = µ(UHU)−1UHe (7)

where µ is the learning-rate parameter. The linearization error
is defined as e =

y
G0
− u, where G0 is the desired PA linear

gain, the N × 1 vectors y and u are system input signal
(i.e. before DPD) and the PA output signal, respectively; and
the N × M data matrix U contains the M basis functions
describing the DPD behavioral model.

In this paper, an alternative to the conventional LS method
is proposed, consisting in a combination of online matching
pursuit and LS (MP-LS) in the feedback path. In a first step,
the matching pursuit algorithm (Algorithm 1) is implemented
online inside the DPD adaptation loop to choose only the most
relevant basis functions to be used for calculating the DPD
coefficients. Then, in the second step, the DPD coefficients of
feedback path are extracted solving LS.

Fig. 2 represents a conventional direct learning DPD, and
Fig. 3 visualizes the proposed DPD estimation/adaptation
employing MP-LS approach. Thanks to the MP algorithm,
the number of basis functions at each iteration of the DPD
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Fig. 2. Adaptive DPD system following a direct learning approach.
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Fig. 3. Flowchart of the DPD estimation/adaptation using the MP-LS
technique.

adaptation loop is reduced from M to K, with K � M .
Therefore, the advantage of the MP-LS in relation to the
conventional LS approach is this dimensionality reduction in
the basis used for coefficients update.

C. Computational Cost and Implementation Issues

The order of magnitude of the computational complexity
of the MP algorithm is O(NM) per iteration [7] whereas the
computational cost of QR decomposition (necessary for LS
solving) is O(NM2) per iteration [8]. Therefore, the proposed
approach helps to reduce the computational cost of the DPD
adaptation (usually based on a QR algorithm) but adding an
additional cost due to the MP procedure. By means of Matlab’s
tic-toc we have measured that for 20 coefficients the time for a
QR procedure (programmed in plain Matlab code, and applied
to the signals described in Section IV) is around 30 times the
time of running MP for selecting 20 basis from 100.

IV. EXPERIMENTAL RESULTS

A Matlab controlled hardware testbed, as shown in Fig. 4,
is used to validate the proposed DPD strategy MP-LS. The
testbed uses an 80 MHz bandwidth carrier-aggregated fast
convolution filter bank multi-carrier (FC-FBCM) signal with
subcarrier group deactivation, up-converted to the 875 MHz
RF frequency to feed a class-J PA.

TABLE I
SUMMARY OF THE PERFORMED TESTS.

Test Forward path Feedback path
(Alg., No. of coeff.) (Alg., No. of coeff.)

a) OMP, 20 coeff. LS, 20 coeff.

b) OMP, 100 coeff. LS, 100 coeff.

c) OMP, 100 coeff. MP-LS, 20 coeff.
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Fig. 4. High-level block diagram of the Matlab-controlled digital linearization
test bench.

The original basis functions with 322 coefficients were
generated by applying the GMP behavioral model. Then, in
the DPD forward path, by means of OMP, the number of
coefficients is cut down to 20 or 100, as is explained below.
This basis will be later used in the feedback path.

In order to examine the efficiency of the proposed method
MP-LS, we executed three tests as following (the tests are
summarized in Table I):

Test a) In the forward path, by means of OMP, the number
of coefficients is cut down to 20, then, the DPD estima-
tion/adaptation in the feedback path is performed by solving
LS by using the Matlab’s mldivide or backslash function
(which is equivalent to a QR decomposition) using 20 co-
efficients;

Test b) In the forward path, by means of OMP, the number
of coefficients is cut down to 100, and the DPD estima-
tion/adaptation is operated by LS (Matlab’s mldivide function)
using 100 coefficients;

Test c) In the forward path, the number of coefficients is
cut down to 100 using OMP, then, in the feedback path, the
basis functions is further reduced to 20 by applying MP, and
then the DPD estimation/adaptation is executed by means of
LS.

As can be seen in Fig. 5 and Fig. 6, after only 4 or 5 iter-
ations, all DPD adaptation methods have become converged.
However, the linearity performance (in terms of NMSE and
ACPR) of the test b) is the best among three, while the
test a) is the worst one. Our proposed method MP-LS that
enables to reduce the number of necessary coefficients for
DPD adaptation/estimation (to 20 coefficients, one fifth to the
number of coefficients of test b)) gives better performance than
the test a) and only 2dB less than the performance of test b).

Finally, Fig. 7 shows the unlinearized and linearized spectra
considering the proposed selection and update of the DPD
coefficients.
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Fig. 5. Evolution of the NMSE for: LS with 20 coefficients, LS with 100
coefficients, and MP-LS with 20 coefficients.
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Fig. 6. Evolution of the ACPR for: LS with 20 coefficients, LS with 100
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Fig. 7. Spectra of the PA output before and after MP-LS DPD linearization.

V. CONCLUSION

In this paper, a method that combines matching pursuit
(MP) and least squares (LS) to properly choose the amount
of coefficients to be estimated in a direct learning DPD has

been proposed and tested. The MP-LS method can be used
i) for improving the performance (ACPR, NMSE) of a DPD
system with fixed and bounded amount of coefficients (due
to hardware restrictions), or ii) for reducing the amount of
DPD coefficients to be updated but minimizing the impact in
performance degradation.
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