
Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 1 / 54

5G European Validation platform for Extensive trials

Deliverable D4.2

First version of the experimental portal and

service handbook

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 2 / 54

Project Details

Call H2020-ICT-17-2018

Type of Action RIA

Project start date 01/07/2018

Duration 36 months

GA No 815074

Deliverable Details

Deliverable WP: WP4

Deliverable Task: Task T4.2

Deliverable Identifier: 5G_EVE_D4.2

Deliverable Title: First version of the experimental portal and service handbook

Editor(s): Jaime Garcia-Reinoso (UC3M)

Author(s): Jonathan Almodóvar Herreros, Ginés García Avilés, Jaime

García Reinoso, Carlos Guimaraes, Winnie Nakimuli,

Cristina Quintana Jordán, Pablo Serrano Yáñez-Mingot

(UC3M); Giada Landi, Juan Brenes, Francesca Moscatelli,

Elian Kraja, Giacomo Bernini (NXW); Ramón Pérez

(TELC); Grzegorz Panek (ORA-PL)

Reviewer(s): Sofiane Imadali, Rodolphe Legouable, Louiza Yala (ORA-

PL); Kostas Trichias (WINGS)

Contractual Date of Delivery: 31/12/2019

Submission Date: 20/12/2019

Dissemination Level: PU

Status: Final

Version: 1.0

File Name: 5G EVE – D4.2 First version of the experimental portal

and service handbook

Disclaimer

The information and views set out in this deliverable are those of the author(s) and do not

necessarily reflect the official opinion of the European Union. Neither the European Un-

ion institutions and bodies nor any person acting on their behalf may be held responsible

for the use which may be made of the information contained therein.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 3 / 54

Deliverable History

Version Date Modification Modified by

V0 17/10/2019 First ToC Jaime Garcia-Reinoso

V0.1 21/10/2019 Assign responsible to sections Jaime Garcia-Reinoso

V0.2 14/11/2019 Portal architecture and service

handbook

Jaime Garcia-Reinoso

V0.3 27/11/2019 First round of contributions All authors

V0.4 04/12/2019 Second round of contributions All authors

V0.5 05/12/2019 Version ready for reviewers All authors

V0.6 13/12/2019 Version tackling reviewers’

comments

All authors

V1.0 15/12/2019 Editorial changes Jaime Garcia-Reinoso

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 4 / 54

Table of Contents

LIST OF ACRONYMS AND ABBREVIATIONS .. 5

LIST OF FIGURES .. 6

LIST OF TABLES .. 7

EXECUTIVE SUMMARY .. 9

INTRODUCTION .. 10

1 EXPERIMENTAL PORTAL ARCHITECTURE .. 12

1.1 PORTAL BACKEND COMPONENTS ... 13
1.1.1 Role-Based Access Control ... 13
1.1.2 Experiment Lifecycle Manager ... 14
1.1.3 Data Collection and Storage ... 18
1.1.4 File Storage ... 19
1.1.5 Catalogue Service ... 19
1.1.6 Ticketing System Backend ... 19

1.2 PORTAL BACKEND NORTHBOUND INTERFACE .. 19
1.2.1 Role-Based Access Control Interface (Irbac) ... 19
1.2.2 Experiment Lifecycle Manager Interface (Ielm) ... 21
1.2.3 Data Collection and Storage Interface (Idcs) ... 24
1.2.4 File Storage Interface (Ifs) .. 31
1.2.5 Catalogue Service Interface (Ics) .. 32
1.2.6 Ticketing System Backend Interface (Itsb) .. 32

1.3 PORTAL BACKEND SOUTHBOUND INTERFACE .. 34
1.3.1 DCM Interface (Idcm) ... 35
1.3.2 Multi-site Network Service Orchestrator Interface (Imnso).. 37
1.3.3 Multi-Site Service Inventory/Service Catalogue Interface (Imsci) .. 37
1.3.4 Experiment Execution Manager Interface (Ieem) ... 37

1.4 PORTAL GUI ... 37
1.4.1 VNF Storage .. 38
1.4.2 Sign-up/Login .. 38
1.4.3 Experiment Blueprint Builder ... 38
1.4.4 Data Visualization ... 42
1.4.5 Browse and look-up .. 43

