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Abstract

Learning based approaches for depth perception are lim-
ited by the availability of clean training data. This has
led to the utilization of view synthesis as an indirect ob-
jective for learning depth estimation using efficient data ac-
quisition procedures. Nonetheless, most research focuses
on pinhole based monocular vision, with scarce works pre-
senting results for omnidirectional input. In this work,
we explore spherical view synthesis for learning monoc-
ular 360o depth in a self-supervised manner and demon-
strate its feasibility. Under a purely geometrically de-
rived formulation we present results for horizontal and ver-
tical baselines, as well as for the trinocular case. Fur-
ther, we show how to better exploit the expressiveness of
traditional CNNs when applied to the equirectangular do-
main in an efficient manner. Finally, given the availabil-
ity of ground truth depth data, our work is uniquely po-
sitioned to compare view synthesis against direct supervi-
sion in a consistent and fair manner. The results indicate
that alternative research directions might be better suited
to enable higher quality depth perception. Our data, mod-
els and code are publicly available at https://vcl3d.
github.io/SphericalViewSynthesis/.

1. Introduction

Data-driven approaches are producing impressive results
in a variety of vision related tasks. Convolutional neural
networks (CNNs) are trained to match – and even surpass
– human perception, managing to infer three-dimensional
(3D) information solely from monocular images. How-
ever, their performance is closely related to the availabil-
ity of high quality training samples, which for certain tasks
is tedious, expensive or even outright impossible. While
landmark annotations can be crowd-sourced, densely anno-
tating images with ground truth depth values fits the latter
category. As a result, fully supervised depth learning has

Figure 1. Spherical view synthesis for self-supervised depth es-
timation using 360o stereo images. Considering spherical view-
points within a 3D scene, we render color images from consistent
baselines. Starting from a central viewpoint (green), we explore
both vertical (cyan) and horizontal (pink) setups, as well as the
trinocular case. Indicative equirectangular projection images as
observed by the 3 spherical viewpoints are presented on the left,
while the 3D scene and viewpoint positions within it, on the right.

only been demonstrated in small scale datasets [31], usually
without pixel perfect depth measurements [33], or other-
wise in generated synthetic datasets [45] that, nonetheless,
need to overcome the synthetic-to-real domain gap.

Naturally, a great body of work has identified this chal-
lenge and focused on overcoming it with self-supervision,
using an indirect objective to infer depth, namely, view syn-
thesis. Accurately explaining imaged content from a differ-
ent viewpoint relies on 3D information, and by extension,
accurate depth. Even though view synthesis supervision re-
lies on a set of assumptions (diffuse materials, absence of
occlusions, static scenes) that do not necessarily hold for
real world acquired data, convincing depth estimation re-
sults have been presented without using any ground truth.
Earlier efforts relied on synchronized stereo cameras cap-
turing static scenes [9, 11], introducing view synthesis via
inverse image warping and paving the way follow-up works.

Circumventing the need for stereo data acquisition, more
recent works [47] only rely on video input for learning to in-

https://vcl3d.github.io/SphericalViewSynthesis/
https://vcl3d.github.io/SphericalViewSynthesis/


fer depth. To achieve this they learn to estimate the camera’s
motion jointly with estimating the observed scene’s depth,
and are supervised by synthesizing future and/or past views.
While an abundance of data are readily available for these
structure-from-motion learning methods, they still need to
overcome the violation of the static scene assumption.

The absolute majority of this line of research has focused
on traditional pinhole cameras, disregarding self-supervised
depth estimation for omnidirectional input, apart from [41],
which, however, uses a cube map (i.e. pinhole) representa-
tion. Spherical view synthesis is relatively unexplored as
most works focused on catadioptric or cylindrical cameras.
It is also challenging due to the inherent distortions when
applied to two-dimensional images, which in turn mani-
fest into severe self-occlusions. Further, due to the con-
tent’s spherical nature, the irregular disparity patterns that
it exhibits hinder efficient learning, especially for horizon-
tal baselines, while the singularities at the epipoles prevent
coherent gradient flows when using inverse image warping.

In this work, we explore spherical view synthesis and
demonstrate its applicability for self-supervised spherical
depth estimation. Summarizing, our contributions are:

• The full spherical disparity model is presented using a
purely geometric derivation.

• A robust supervision scheme is developed for spheri-
cal view synthesis using depth-image-based rendering
(DIBR) and spherical attention.

