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Abstract—Understanding mobile traffic dynamics is a key
issue to properly manage the radio resources in next gener-
ation mobile networks and meet the stringent requirements
of emerging heterogeneous services, such as enhanced mobile
broadband, autonomous driving, and extended reality (just to
name a few). However, radio resource utilization patterns of real
mobile applications are mostly unknown. This paper aims at
filling this gap by tailoring an unsupervised learning methodology
(i.e. K-means), able to identify similar radio resource utilization
patterns of mobile traffic from an operating mobile network.
Our analysis is based on datasets referring to residential and
campus areas and containing wireless link level information
(e.g., scheduling, channel conditions, transmission settings, and
duration) with a very precise level of granularity (e.g., 1 ms).
Obtained results reveal the properties of groups of sessions with
similar characteristics, expressed in terms of bandwidth demands
and application level requirements.

Index Terms—Mobile Traffic Analysis, Radio Resource Utiliza-
tion Dynamics, Unsupervised Learning

I. INTRODUCTION

The widespread and growing usage of smartphones and
machine-type communications are deeply changing the type
of traffic that traverses the mobile networks. Next generation
of mobile systems (5G and beyond) have to be designed to
fulfill the high performance requirements of such applications
in terms of latency, capacity and context awareness [1].
Understanding the dynamics of mobile traffic demands is then
of utmost importance for proper and secure management of
network resources (e.g., spectrum, energy, computation) [2]
[3]. Specifically, traffic classification at the radio link-level and
forecast may enable advanced Quality of Service (QoS) and
Quality of Experience (QoE) enforcement policies based on a
priori knowledge of application behaviors.

The scientific literature addressed traffic classification in
mobile networks through machine or deep learning method-
ologies [4]. At the time of writing, the majority of works
in this direction try to classify the applications running on
mobile terminals by means of the Random Forest algorithm
[5] [6] [7]. A cross comparison of different classifiers is widely
argued in [8]. All of these contributions, however, rely on
supervised approaches and target the classification of mobile
traffic at the application layer. Unfortunately, details about
radio resource utilization dynamics are completely neglected.
The work presented in [9] uses Support Vector Machine

and k-Nearest Neighbors algorithms to reliably identify a
smartphone, i.e., through a user fingerprint scheme learned
from the traffic patterns produced by background applications.
Nevertheless, also in this case, the developed solution cannot
be used to classify traffic flows according to their behavior at
the radio-link level.

Recently, researchers are given access to Call Detail Records
(CDRs) of mobile operators and the analysis is more oriented
on extrapolating spatio-temporal characteristics of the mobile
user traffic [10] [11]. However, the considered datasets miss
characterizing radio access level dynamics, which, instead,
are considered crucial for mobile network optimization. In
fact, CDRs would help to identify user service requests and
throughput, but do not offer any detail on wireless link
level information, channel conditions, retransmission, packet
fragmentation, and so on.

To bridge this gap, the goal of this paper is to unveil
radio resource utilization dynamics of mobile traffic. From
a methodological perspective, the mobile traffic analysis is
treated as an unsupervised learning problem, which aims at
identifying spatio-temporal radio resource utilization patterns
of mobile sessions. The Online Watcher for LTE (OWL) tool
[12] [13] is used for monitoring the unencrypted Physical
Downlink Control CHannel (PDCCH) of an operating Long
Term Evolution (LTE) network deployed in Spain. The advan-
tage of this tool is the richness of the gathered information
(i.e., link level data) and the temporal granularity of the
data (i.e., 1 ms). Obtained datasets, referring to residential
and campus areas, are properly processed to group monitored
sessions according to the achieved data rate, the adopted trans-
mission settings, the radio resource usage, and the duration.
The outcomes of the conducted study clearly highlight the
properties of groups of sessions with similar characteristics,
expressed in terms of bandwidth demands and application level
requirements.

The rest of this paper is organized as follows: Section II
introduces the background on LTE and the collected datasets
together with the proposed unsupervised learning methodol-
ogy; Section III discusses the numerical results; Section IV
provides lessons learned and highlights related opportunities
for mobile network optimization, and, finally, Section V con-
cludes the paper and draws future research activities.