2 EXPERIMENTAL PORTAL IMPLEMENTATION .. 44

2.1 PORTAL BACKEND ... 44
2.1.1 Role-Based Access Control ... 44
2.1.2 Experiment Lifecycle Manager ... 44
2.1.3 Data Collection and Storage ... 46
2.1.4 File Storage ... 46
2.1.5 Catalogue Service ... 47
2.1.6 Ticketing System Backend ... 47

2.2 PORTAL GUI ... 47
2.2.1 VNF Storage .. 47
2.2.2 Sign-up/Login .. 47
2.2.3 Data Visualization ... 47
2.2.4 Browse and lookup .. 47

3 SERVICE HANDBOOK ... 49

3.1 EXPERIMENT DESIGN AND DEFINITION .. 49
3.2 EXPERIMENT PREPARATION ... 50
3.3 EXPERIMENT EXECUTION .. 51

4 CONCLUSIONS .. 52

ACKNOWLEDGMENT .. 53

REFERENCES ... 54

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 5 / 54

List of Acronyms and Abbreviations

Acronym Description

API Application Programming Interface

BLUO Browse-and-Lookup, Uploading

and Onboarding

CB Context Blueprint

CD Context Descriptor

CPU Core Processing Unit

CRUD Create Read Update Delete

CSS Cascading Style Sheets

DB Database

DCM Data Collection Manager

DCS Data Collection and Storage

DF Deployment Flavour

E2E End to End

EBB Experiment Blueprint Builder

EEM Experiment Execution Manager

ELM Experiment Lifecycle Manager

eMBB Enhanced Mobile BroadBand

EPC Evolved Packet Core

ETSI European Telecommunication

Standard Institute

ExpB Experiment Blueprint

ExpD Experiment Descriptor

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IBN Intent Based Networking

IBNS Intent Based Networking System

ID Identifier

IAM

IDMS

Identity and Access Manager

Intent Driven Management System

IL Instantiation Level

I/W Interworking Layer

JPA Java Persistency API

KPI Key Performance Indicator

MANO Management and Orchestration

MEC Multi-Access Edge Computing

MSO Multi-Site Orchestrator

MTC Machine Type Communication

NBI North Bound Interface

NFV Network Function Virtualization

NFVO Network Function Virtualization

Orchestrator

NSD Network Service Descriptor

PNF Physical Network Function

RBAC Role Based Access Control

REST REpresentational State Transfer

SLA Service Level Agreement

SNMP Simple Network Management Pro-

tocol

TCB Test Case Blueprint

TSB Ticketing System Backend

URL Uniform Resource Locator

URLLC Ultra-Reliable Low-Latency Com-

munication

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VNFD Virtual Network Function De-

scriptor

VNFFG Virtual Network Function For-

warding Graph

VSB Vertical Service Blueprint

VSD Vertical Service Descriptor

WP Work Package

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 6 / 54

List of Figures

Figure 1: 5G EVE Portal architecture.. 12

Figure 2: Registration process sequence diagram. .. 13

Figure 3: Authentication process sequence diagram. .. 13

Figure 4: Example of service using authorization. .. 14

Figure 5: Finite state machine for an experiment lifecycle ... 17

Figure 6: Data Collection and Storage component representation in the Elastic Stack toolchain. 18

Figure 7: Simplified architecture of Southbound Interface of Portal backend and I/W Layer 34

Figure 8: Experiment Blueprint Builder – Specification of general information .. 39

Figure 9: Experiment Blueprint Builder – Selection of Vertical Service Blueprint .. 39

Figure 10: Experiment Blueprint Builder – Selection of Context Blueprint ... 40

Figure 11: Experiment Blueprint Builder – NSD onboarding ... 40

Figure 12: Experiment Blueprint Builder – Specification of translation rules .. 41

Figure 13: Experiment Blueprint Builder – Specification of metrics and KPIs .. 41

Figure 14: Experiment Blueprint Builder – Selection of test case blueprints ... 42