• Unlike inefficient and resource consuming spherical
learning approaches, our network design incorporates
a straightforward way to make our model aware of its
spherical nature.

• Besides offering a large 360o stereo dataset, our work
is uniquely posed to compare the effectiveness of view
synthesis and direct supervision. We perform a fair and
consistent evaluation and present its results.

2. Related Work
Learning with spherical content: Applying CNNs to

spherical content is accomplished by warping it to a regular
grid. MPEG-OMAF [34] defines two projection formats
for 360o images, the cubemap and equirectangular (ERP)
projections. While cubemaps can be straightforwardly fed
into a CNN, and then re-merged back into 360o as in [24],
they still suffer from cubemap distortion and discontinuity
artifacts. For the latter, cube padding [3] can explicitly aid
the network into connecting the cube faces, enabling global
reasoning. Similarly, circular padding [42] has been used
when applying convolutions directly to the ERP image.

A novel direction is to bypass learning on spherical data
and instead, adapt models trained on perspective images to

the 360o domain. Initially, [36] regressed per row rectan-
gular filters from the pre-trained ones, at the expense of in-
creasing the model’s size and complexity (multiple filters
for a single activation map) and suffering from regression
approximation. It was recently extended [37] to transfer 2D
CNN models by producing functions that map weights to
each row, while preserving inter-channel information ex-
change, and overcoming some of the previous disadvan-
tages, albeit still taking a model size hit (even though sig-
nificantly reduced). Another approach is adapting the input
data to the 360o domain [27], yet it was not demonstrated
for full spherical images, but rather only for panoramic
ones.

Another direction is training rotation equivariant CNNs
either using graph-based learning [16] or employing spec-
tral learning approaches, with two notable works using
spherical harmonics [7] and spherical cross correlation with
Fast Fourier Transforms (FFTs) [4] to achieve expressive
training on the sphere. Still, their high memory footprint
hinders applicability due to limited input resolutions.

As a result, more efficient approaches resorted to kernel
distortion [38], tangent plane kernels [5], kernel resampling
[46] or ERP specific dilations [8]. However, as presented in
[37], all these approaches are valid only for the first layers,
as the CNN’s non-linearity distorts the pure spherical repre-
sentation as the network deepens, breaking the assumptions
they are designed for (i.e. the features’ spherical smooth-
ness). In addition, inefficient implementations [46] intro-
duce problems during training (very small batch size and
low run-time performance). Instead, we resort to a more
explicit and efficient solution to make the network aware of
the data spherical nature, by exploiting recent research re-
lated to CNNs’ capacity to self-localize their features, and
also utilize spherical attention to allow for distortion aware
supervision in the ERP domain.

Monocular self-supervised (spherical) depth: The
seminal works of [9] and [11] first demonstrated that view
synthesis can serve as the supervisory signal for monocular
depth estimation. This has attracted a lot of attention from
the research community given the difficulty in obtaining
high quality real world depth measurements. Both [9] and
[11] used perspective horizontal stereo data and employed
either approximately [9] or locally [11] differentiable image
warping [14] to synthesize the reconstructed views.

A novel solution was introduced by [47] that extended
view synthesis supervision to unstructured video datasets
by simultaneously predicting inter-frame pose. However,
learning to estimate depth purely from video breaks the
static scene assumption and necessitates the use of an atten-
tion mechanism for foreground motion between consecutive
frames. More recent iterations of this direction added scale
normalization and removal of the separate pose estimation
branch [40], 3D geometric constraints between the pre-
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dicted depths [23], epipolar constraints [29], additional fea-
ture reconstruction supervision [44], stereo matching con-
straints [43] or explicitly used two consecutive frames as
input [28].

Prevalent for all the above methods is the reconstruc-
tion loss of synthesized views via inverse warping through
a stereo disparity model or explicit 3D transformations and
projections. Disregarding the challenging Lambertian sur-
faces assumption, inverse warping does not gracefully han-
dle occlusions, which are only implicitly addressed (e.g. ex-
plainability/visibility masks, left-right consistencies). This
has a detrimental effect for spherical images as occlusions
are magnified due to distortion. Instead, we rely on a soft
rendering approach to synthesize the supervisory views.