II. THE PROPOSED APPROACH

With reference to the radio interface, LTE embraces two
main communicating entities: the base station and the mobile
terminal. At the physical layer, radio resources are distributed
among mobile terminals in a time-frequency domain and the
Resource Block (RB) represents the smallest assignable radio
resource unit. It lasts 1 ms in the time domain, namely
Transmission Time Interval (TTI), and 180 kHz in the fre-
quency domain. Every TTI, the base station allocates RBs to
mobile terminals according to a specific scheduling algorithm.
Transmission settings, expressed in terms of Modulation and
Coding Scheme (MCS), are dynamically defined through a
link adaptation mechanism. Moreover, the resulting amount
of data to send during one TTI is fixed and depends on
both the selected MCS and the number of RBs assigned to
a given mobile terminal, as reported by the Transport Block
Size (TBS) table. The scheduling decisions are shared with
mobile terminals through control messages exchanged, at the
beginning of the TTI, by using the PDCCH. Immediately after,
data packets are exchanged through the Physical Downlink
Shared CHannel (PDSCH).

The possibility of accessing to mobile traffic data represents
a challenging task to accomplish. For security reasons, in fact,
mobile operators avoid sharing their logs and data packets sent
across the radio interface are encrypted. Nevertheless, control
messages exchanged through the PDCCH are transmitted
in clear. This represents a valid opportunity to extract key
information related to mobile traffic data, as well as generating
reference datasets to be used for traffic analysis. In this context,
data collection from the PDCCH has been already presented
in [12] [13]. In those papers, an online decoder based on
Software Defined Radio (SDR), namely OWL, is used to
decode PDCCH messages sent by the base station within
a given coverage area, thus collecting scheduling decisions
during the time (i.e., every TTI). OWL generally produces a
raw file. Then, a Python script can be used to generate a usable
dataset that summarizes the main data of interest, associated
with each captured traffic session.

The methodology proposed in this contribution evaluates
mobile traffic sessions by investigating radio resource uti-
lization dynamics in the downlink. Specifically, a multivari-
ate analysis has been conceived to make a classification of
mobile traffic sessions at the radio link level, according to
their properties (the average data rate, the average MCS, the
average number of RBs, and the duration of sessions). To
this end, K-means [14], which is a well-known unsupervised
machine learning scheme, is used to map sessions with similar
properties into K clusters. The variables of interest are firstly
normalized within the range ]0,1]. Then, each session is
represented as a point in a hyperplane, whose dimensions
refer to the variables of interest of the conducted analysis.
At this point, the dissimilarity associated with two sessions
is defined as the Euclidean distance between the two related
points in the aforementioned hyperplane. Indeed, the optimal
value of K is calculated in order to ensure that the intra-cluster

TABLE I: Distribution of sessions among clusters

Dataset cluster
id

Number of sessions
per cluster [#]

Percentage of sessions
per cluster [%]

residential
area

1 235 45.11
2 187 35.89
3 82 15.74
4 17 3.26

campus
area

1 4942 99.92
2 4 0.08

distances are minimized and the inter-cluster distances are
maximized [14] (note that, according to K-means terminology,
this means that the silhouette [15] is maximized). Finally,
the clustering process provides in output the sessions of each
cluster and a special point of the hyperplane, namely centroid,
that identifies the cluster itself. Their coordinates are obtained
by averaging the value of variables associated with the sessions
belonging to the considered cluster. By studying the obtained
groups of sessions, it is now possible to extract statistical
details associated with each cluster and finalize the traffic
characterization.

III. MOBILE TRAFFIC ANALYSIS AND DISCUSSION

Two LTE base stations in a residential and campus area of
Barcelona, operating in a bandwidth of 20 MHz, are monitored
to collect mobile data. The residential area has been monitored
from 6 February 2018 to 5 March 2018 and the resulting
dataset contains 521 sessions. Instead, the campus area has
been monitored from 22 March 2017 to 26 April 2017 and the
resulting dataset contains 4946 sessions. The analysis proposed
next discusses the properties of the gathered mobile data for
each base station considering (i) the dataset as a whole and
(ii) the dataset divided into 4 time-slots that are morning,
afternoon, evening, and night.