Figure 15: Experiment Lifecycle Manager: high-level architecture .. 45

Figure 16: Experiment phases, main actions and actors involved. .. 49

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 7 / 54

List of Tables

Table 1. Services provided in the first release of the 5G EVE Portal. .. 10

Table 2. Acronyms used in the 5G EVE Portal architecture. .. 12

Table 3. Actions supported by the Experiment Lifecycle Manager .. 15

Table 4. Role-Based Access Control (RBAC) REST API. ... 20

Table 5. REST API - POST /portal/rbac/register .. 20

Table 6. REST API – POST /portal/rbac/login ... 20

Table 7. REST API – POST /portal/rbac/refreshtoken .. 20

Table 8. REST API – GET /portal/rbac/logout ... 20

Table 9. Experiment Lifecycle Manager REST API ... 21

Table 10. REST API – POST /portal/elm/experiment .. 21

Table 11. REST API – GET /portal/elm/experiment<?[filter_parameters]> .. 22

Table 12. REST API – PUT /portal/elm/experiment/{expId}/status... 22

Table 13. REST API – PUT /portal/elm/experiment/{expId}/timeslot ... 22

Table 14. REST API – POST /portal/elm/experiment/{expId}/action/deploy .. 23

Table 15. REST API – POST /portal/elm/experiment/{expId}/action/execute .. 23

Table 16. REST API – POST /portal/elm/experiment/{expId}/action/terminate ... 23

Table 17. REST API – DELETE /portal/elm/experiment/{expId} ... 23

Table 18. Data Collection and Storage REST API .. 24

Table 19. REST API – GET /_ingest/pipeline/{pipeline} ... 24

Table 20. REST API – PUT /_ingest/pipeline/{pipeline} ... 25

Table 21. REST API – DELETE /_ingest/pipeline/{pipeline} ... 25

Table 22. REST API – GET /{index} ... 26

Table 23. REST API – PUT /{index} ... 27

Table 24. REST API – PUT /{index}/_mapping .. 28

Table 25. REST API – PUT /{index}/_graph/explore .. 29

Table 26. REST API – GET/POST /{index}/_search ... 29

Table 27. REST API – DELETE /{index} .. 30

Table 28. File Storage REST API ... 31

Table 29. REST API - POST /portal/fs/upload ... 31

Table 30. REST API - GET /portal/fs/download/{fileUuid} .. 32

Table 31. Ticketing System backend REST API .. 32

Table 32. REST API - POST /portal/bugzilla/rest/bug ... 32

Table 33. REST API - PUT /portal/bugzilla/rest/bug/{Id} ... 33

Table 34. REST API - GET /portal/bugzilla/rest/bug/{Id} ... 33

Table 35. Updated Data Collection Manager OpenAPI specification. .. 35

Table 36. Data Collection Manager REST API – POST /dcm/subscribe .. 35

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 8 / 54

Table 37. Data Collection Manager REST API – POST /dcm/publish/{topicName} 36

Table 38. Data Collection Manager REST API – DELETE /dcm/unsubscribe .. 36

Table 39. Experiment Lifecycle Manager to Multi-site Network Service Orchestrator API specification. 37

Table 40. Links to the 5G EVE Portal software. ... 44

Table 41. 5G EVE Portal Experiment design and definition actions summary. ... 50

Table 42. 5G EVE Portal Experiment preparation. ... 51

Table 43. 5G EVE Portal Experiment execution. .. 51

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 9 / 54

Executive Summary

The first release of the 5G EVE Portal is a major milestone in the 5G EVE end-to-end facility implementation

roadmap. This first version of the Portal provides important services to all actors involved in 5G-EVE experi-

mentation. One important decision taken by the 5G EVE project is to open its interfaces to other projects, but

this has implications in the design and implementation of the Portal. Thus, the 5G EVE Portal architecture has

been designed to provide services through a backend layer, which can be consumed by the graphical user inter-

face implemented and offered by the 5G EVE projects. Furthermore, these services may be used by other au-

thorised projects too.