While a large body of work exists for traditional per-
spective images, scarce research has addressed depth esti-
mation from spherical panoramas. The most apparent is-
sue is the unavailability of data, and thus, two concurrent
works addressed 360o depth estimation by generating data
via rendering existing 3D datasets. Two baseline models
were presented in [49] after creating a large dataset of color
and depth pairs using a mix of synthetic and real scenes.
Further, [41] utilized the more recent advances in depth esti-
mation from videos and rendered videos from a purely syn-
thetic 3D dataset. Still, [49] simply applied a CNN on ERP
images while [41] explicitly used a cubemap representation
and relied on previous works on perspective depth video
learning, but with cubemap constraints.

Indirect supervision through spherical view synthesis has
not been explored yet for learning monocular 360o depth
estimation. Previous works mainly focused on estimating
depth from fisheye [19] or cylindrical [48] stereo setups
and utilized the corresponding disparity models. For the
full spherical setting a complete disparity model has not
been considered as prior work only focused in extracting
depth measurements and not synthesizing views. Conse-
quently, 360o vertical stereo setups [17] were preferred due
to their simpler disparity model that requires no rectifica-
tion. Works using 360o horizontal stereo [20, 16] relied
only on horizontal disparity modelling which is sufficient
to triangulate depth values after rectification. On the other
hand, horizontal spherical view synthesis introduces distor-
tions which manifest as vertical disparity. In this work we
present and explore the complete spherical disparity model
for both stereo placements under a view synthesis, self-
supervised 360o depth estimation learning context.

3. Self-supervised Spherical Depth

3.1. Spherical Disparity Model

We define a spherical image through its ERP on a 2D grid
as shown in Fig. 2. Each image’s local 3D coordinate sys-
tem in spherical ρ = (r, φ, θ) and Cartesian v = (x, y, z)

Figure 2. Spherical % = (φ, θ) longitudinal and latitudinal coor-
dinates aligned with the image grid’s equirectangular coordinates
p = (u, v) respectively (left). The spherical attention masksAUD
for vertical and ALR for horizontal stereo placements as defined
in Eq. 5 respectively (middle). Both attenuate towards the singu-
larities, while theALR also includes distortion related attenuation.
Image grid coordinate feature maps for the horizontal (u) and ver-
tical (v) image grid directions (right).

coordinate systems are given in Eq. 1. An ERP image’s
width w and height h span w × h := 2π × π radians at the
[0, 2π] and [0, π] ranges respectively, covering a complete
spherical view with ϕ = 2π/w the horizontal and ϑ = π/h
the vertical angular resolutions respectively. Columns cor-
respond to constant longitude/azimuth (φ) angles, while
rows to constant latitude/elevation (θ) angles. Each pixel
p = (u, v) can be mapped to angular spherical coordinates
% = (φ, θ) as (uϕ, vϑ) and vise versa. This linear mapping
between image domain pixels p and spherical domain an-
gular coordinates % allows for straightforward transitions
between image and spherical based operations. We will
therefore omit any explicit conversions between them in the
following text. Contrary to perspective images, 360o depth
is defined as the 3D Euclidean distance to a point, which
corresponds to the radius r in spherical coordinates.rφ

θ

=

(x2 + y2 + z2)1/2

arctan(x/z)
arccos(y/r)

,
xy
z

=

r sin(φ) sin(θ)
r cos(θ)

r cos(φ) sin(θ)

 (1)

Spherical stereo considers physical displaced spherical
viewpoints that image the same scene. They are positioned
with a known baseline in either horizontal or vertical place-
ments. Fig. 3 shows both of these placements as well as
the projection of a 3D point on each displaced viewpoint.
Disparities γ = (γφ, γθ) correspond to angular differences
in the angular spherical coordinates (φ, θ) measured in radi-
ans. Spherical disparities γ can be analytically derived from
a source viewpoint vsrc with respect to an unrotated target
viewpoint vtgt according to their baseline b = vsrc − vtgt
by calculating the partial derivatives of the spherical coor-
dinates with respect to the Cartesian ones:∂r∂φ
∂θ

=
sin(φ) sin(θ) cos(θ) cos(φ) sin(θ)

cos(φ)
r sin(θ) 0 − sin(φ)

r sin(θ)
sin(φ) cos(θ)

r
− sin(θ)

r
cos(φ) cos(θ)

r


∂x∂y
∂z

(2)

These link Cartesian displacements, i.e. the baseline b =
(dx,dy,dz), to angular displacements on the sphere,