A. Study of the datasets as a whole

The two monitored base stations show different behavior in
terms of radio resource usage patterns, as detailed below. The
first difference refers to the output of the silhouette analysis,
which groups the residential and campus traffic in four and two
clusters, respectively. Figures 1 and 2 show the outcome of the
K-means clustering process, carried out for the residential area
and the campus area, respectively. For each variable of interest,
the figures highlight the identified clusters, their centroids (i.e.,
the red dots), the 25th and the 75th percentile (i.e., the bottom
line and the top line of the blue rectangle), as well as the
minimum and the maximum measured value (i.e., the edges
of the vertical red line) of the variables of interest. The number
of sessions belonging to every single cluster and the related
percentage, instead, are reported in Table I.

Comments for the residential area. It is important to note
that there is a strict relation between the number of sessions
belonging to the cluster and the average data rate experienced
by its traffic sessions. About 45% of sessions report an average
data rate equal to 0.46 Mbps. Instead, only 3.26% of sessions
register an average data rate equal to 5.74 Mbps. Intermediate
average data rates refer to intermediate groups of sessions (i.e.,



35.89% and 15.74% of sessions present an average data rate
equal to 1.33 Mbps and 2.60 Mbps, respectively).

Similar behavior is observed for MCS indexes and the
allocated RBs. Figure 1(b) shows that the selected average
MCS index is lower than 4 for about 45% of sessions. Only
3.26% of sessions use an average MCS index close to 10.
Moreover, 35.89% and 15.74% of sessions use an average
MCS index approximately equal to 6 and 8, respectively. Only
intermediate clusters register peaks of MCS up to nearly 26.
Considering that LTE allows a maximum MCS index equal
to 31, obtained findings clearly highlight that the channel
quality experienced by mobile terminals during the monitoring
is relatively scarce.

Very interesting details related to the distribution of radio
resources among mobile terminals are depicted in Figure 1(c).
About 45% of sessions, which have the average data rate
equal to 0.46 Mbps, consume the lowest amount of physical
resources. Considering that 100 RBs per TTI are available
in 20 MHz bandwidth, an average number of RBs per TTI
approximately equal to 23 means that sessions belonging to
the first cluster occupy less than 1/4 of the overall amount
of resources available within a cell. On the other hand, only
17 sessions consistently use a larger amount of resources per
TTI, thus obtaining higher data rates.

A quite different behavior emerges from the analysis of the
average session duration. Sessions that register the average
data rate equal to 5.74 Mbps remain active for about 40 s,
which is the lowest amount of time among the four clusters.
For other clusters, instead, the duration increases with the
number of sessions belonging to the cluster. It is also important
to note that the session duration always presents a very high
variability: the actual duration of 75% of sessions in each
cluster is lower than the one associated with the related
centroid.

Comments for the campus area. The campus area presents
a number of sessions extremely higher than the residential
case, but the reported bandwidth requirements are extremely
lower. As expected, there is a strict relation between the
number of sessions per cluster and the average data rate.
Nevertheless, almost all the sessions monitored in the campus
area (i.e., 99.92%) fall within the same cluster and register a
very low average data rate equal to 0.14 Mbps. Only 0.08%
of sessions register an average data rate of 5.47 Mbps.

The study of MCS indexes provides a reverse relation, as
shown in Figure 2(b). The former group of sessions experi-
ences variable channel conditions, translating into the usage of
all the admitted transmission settings. While the average MCS
index is 13, the maximum value is equal to 31. The second
group of sessions (4 out of 4946) registers worse channel
conditions. In this case, the average and the maximum MCS
indexes are about 7 and 10, respectively.

Figure 2(c) confirms what observed for the residential area:
the higher the average number of RBs used per TTI, the higher
the achieved data rate. Reported results still show that 4942
sessions use about 1/4 of the bandwidth per TTI. On the
contrary, only 4 sessions use a larger amount of resources

per TTI (i.e., more than 52).
As depicted in Figure 2(d), the campus area hosts sessions

with very short durations. Apart from one exception (e.g., the
graph reports one session duration equal to 1465 s), the former
group of sessions registers an average session duration of 5
s. The duration of sessions belonging to the second cluster,
instead, is lower than 2 s.