This document, building on deliverable D4.1, contains the details about the 5G EVE Portal, including its con-

stituent components, all interfaces connecting these modules as well as the APIs offered by the backend towards

other projects and experimenters.

Apart from the integration of the components already presented in D4.1, this deliverable also offers some details

of new elements, and how they interact with others. The 5G EVE project pays special attention to security

aspects, so the central component of the backend layer is the Role-Based Access Control (RBAC) component.

All other components in the backend have to authenticate and authorize all requested actions using this compo-

nent. For example, the Portal Catalogue Service only responses to authorized users about the content included

in its databases; the Data Visualization tool restricts the access to metrics to authorized users too, etc. The

Experiment Lifecycle Manager centralizes the most important actions related with the lifecycle of an experiment

such as its preparation, execution and finalization, and it is precisely defined in this document. Finally, the File

Storage component is described in this document as well. The main service provided by this component is to

allow the uploading and downloading of VNF packages, which have to be onboarded by site managers.

Last but not least, this deliverable provides a service handbook to all actors involved in a 5G experiment using

the E2E facility provided by the 5G EVE project. The handbook presents an overview of all phases related with

an experiment, from the design stage to the execution of an experiment, the actors involved in each step, the

components of the graphical interface intended to implement each step and how to implement each task.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 10 / 54

Introduction

This document accompanies the first release of the experimental 5G EVE Portal software, including the most

important information about its design process, the resulting architecture, which includes the northbound inter-

face to provide services to other users, and implementation details. The present deliverable, together with de-

liverable D4.1 [1], provide the complete information about the services provided by the first release of the 5G

EVE Portal, which are summarized in Table 1.

Table 1. Services provided in the first release of the 5G EVE Portal.

Actor Service

Anonymous User Signup, login to Portal.

Experiment/

Developer

Browse and look up tool to view a list of available compo-

nents in the 5G EVE end-to-end facility.

Experiment/

Developer

Upload VSB, ExpB and Test Case Blueprint. These actions

will finish with an OK or Error with a given code.

Experimenter List available VSB based on the provided query.

Experimenter List required/missing parameters for the VSB provided.

Experimenter

Post parameters to create a service for the selected VSB and

returns an experiment identifier (ExpID), which is in an in-

complete state.

Experimenter
List available ExpB based on the provided (incomplete) ex-

periment identifier (ExpID).

Experimenter Get required parameters of the provided ExpB identifier.

Experimenter

With the ExpB selected, experimenters have to add all neces-

sary tests. If successful, the provided ExpID state changes to

completed.

Experimenter
With the ExpID (must be in completed state), this actor cre-

ates an Experiment Deployment.

Experimenter/

Site Manager

These actors have access to the status of the experiment de-

ployment object: pending, accepted, rejected, pre-provi-

sioned, ready, running, finished, failed or deleted.

Experimenter Experimenters may instantiate experiments.

Experimenter
Experimenters may monitor metrics while experiments are

running.

Experimenter
Experimenters may visualize the results of their executed

(finished) experiments.

Experimenter
Experimenters could delete pending, accepted, finished or

failed experiments.

Experimenter Add/view/comment tickets.

VNF provider

Users may upload and request the onboarding of VNFD to a

list of trial sites. Results could be OK or Error with code.

This step may generate tickets to the site managers.

Site manager Add/view/modify tickets.

System

administrator

Administrators may execute all services available in the sys-

tem.

This document also includes a service handbook intended to be used as a guideline for all different actors in-

volved in the definition, preparation and execution of a 5G experiment to implement the proper actions. The

service handbook identifies all these actors and the proper element at the graphical interface to perform a par-

ticular task.