Figure 3. The spherical disparity γ model for a horizontal (pink region) and vertical (cyan region) baselines. Besides longitudinal disparity,
the horizontal placement introduces latitudinal disparity as well, with both being a function of the estimated depth according to Eq. 2.
For the vertical placement scenario, a simpler model that only includes latitudinal disparity simplifies spherical view synthesis and depth
estimation. The top left inset illustrates the irregular sign patterns of the disparities in the horizontal stereo placement setting (negative –
green and positive – pink). The left image corresponds to longitudinal (φ), and the right to latitudinal (θ) disparity.

i.e. disparity γ = (dφ,dθ), through the radius, i.e. depth,
r. For horizontal stereo along the x axis with a baseline
bx=(dx, 0, 0) it is γhoriz = dx(∂φ/∂x, ∂θ/∂x) while for
vertical stereo with a baseline by = (0,dy, 0) along the y
axis it is γvert = dy(∂φ/∂y, ∂θ/∂y). Evidently, the dis-
parity model for vertical placements is simpler, as there is
no longitudinal disparity and thus, the pixels reproject to
the same vertical scan path. However, for horizontal place-
ments the reprojected pixels lie on epipolar curves on the
ERP domain which are sinusoidal, resulting in a more com-
plex disparity model with displacements along both angular
directions.

3.2. Depth-image-based rendering

As presented in Sec. 3.1, the angular disparity γ for an
ERP pixel % = (φ, θ) is a function of its depth r and the
baseline b between the viewpoints. Consequently, we can
transform pixel coordinates from a source ERP image Is
to a target ERP image It given the source’s depth map Ds

using an angular pixel displacement function Γ:

%t = Γs→t(Ds,%s,bs→t) = %s − γ(Ds,%s,bs→t). (3)

It should be noted that for horizontal stereo, the longitudinal
disparity wraps around the sphere. This corresponds to a
modulo operation, which is omitted to simplify notation.

Under a traditional inverse warping approach, the tar-
get image would be bilinearly sampled to synthesize the
source view and supervise learning through the recon-
structed source view. Yet, this approach cannot easily han-
dle occluded regions or non-linear mappings which are
prevalent in the sphere. Indeed, the ERP distortions are
responsible for many-to-one as well as one-to-many pixel
mappings, a fact that is more pronounced in wider base-
lines that are a necessity for higher accuracy in farther
depths. Furthermore, wider baselines produce noticeable
occlusions, especially for spherically imaged content.

In order to enable learning through view synthesis for
spherical stereo we use a soft locally differentiable render-

ing approach (DIBR) that involves splatting the contribu-
tions of each source image pixel to an empty target canvas Ît
(Fig. 4). The splatted coordinates are derived by Γ and are a
function of the source depth mapDs. Local differentiability
is ensured by neighborhood based bilinear splatting, while
soft rendering relies on weighted contribution accumulation
in the target image [39].

In more detail, each source pixel %s contributes to four
target pixels %Nt : {%tlt ,%trt ,%blt ,%brt } comprising a neigh-
borhood N created through floor and ceiling operations
on the target pixel’s %t coordinates. A bilinear weight
β(%Nt ,%t) is associated with each of them. The contribu-
tions of all source pixels are accumulated on the target im-
age via scattering operations and additionally weighted by
a depth attenuation factor α(%s, D) = e−D(%s)/dmax , with
dmax a pre-selected maximum depth value. Each source
pixel’s contribution to the target image canvas Ît is weighted
by w(%s) = α(%s, D)β(%Nt ,%t). Additionally, the weights
themselves are also splatted in a target weight canvas Ŵt.

In this way, soft z-buffering is enforced and the target
view Ĩt is synthesized, after a normalization operation that
divides the splatted color canvas with the splatted weight
canvas in an element-wise fashion: Ĩt = Ît � (Ŵt + ε), ε
being a small numerical stability constant. This allows for
backpropagation to the occluded areas whose view synthe-
sis contributions and gradients are weighted according to a
viewpoint proximity criterion. Besides gracefully handling
occlusions, this splatting based view synthesis can accom-
modate many-to-one pixel mappings. While one-to-many
pixel mappings are not supported, they do not need to be
explicitly handled as the canvas will be empty in those re-
gions where no source pixel contribution landed. This way,
a binary mask Mt = Ŵt < ε can be calculated that masks
empty canvas areas. On the contrary, when using inverse
warping, either ground truth depth for z-testing, or an atten-
tion mechanism is required to prevent false supervision and
destabilizing gradient backpropagation.