B. Time-slot Analysis

The analysis of mobile traffic on time-slots basis leads to a
detailed characterization of sessions, with a consequent deeply
recognition of resource usage and QoS requirements that a
mobile network has to address during different parts of the
day. The outcomes of the proposed clustering methodology
on time-slots basis, applied to both residential and campus
areas, are summarized in Tables II and III, respectively.

Comments for the residential area. The relation between
the number of sessions belonging to the cluster and the average
variable registered by related traffic sessions still exists. About
30% of morning sessions report an average data rate equal
to 0.22 Mbps, while about 40% have an average data rate
equal to 0.65 Mbps. During the afternoon, that is the time-slot
with the highest number of residential sessions, the data rate
starts growing. In fact, about 40% of afternoon sessions have
an average data rate equal to 0.48 Mbps and the other 40%
of sessions register an average data rate equal to 1.26 Mbps.
The data rate still grows during the evening. The average data
rate is 0.79 Mbps and 2.48 Mbps for about 60% and 35%
of evening sessions, respectively. Considering night sessions,
whose number is limited because people tend to sleep, the
average data rate goes down: about 87% of night sessions
report an average value equal to 0.30 Mbps.

The average MCS index is lower than 5 for about 70% of
morning sessions. In particular, around 40% use an average
MCS index close to 5 and around 30% even use an average
MCS index approximately equal to 3. During the afternoon,
average MCS indexes increase. In fact, about 40% of afternoon
sessions have an average MCS index close to 4 and a further
40% register an average value close to 6. The MCS indexes
still grow during the evening, as the data rate. The average
MCS index is approximately 5 and 8 for about 60% and 35%
of evening sessions, respectively. As regards night sessions,
MCS indexes tend to reduce. In fact, about 87% of night
sessions report an average value close to 3.

The distribution of radio resources follows a similar pattern.
About 30% of morning sessions report an average number of
RBs per TTI equal to 1/6 of the overall amount of resources
available within a cell, while about 40% have an average value
equal to 1/4. During the afternoon, about 40% of sessions use
an average number of RBs per TTI close to 1/4 of bandwidth
per TTI and a further 40% register an average number equal to
1/3. During the evening, the average amount of resources per
TTI is more than 1/4 and about 1/2 of the overall bandwidth for
about 60% and 35% of sessions, respectively. Then, bandwidth
consumptions decrease during the night: about 87% of night
sessions consume less than 1/4 of bandwidth per TTI.
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Fig. 1: Study of dataset related to the residential area, as a whole.
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Fig. 2: Study of dataset related to the campus area, as a whole.

The average duration, which varies greatly, has different
behavior. Sessions generally register a short duration (i.e., 600
s), except for those available in the night time-slot. In fact,
about 87% of night sessions last about 800 s. Moreover, around
6.5% have an average duration equal to 1718 s.

Comments for the campus area. The campus area reports
a more balanced distribution of sessions among the whole-
day slots. As expected, traffic classification on time-slots basis
offers a better characterization of sessions. For example, up to

7 clusters are identified for the afternoon time-slots, against
the only two clusters reported for the analysis of the dataset
as a whole.

Regarding the data rate in the campus area, more than 55%
of morning sessions report an average data rate equal to 0.06
Mbps, while about 40% have an average data rate equal to 0.25
Mbps. During the afternoon, the data rate tends to decrease. In
fact, about 40% of afternoon sessions report an average data
rate equal to 0.02 Mbps and about 26% register an average data



TABLE II: Study of the dataset related to the residential area, on time-slots basis.