The rest of the document is organized as follows. Section 1 starts presenting the experimental portal architecture,

including subsections to introduce all modules available in this first release, its main functionalities and the

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 11 / 54

northbound interfaces, which may be used by other projects to access the services provided by the portal. Section

2 presents some details about the implementation of the portal. Section 3 presents the service handbook, which

offers the workflow to design, prepare, execute and experiment, as well as the main components providing the

services to tackle each phase of the experiment lifecycle. Finally, Section 4 concludes with the most important

remarks already described in the document and the future work for the second release of the portal.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 12 / 54

1 Experimental Portal architecture
Deliverable D4.1 [1] reports the main functional requirements of the 5G EVE Portal, presenting the main ex-

perimentation tools and the 5G EVE catalogue designed to cope with some of such requirements. This document

follows all recommendations presented in D4.1 to extend available functionalities provided by these experimen-

tation tools and catalogue to encompass all services that have to be offered to all actors, described in that deliv-

erable as well. After a deep analysis of D4.1 and other deliverables produced by the 5G EVE project, this

document presents the 5G EVE Portal architecture, shown in Figure 1 (Table 2 presents the main acronyms

used in the architecture). For the sake of completeness, Figure 1 shows not only the Portal architecture but some

other elements also defined by the 5G EVE project, in order to better describe all interactions between the Portal

with the Interworking Layer, mainly.

Figure 1: 5G EVE Portal architecture

Table 2. Acronyms used in the 5G EVE Portal architecture.

Acronym Description Acronym Description

BLUO Browse, Look-Up and Onboarding

Tool

ELM Experiment Lifecycle Manager

CB Context Blueprint ExpD Experiment Descriptor

CD Context Descriptor IBN Intent-Based Networking

DCM Data Collection Manager RBAC Role-Based Access Control

DCS Data Collection and Storage TSB Ticketing System Backend

EBB Experiment Blueprint Builder VSB Vertical Service Blueprint

EEM Experiment and Execution Mana-

ger

VSD Vertical Service Descriptor

One of the main decisions taken while designing this architecture is to split the 5G EVE Portal in two sublayers:

the Portal backend and the Portal Graphical User Interface (GUI). This way, the Portal backend exposes differ-

ent interfaces to the outside, which will be used by the Portal GUI to offer its own services and which may also

be used by other entities to consume the services offered by the Portal backend.

This section provides a detailed description of all components of the 5G EVE Portal architecture, the services

offered by each block and the interfaces to consume such services. Following the sub-layer approach, section

1.1 presents all components included in the backend and delivered in the first release of the Portal, section 1.2

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 13 / 54

describes in detail all interfaces exposed by the backend, section 1.3 includes the main interfaces used by the

backend to provide its own services, and finally section 1.4 covers the Portal GUI components.

1.1 Portal backend components

This subsection presents the description of all components included in the portal backend.

1.1.1 Role-Based Access Control

The Role-Based Access Control (RBAC) is in charge of providing users management and authentication/au-

thorization functionality. This component relies on an Identity and Access Management service (IAM) to store

users, generate and renew authentication artefacts that belongs to each user. The RBAC component will expose

a REST API in order to make all the functionality available to the front-end application and for other back-end

components that might need it, avoiding HTTP redirections.

Users’ management consists of a set of functionalities to create, read, update and delete users. Figure 2 shows

the interactions between the different modules involved in the registration process.

The authentication process is token-based, which means that registered users will be able to obtain an access

token, valid for a specific period of time, which will allow them to fetch specific resources from other back-end

components. Together with the access token, they will receive a different token called “refresh token”, whose

main goal is to allow users to obtain a new access token once it is expired. Finally, RBAC will provide logout

functionality, making both access and refresh tokens invalid. Figure 3 shows the interactions between front-end

and RBAC during the authentication process.

The RBAC component will be interacting with the IAM service, hence it will be registered as client of the latter.

By registering the RBAC component at the IAM service, the RBAC will become a trusted component for the

IAM service, which means that it will acquire a unique authentication key for a continuous, easy and trusted

communication.

Figure 2: Registration process sequence diagram.

Figure 3: Authentication process sequence diagram.

Authorization
Authorization is a process by which a certain entity can determine whether a client has permissions to perform

a specific action over specific resources or not. In order to do so, The RBAC component will provide roles,

which usually identify a type or category of user and groups that usually are used to affiliate users with different

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 14 / 54

roles. Both roles and groups can be assigned to specific users in order to be able to determine their permissions

over certain resources. By registering each back-end component (DCS, ELCM, etc.) at the IAM service, they

will be made trusted components that will easily interact with the IAM service. With this approach, each service

will be able to, i) validate access tokens included at the client requests and, ii) retrieve information about the

owner of the token (role and groups). Figure 4 shows the different interactions between modules during the

authorization process.