Figure 4. Depth-image-based rendering view synthesis. For each
pixel, its reprojection to another viewpoint (in horizontal or ver-
tical stereo placement) is calculated via the estimated depth map.
For each pixel a weighted splat is added to an empty canvas around
its immediate reprojection neighborhood. Subsequent to their ac-
cumulation, a normalization step produces the final rendering. In
this way, occlusions and irregular pixels mappings are handled
gracefully, allowing for the use of view synthesis as a supervision
objective, even for severe distortion areas.

3.3. CoordNet

Architecture: Our network, CoordNet, illustrated in
Fig. 5, is designed to be efficient in learning with spheri-
cal data, minimizing memory consumption and maximiz-
ing inference speed compared to other approaches for 360o

learning. Our lightweight backbone architecture is inspired
by [15] but we replace traditional residual blocks with pre-
activated ones [12] and utilize ELU [32] activations instead
of RELU [25] and batch normalization [13].

We introduce 360o awareness implicitly within our
model by utilizing the recently introduced coordinate con-
volutions [21]. Each input feature map is concatenated with
two additional feature maps that represent its grid coordi-
nates in the two dimensional grid. These extra features al-
low the network to learn the spatial context, which in our
case is the ERP domain. CoordNet has minimal mem-
ory overhead compared to spectral or model transference
approaches, which only scales with feature resolution and
the number of convolutional layers. Additionally, in terms
of run-time performance, the processing overhead is lower
than kernel based approaches that involve trigonometry cal-
culations for warping features or weights.

Unlike other stereo self-supervised learning approaches,
we resort to predicting depth directly instead of disparities,
and use Eq. 2 to calculate them for view synthesis. This
allows for a more general spherical view synthesis model
that can facilitate both vertical and horizontal stereo place-
ments. For the vertical case, a direct disparity estimation is
equivalent to depth estimation, but for the horizontal one,
it touches on an important weakness of CNNs: their in-
ability to simultaneously regress spatially varying positive
and negative values. Longitudinal disparities for horizon-

tal stereo are of opposing signs at the front and back look-
ing directions. Moreover, latitudinal disparities, in the same
placement, follow spatially varying sign patterns, depicted
in Fig. 3, further magnifying the problem. While a solution
would be to predict absolute values and explicitly enforce
correct signs this was not the case in our experiments as
training did not manage to converge. Since the longitudinal
and latitudinal disparities are correlated, directly predicting
the first would make the estimation of the second possible,
but only after transitioning to depth, yet this only strength-
ens the choice of regressing depth directly.

Supervision: CoordNet is self-supervised by a depth
driven photometric image reconstruction loss as well as a
depth smoothness prior:

Ltotal = λreconLrecon + λsmoothLsmooth, (4)

where λrecon and λsmooth are weights that sum up to one.
Our reconstruction loss uses a standard photometric loss as
presented in [11], which is also used in most self-supervised
monocular depth estimation methods:

Lphoto(p)=ηLD(IMt (p), ĨMt (p))+(1−η)
∣∣IMt (p)−ĨMt (p)

∣∣.
It combines the L1 penalty function with structural dissim-
ilarity LD, under a relative weighting factor η. The super-
script M denotes multiplication with the binary mask Mt.

While previous ERP domain learning approaches [49]
used uniform supervision on the ERP image, such an ap-
proach will greatly bias higher quality predictions towards
the more distorted areas. Instead, we explicitly use a spheri-
cally weighted attention mechanism to uniformly aggregate
errors and gradients on the sphere, instead of on the dis-
torted ERP image. We use an attention weight matrix A
defined on the ERP domain in two different variants:

A(%) =

{
| sin(θ)|, for vertical stereo,
| sin(φ)|| sin(θ)|, for horizontal stereo.

(5)

These weight maps, as illustrated in Fig. 2, eliminate the
effect of the epipole singularities as the contributions of the
areas around the singularities tend to zero. For the verti-
cal case, they coincide with the distortion attenuation fac-
tor sin(θ) but for the horizontal case the corresponding sin-
gularity attenuation term sin(φ) is added. Hence, the total
reconstruction loss is the spherically weighted mean photo-
metric error of all valid pixels:

Lrecon =
1∑

pMt(p)

∑
p

A(p)Mt(p)Lphoto(p). (6)

We also impose a smoothly varying prior on the predicted
signal. However, defining smoothness on the sphere is chal-
lenging and naive approaches like applying finite element
gradient operators [49] in the ERP domain will not succeed