cluster
id

# of
sessions

rate [Mbps] MCS [#] RBs [#] duration [s]
min max avg min max avg min max avg min max avg

morning (from 6:00 am to 12:59 pm, 58 sessions)
1 17 0.08 0.37 0.22 1.59 3.56 2.68 11.85 24.29 17.90 12 69 19.88
2 23 0.46 0.97 0.65 2.96 7.07 4.59 19.11 37.75 26.14 12 2696 324.39
3 18 0.99 2.17 1.31 4.28 6.83 5.75 26.75 47.93 34.64 12 3304 367.11

afternoon (from 1:00 pm to 7:59 pm, 297 sessions)
1 120 0.06 0.86 0.48 1.15 6.95 4.11 12.08 48.55 23.72 12 478 51.67
2 116 0.87 1.80 1.26 3.51 25.69 5.80 19.09 63.05 33.79 12 3716 158.72
3 53 1.84 3.39 2.39 4.27 21.28 6.99 27.78 61.86 40.99 12 9845 598.09
4 8 3.56 6.12 4.47 7.39 11.96 9.49 45.81 72.62 61.34 12 20 15.38

evening (from 8:00 pm to 12:59 am, 134 sessions)
1 78 0.09 1.58 0.79 1.98 7.45 4.67 12.98 57.24 27.12 12 135 26.14
2 46 1.64 4.31 2.48 5.14 24.44 8.07 26.86 66.82 44.36 12 8600 571.87
3 10 4.80 8.07 6.26 7.19 11.74 9 42.10 70.52 57.83 12 41 17.60

night (from 1:00 am to 5:59 am, 31 sessions)
1 27 0.02 0.71 0.30 0.75 6.72 3.38 10.45 44.89 23.19 12 14630 793.81
4 2 1.15 1.60 1.38 3.97 6.87 5.42 34.77 48.56 41.67 20 3416 1718
3 1 2.85 2.85 2.85 7.83 7.83 7.83 46.86 46.86 46.86 126 126 126
2 1 5.91 5.91 5.91 12.73 12.73 12.73 66.62 66.62 66.62 399 399 399

TABLE III: Study of the dataset related to the campus area, on time-slots basis.

cluster
id

# of
sessions

rate [Mbps] MCS [#] RBs [#] duration [s]
min max avg min max avg min max avg min max avg

morning (from 6:00 am to 12:59 pm, 1225 sessions)
1 681 <0.01 0.16 0.06 0.79 29 12.54 5 47.33 24.18 <1 292 8.45
2 538 0.16 0.79 0.25 1.55 20.93 14.44 10.83 38.25 24.99 <1 11 <1
3 6 0.88 2.43 1.42 3.70 14.19 8.60 20.73 33.34 27.73 <1 908 151.33

afternoon (from 1:00 pm to 7:59 pm, 1134 sessions)
1 425 <0.01 0.07 0.02 1 29 11.35 5 49 24.18 <1 1114 12.04
2 298 0.07 0.17 0.12 6.27 27 13.80 11.65 54.50 22.66 <1 <1 <1
3 278 0.17 0.27 0.21 2.65 21.12 14.32 11.66 40.08 24.60 <1 3 <1
4 99 0.27 0.44 0.32 2.34 20 14.38 13.62 36.95 25.43 <1 1465 23.10
5 32 0.45 1.10 0.57 3.44 17.65 13.72 18.73 31.36 24.86 <1 <1 <1
6 1 2.23 2.23 2.23 8.09 8.09 8.09 47.64 47.64 47.64 16 16 16
7 1 3.73 3.73 3.73 6.09 6.09 6.09 42.78 42.78 42.78 1 1 1

evening (from 8:00 pm to 12:59 am, 848 sessions)
1 846 <0.01 0.82 0.13 0.58 31 13.09 4.50 52 23.41 <1 234 3.04
2 2 5.16 6.45 5.80 5 9.99 7.49 55.16 57.86 56.51 2 2 2

night (from 1:00 am to 5:59 am, 1738 sessions)
1 627 <0.01 0.09 0.03 0.12 26.67 11.22 4.75 52 22.37 <1 695 12.39
2 690 0.09 0.22 0.16 0.72 23.11 14.08 8.77 45.25 23.62 <1 1 <1
3 363 0.22 0.42 0.28 1.90 21.29 14.66 11.77 36.63 25.31 <1 11 <1
4 57 0.42 0.98 0.56 2.92 16.82 14.07 16.14 31 25.01 <1 1080 19.14
5 1 6.56 6.57 6.56 8.36 8.36 8.36 53.74 53.74 53.74 1 1 1

rate equal to 0.12 Mbps. The data rate is still low during the
evening. In fact, the average value of 0.13 Mbps is measured
for more than 99% of sessions. During the night, that is the
time-slot with the highest number of sessions, the average data
rate tends to increase. From Table III, it is 0.03 and 0.16 Mbps
for about 36% and 40% of night sessions, respectively.