The IAM service also allows trusted components to create their own roles and groups. Roles can be defined at

two different levels:

• “Site” level: Roles available across all the applications that belongs to a specific realm. In our case, all

services (DCS, ELCM, etc.) will be placed at the same realm.

• Client level: Roles available in a specific namespace dedicated to a client. All the services of 5G-EVE

will be clients for Keycloak [2], so they will be able to manage their own set of roles.

Unlike roles, groups created by trusted components are, by default, available to all the trusted components.

Figure 4: Example of service using authorization.

1.1.2 Experiment Lifecycle Manager

The Experiment Lifecycle Manager (ELM) is the Portal backend component in charge of processing the requests

to create new experiment instances or to perform actions related to existing experiment, offering a REST-based

north-bound interface (NBI) that can be invoked by external REST clients to manage experiments. This REST

API is typically used by the 5G EVE Portal GUI, which mediates between a 5G EVE user and the 5G EVE

platform for all the procedures related to the creation, management and monitoring of experiments. However,

the system allows also external clients (e.g. platforms developed in the context of ICT-19 projects) to directly

access the ELM functionalities via REST API. All the requests received at the ELM NBI are authenticated and

authorized through the RBAC component (see section 1.1.1), according to the actions permitted for the different

5G EVE roles, as defined in D4.1 [1].

Table 3 reports all the actions that can be performed through the Experiment Lifecycle Manager, providing

details about the 5G EVE roles that are allowed to request the related functionality.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 15 / 54

Table 3. Actions supported by the Experiment Lifecycle Manager

Functionality Enabled 5G EVE role Notes

Creation of a new experiment. Experimenter

Approval or refusal of an experi-

ment.
Site Manager

Only for the experiments on the man-

aged site.

Change of proposed timeslot for the

execution of an experiment.

Experimenter

Site Manager

Only for experiments owned by the

experimenters or located on the man-

aged site.

Notification of readiness for an ex-

periment environment.
Site Manager

Only for the experiments on the man-

aged site.

Instantiation of an experiment. Experimenter Only for owned experiments.

Execution of an experiment. Experimenter Only for owned experiments.

Abortion of an experiment. Experimenter
Only for owned experiments.

Not supported in first release.

Termination of an experiment. Experimenter Only for owned experiments.

Request of information about an ex-

periment.

Experimenter

Site Manager

Only for experiments owned by the

experimenters or located on the man-

aged site.

Removal of an experiment. Experimenter Only for owned experiments.

The ELM manages internally the Finite State Machines (FSM) for all the active experiments, it maintains rec-

ords with the information related to the experiments and their running executions. It coordinates the actions of

the other functional elements in the Portal backend and in the I/W framework that are involved in the instantia-

tion, monitoring, execution and validation of experiments. In particular, the ELM interacts with the following

entities:

• RBAC, for request authentication and authorization purposes

• 5G EVE Portal Catalogue, for retrieving the blueprints and descriptors of the requested experiments.

This information is used to identify the NFV network services to be instantiated on the 5G EVE plat-

form, the monitoring metrics and KPIs to be collected through the DCS and the test cases to be executed

for a given experiment.

• Ticketing tool, for generating and issuing tickets related to the scheduling and preparation of the virtual

environment.

• Data Collection and Storage, to register and unregister all the metrics, KPIs and results associated to

an experiment.

• Multi-Site Network Orchestration (MSNO) at the I/W framework, to request the instantiation and ter-

mination of the NFV network services where the experiment will be executed.

• Experiment Execution Manager (EEM) to request the executions of the experiment and collect infor-

mation about their results.