Figure 5. CoordNet and its view synthesis based supervision scheme. An ERP depth map D̃ is predicted using a single monocular ERP
color image Ĩ. Through the estimated depth, we synthesize stereo viewpoints in vertical (up – Ũ) or horizontal (right – R̃) baselines.
These are supervised using a photometric consistency error using the original viewpoints U and R for the up and right reconstructions,
as well as placement specific attention maps, AUD and ALR respectively. The trinocular self-supervised scenario is also considered using
a blending factor λratio to balance loss between the two different viewpoint reconstructions. CoordNet utilizes CoordConvs for all its
convolutional layers as shown on the right. Each incoming feature map is concatenated with the horizontal u and vertical v coordinate
maps of its resolution before fed into the convolution operation.

in enforcing smoothness correctly, as spherical depth inher-
ently varies spatially even for flat surfaces. As an alterna-
tive, we enforce a smoothness constraint on the deprojected
Cartesian coordinates v= (x, y, z) for each predicted pixel
(r=D̃(p), φ, θ), by minimizing the following weighted to-
tal variation term, using central differences:

Lsmooth=Ā(p)e||∇Is(p)||2
√

(∇uv(p))2+(∇vv(p))2. (7)

The weighting term Ā(p) = 1 − A(p) more heavily en-
forces smoothness on the distorted regions. A color guid-
ance weighted factor is also used in order to establish cor-
related depth and color gradients. Thus, smoothness on the
ERP domain is ensured via the Eq. 1 deprojection functions.

4. Results
Dataset: Given the unavailability of stereo 360o

datasets, we take a similar approach to [49] and render
panoramas from displaced viewpoints in both vertical and
horizontal placements as shown in Fig. 3. We use Blender1

and set the baseline for both placements to 0.26m, which is
a reasonable distance to get high quality results for indoor
scenes, which is the context of the rendered 3D datasets
used in [49]. However, unlike [49], we use the official
train, validation and test splits of Matterport3D [2] and
Stanford2D3D [1] (fold#1).In this way, our test set is suf-
ficiently different from our train set, and at least quadruple
the size of the test set used in [49]. Further, SunCG [35]
is only used during training and validation, but not during
testing as our focus is to assess applicability in real world
settings.

1Blender uses different longitudinal and latitudinal ranges ([−3π
2

, π
2
]

and [−π
2

, π
2
] respectively), therefore Eq. 1, Eq. 2 and Eq. 5 get modified

accordingly using trigonometric reflections.

Implementation Details: We implement our network in
PyTorch [26], initialize its weights using [10], and train all
our models for 30 epochs using a fixed learning rate of 10−4

and a batch size of 16. Across all experiments we use a
fixed seed for all the involved random generators to guar-
antee consistency. We use the AdaBound [22] optimizer
with a convergence speed of 2× 10−3 and a final target
SGD learning rate of 10−3. The weights of Eq. 4 are set
to λrecon=0.95 and λsmooth=0.05. Inline with prior work,
the photometric error is balanced by η=0.85 and a box filter
with a kernel size of 5 is used for the SSIM calculations.

Metrics: We use traditional depth evaluation metrics [6],
but with a notable difference. While previous works on
360o depth estimation [49, 41] used these metrics in the
ERP domain, they did not take into account its distortion.
As a result, distorted areas were given higher precedence in
the error calculation. We adapt the absolute relative error,
squared relative error, RMSE and RMSLE to use weighted
calculations for each pixel using the first case of Eq. 5 in
order to alleviate the effect of ERP distortion in our eval-
uation. However, the percentile threshold metrics require
a different approach. Instead of densely sampling the ERP,
we sample the sphere using an S2 generalized spiral set [30]
with N = 0.25×w×h points. Consequently, the percentile
thresholds are only calculated for these spiral points.

Stereo placement analysis: First we seek to assess
which stereo placement is more efficient for view synthe-
sis based depth estimation learning. We train two variants
of the network described in Sec. 3.3. For the vertical vari-
ant (referred to as UD, i.e. up-down) we supervise using the
up view (displaced on the y axis) while the network is fed
the down/central image. Similarly, for the horizontal vari-
ant (LR, i.e. left-right), we supervise using the right view.
Table 1 shows that both converge at about the same epoch,



Figure 6. Qualitative results of each category of trained models (TC6 was chosen as it is the best performing trinocular model). From left
to right: the input color image, the ground truth depth from [49], the fully supervised prediction (SV), the self-supervised predictions of
horizontal (LR), vertical (UD) and trinocular (TC6) placements. Additional examples can be found in our supplementary material.

and that UD achieves higher performance. Intuitively this is
attributed to the simpler disparity model. Nevertheless, an-
other important factor is that an UD model does not suffer
from the prevalent horizontal distortions. Due to this rea-
son, an UD variant can be trained with inverse warping as
the view synthesis method, while for the LR variant, con-
vergence with inverse warping was not possible.