The average MCS index is similar among the time-slots.
In particular, about 55% of morning sessions have an average
value close to 13. About 40% of afternoon sessions register an
average MCS index close to 11, while about 26% and 25% use
an average MCS index approximately equal to 14 and more
than 14, respectively. During the evening, the average MCS
index is approximately 13 for 99.76% of sessions. Lastly, it is
close to 11 and 14 for about 36% and 40% of night sessions,

respectively.
Also the allocated RBs per TTI have similar behavior.

In particular, they slightly increase and decrease during the
morning and the afternoon and during the evening and the
night, respectively. About 56% of morning sessions and 38%
of afternoon sessions report an average number of RBs per
TTI close to 1/4 of the overall amount of resources available
within a cell. Instead, the average amount of resources per
TTI is more than 1/4 of the overall bandwidth for 99.76% of
evening sessions and about 76% of night ones.

The average duration is extremely low during all the consid-
ered time-slots. In particular, about 56% of morning sessions
last about 9 s. Furthermore, about 38% of afternoon sessions
last longer than 10 s (i.e., about 12 s), while more than 50%



(the clusters 2 and 3 in the afternoon) last less than 1 s. The
average duration is approximately equal to 3 s for about 99%
of evening sessions. As the last report, about 36% of night
sessions last longer than 10 s (i.e., about 12 s), while around
60% last less than 1 s.

IV. LESSONS LEARNED AND NETWORK OPTIMIZATION
OPPORTUNITIES

The proposed study clearly shows that the analysis of
mobile traffic on time-slots basis gives a deep insight into
radio resource utilization dynamics. Interesting outcomes are
summarized in what follows. As far as the residential area
is concerned, a high number of sessions are measured for
the afternoon time-slot and peaks of bandwidth requirements
are registered in both afternoon and evening time-slots. By
observing data related to the night time-slot, it is possible
to understand that a residential area significantly reduces its
traffic load when people usually go to sleep. Nonetheless,
differently from daily time-slots, the few sessions active during
the night present very high durations. As far as the campus area
is concerned, sessions use a higher MCS index than residential
sessions, but a very low rate: analyzed campus sessions do not
transmit a lot of data, even if the quality of channel could be
good, because the traffic load is not significant.

Now, by knowing the radio resource utilization patterns of
mobile traffic, it will be possible to conceive novel method-
ologies that aim at optimizing mobile networks. Interesting
research activities to address in the future may include:

• Advanced QoE/QoS management through dynamic radio
resource scheduling algorithms exploiting the deep prop-
erties expected for mobile flows at the radio level;

• Dynamic and fine-grained management of slices and
virtual functionalities offered through the radio access
networks in upcoming 5G architectures;

• Optimal energy savings mechanisms (e.g. sleep mode of
base stations and discontinuous reception in mobile termi-
nals) and opportunistic handover management procedures
that leverage the predicted behavior of classified traffic
flows;

• Planning for new base stations deployments in geograph-
ical regions where higher traffic load is expected;

• Massive usage of mobile base stations (i.e., deployed
as drones), chasing the actual radio resource utilization
dynamics.

V. CONCLUSIONS

This work investigates the radio resource utilization dynam-
ics of mobile traffic by means of an unsupervised learning
methodology. Two datasets, collected from a real operating
mobile network and referring to residential and campus areas,
have been investigated. Specifically, a multivariate analysis
revealed the properties of groups of sessions with similar
characteristics, expressed in terms of bandwidth demands and
application level requirements. Obtained results report a clear
heterogeneity among traffic sessions, whose clustering offers
key instruments for the optimal management of the radio

resources for mobile operators. Thus, further research activities
may extend the presented methodology and support mobile
network optimization at the radio access level.
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