Complementarity analysis: Next, we seek to under-
stand whether these two placements are complementary.
We train another model using trinocular (referred to as TC)
supervision that infers a single depth map from the cen-
tral view and is jointly supervised by the reconstruction of
both the up and right images, as seen in Fig. 5. We ex-
plore the effect of blending both view synthesis supervi-
sions by adding a ratio parameter to combine their losses
Lrecon=λratioLUDrecon + (1−λratio)LLRrecon. We train 4 vari-
ants of the TC network with a 0.2 step for λratio and name
them by suffixing TC with the ratio’s decimal. The results
are also presented in Table 1 with the color coded interpola-
tion for each metric illustrating the transition from the best
to worst, as we move from LR (λratio=0) to UD (λratio=1).
Interestingly, TC4 indicates that there exist blending factors
that will not allow the model to learn a good enough repre-
sentation as single viewpoint supervisions do. We further
observe that performance increases as the ratio increases
towards the simpler disparity model. Nonetheless, while
UD achieves best performance with respect to outlier pre-
dictions (as indicated by the RMS metrics), we find that the
slower convergence of TC6 results in a more robust model,
offering a compromise for overall performance, attributed
to the harder to optimize for, right view reconstruction.

Self-supervision status: Given that we ren-
dered/synthesized our data, we are in the unique position
of being able to directly and fairly compare view synthesis
self-supervision and direct supervision. Most others
self-supervised works resort to view synthesis supervision
because no high quality depth ground truth data are avail-

Table 1. Best performing snapshots (reached at the corresponding
epoch on the right) of our trained models. Relative performance
for the self-supervised methods is color coded to showcase the
gradual transition from LR to UD via the different blending factors
of TC. Lower is better for light blue metrics, while for the darker
accuracies δi < 1.25i higher is better.

Abs
Rel

Sq
Rel

RMSE RMSLE δ1 δ2 δ3 Epoch

SV 0.138 0.091 0.473 0.184 82.4% 95.9% 98.5% 24

LR 0.143 0.129 0.639 0.230 58.1% 88.2% 96.5% 18
TC2 0.132 0.117 0.606 0.216 61.3% 89.3% 96.1% 20
TC4 0.199 0.154 0.651 0.250 65.8% 91.2% 96.7% 17
TC6 0.129 0.112 0.580 0.209 65.1% 91.3% 97.0% 28
TC8 0.133 0.117 0.578 0.209 65.4% 91.0% 96.9% 16
UD 0.134 0.119 0.571 0.208 66.4% 90.8% 96.8% 16

able. While datasets with laser scanner depth data exist,
they are usually sparse, and/or of limited test samples. On
the other hand, synthetic datasets that offer high quality
depth renders, do not need to render stereo viewpoints, and
consequently, this comparison has not been done before.
Further, even if it is possible to perform this comparison
with synthetic data, applicability to real world scenes is the
ultimate goal, which our dataset supports in assessing.

We train our network modifying only the loss function
and directly supervising with ground truth depth maps. We
use the BerHu loss [18] and refer to the fully supervised
train as SV. Table 1 clearly shows the superiority of a fully
supervised approach compared to stereo self-supervision,
providing food for thought and poses interesting dilemmas.

Convergence analysis: We additionally offer a detailed
analysis for the convergence behaviour of all variants as Ta-
ble 1 only reported the best performing snapshots. Fig. 7
plots the results of four metrics on the whole test set across
epochs. It further signifies the importance of direct super-
vision as it is observed that it consistency improves its pre-
dictions. At the same time, UD plateaus while LR is unable
to converge further and instead loses performances across



epochs, both after around the middle of the training dura-
tion, where they achieve their best performing state. The
good TC variants showcase more stable training and con-
sistently higher quality performance, contrary to UD which
fluctuates more, albeit achieving a high quality minima.

Figure 7. Test set metrics for each epoch for all the conducted
experiments. Left to right, top to bottom: Absolute relative error,
Squared relative error, δ1 < 1.25 accuracy, RMSE.

State-of-the-art comparison: We compare our stereo-
based learning approach to a recent video-based one [41].
Since [41] similarly renders a sequence dataset using
SunCG scenes (PanoSunCG), we train a SunCG only vari-
ant of our TC6 model (SCG-TC6). The first two rows of
Table 2 compare both methods on the PanoSunCG test set.
Since [41] does not provide a publicly available model, and
only offers a quantized dataset of significantly smaller vari-
ance than ours (our test set alone uses twice as many scenes
as the PanoSunCG train and test set combined), the final
row of Table 2 presents our model’s quantitative perfor-
mance on our SunCG test set. While the performance of
[41] is slightly better on PanoSunCG, our model achieves
much higher quality results in our more diverse test set.

Table 2. SunCG & PanoSunCG Comparison Results

Abs
Rel

Sq
Rel

RMSE RMSLE δ1 δ2 δ3

[41] 0.337 0.196 0.337 0.611 64.7% 82.9% 89.9%
SCG-TC6 0.371 0.440 0.843 0.421 56.2% 78.4% 87.8%

SCG-TC6 0.185 0.123 0.491 0.215 72.2% 89.5% 92.0%

CoordConv: Finally, we perform an ablation analysis
starting with the effect of CoordConv. We train UD and LR
using standard convolutions and report the results in Table
3. We observe that CoordConvs clearly boost the perfor-
mance in an UD placement but it is harder to determine a
similar finding for LR. The discrepancy in RMSE and RM-
SLE indicate that there is a gain for closer distances (which
RMSLE favors) compared to far ones (that RMSE favors),
similarly indicated by the discrepancy in the relative metrics
(squared against absolute).

Spherical Attention: We conduct two experiments to
assess the gains associated to the spherical attention maps
by re-training UD and LR without their respective attention

Table 3. CoordConv Ablation Results
Abs
Rel

Sq
Rel

RMSE RMSLE δ1 δ2 δ3

LR 0.143 0.129 0.639 0.230 58.1% 88.2% 96.5%
w/o CC 0.141 0.138 0.663 0.228 60.5% 88.4% 96.2%

UD 0.134 0.119 0.571 0.208 66.4% 90.8% 96.8%
w/o CC 0.138 0.136 0.650 0.224 61.2% 88.9% 96.3%

masks AUD and ALR. The results are presented in Table 4
where an interesting outcome is apparent. Their effect on
LR is significant while for UD it remains questionable as
it very slightly hampers performance. ERP distortions are
more prevalent in LR and stabilizing the loss during training
by reducing their effect, is very important. On the contrary,
vertical distortions are gracefully handled by DIBR, there-
fore rendering the attention insignificant.

Table 4. Spherical Attention Ablation Results

Abs
Rel

Sq
Rel

RMSE RMSLE δ1 δ2 δ3

LR 0.143 0.129 0.639 0.230 58.1% 88.2% 96.5%
w/o ALR 0.269 0.295 0.824 0.324 56.7% 84.4% 93.2%

UD 0.134 0.119 0.571 0.208 66.4% 90.8% 96.8%
w/o AUD 0.132 0.116 0.566 0.205 66.2% 90.1% 96.0%

5. Discussion
Spherical view synthesis is a relatively unexplored su-

pervision scheme, mainly due to the lack of data and the
challenges that it entails. We have presented a learning
scheme under which self-supervised 360o depth estimation
is possible addressing the challenges mainly related to the
distortions that ERP introduces. Our work is the first to
train a horizontal baseline 360o self-supervised model and
to achieve this, besides introducing the full 360o disparity
model, a more robust 360o view synthesis was required.
The DIBR splatting scheme, in combination with spheri-
cal attention, manage to overcome the inconsistent supervi-
sion that traditional inverse warping approaches suffer from.
Nonetheless, vertical stereo setups are offering higher qual-
ity models, further improved by CoordConvs, but as current
research focuses on utilizing videos for learning depth esti-
mation, the challenges that horizontal disparity comes with,
as well as the full spherical disparity model, are very rele-
vant. Finally, an unsurprising open question is raised with
respect to the performance deviation of self-supervised and
fully supervised models. Is self-supervision the direction to
pursue, or are other approaches like higher quality data ac-
quisition, or synthetic data and domain adaptation, perhaps,
better alternatives?
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