The FSM representing the evolution of the lifecycle of an experiment is shown in Figure 5. Whenever the ELM

receives a request to create a new experiment, it instantiates a new FSM to manage its lifecycle, it creates a new

entry in its internal records, and it interacts with the ticketing tool to notify the target site manager. The FSM is

initialized with the “Scheduling” state and all the descriptors and blueprints related to the experiment request

are gathered from the Portal catalogue. The timeslot proposed by the experimenter for the execution of the

experiment can be negotiated with the site manager; during this negotiation period the FSM remains in the

“Scheduling” state. If the site manager accepts the proposed scheduling, the FSM moves to the “Accepted”

state; in case of refusal, the FSM move to the “Refused” state and the experiment cannot proceed.

An experiment in “Accepted” state may need a manual configuration of the environment where it will be exe-

cuted at the target site. When this environment is ready, the site manager will need to send a notification (through

the Portal GUI or the REST API of the ELM). As consequence, the ELM will interact with the Ticketing tool

to notify the experimenter and the FSM will move to the “Ready” state. At this stage, the experimenter will be

able to request the instantiation of the virtual environment to run the experiment. At the reception of this

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 16 / 54

deployment request, the ELM translates the experiment descriptor into a suitable NFV network service and

triggers an interaction with the I/W framework MSNO to request its instantiation. The FSM moves to the “In-

stantiating” state. In case of successful notification from the MSNO, the ELM performs a registration with the

DCS related to the metrics, KPIs and results to be monitored and moves the FSM to the “Instantiated” state. In

case of failure notification from the MSNO, the experiment moves to a final state “Failed”.

Once the experiment environment is properly instantiated, the experimenter may request to run an “experiment

execution”, specifying the target service configuration and test case(s) to be executed. The execution request

triggers an interaction with the EEM, and the FSM moves to the “Running execution” state. In this state there

are a number of interactions between ELM and EEM, which allows the ELM to be informed about the progress

of the given execution. When the EEM notifies the execution termination, the ELM retrieves the related results,

stores them into the internal ELM database updating the record entry of the given experiment, and moves again

the FSM to the “Instantiated” state, so that the experimenter can request to run another execution. When the

experimenter has completed all his/her tests and invokes the experiment termination (or at the expiration of the

scheduled time interval negotiated at the beginning for the experiment execution), the ELM sends a request to

the MSNO for terminating the associated NFV network service and the FSM moves to the “Terminating” state.

Finally, at the reception of the notification from the MSNO, the ELM removes the monitoring registrations and

moves the experiment FSM to the final “Terminated” state. Record entries for experiments in the final states

“Refused”, “Failed” and “Terminated” can be also removed from the system through a deletion request.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 17 / 54

Figure 5: Finite state machine for an experiment lifecycle

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 18 / 54

1.1.3 Data Collection and Storage

The Data Collection and Storage component (DCS) placed in the Portal backend brings together two of the

three tools that belong to the Experiment monitoring and Maintenance & Results Collection toolchain, al-

ready presented in D4.1 [1]. These are the following:

• The data collection, aggregation and pre-processing tool, which collects the experiment results, met-

rics (both infrastructure and application metrics) and KPIs generated for a given experiment provided

by the Data Collection Manager component from the I/W Framework.

• The data indexing and storage tool, which enables the capability of searching and filtering among all

the data gathered by the data collection tool for obtaining the useful information that will be displayed

afterwards in the Portal GUI, also providing data persistence.

As explained in D4.1 [1], Logstash and Elasticsearch, from the Elastic (ELK) Stack [3], are the two tools which

will implement these functions, respectively. Then, the Data Collection and Storage component is highlighted

in the following picture, which represents the Elastic Stack toolchain implemented in 5G EVE in combination

with Beats and Kafka:

Figure 6: Data Collection and Storage component representation in the Elastic Stack toolchain.

The authentication of users and the definition of roles and restrictions to only access the data that corresponds

to each user, depending on the use case, is intended to be provided through the RBAC component in the Irbac

interface (see 1.1.1), including the necessary open-source plugins in order to enable the Single Sign-On authen-

tication and authorization mechanisms in the Elastic Stack. The plugins finally implemented will be described

in detail in the next portal implementation deliverable.

The main functionalities that will be carried out by each component are the following:

• Data collection, aggregation and pre-processing tool (Logstash):

o Ingest data securely from multiple input sources simultaneously.

o Execute different transformations and enhancements to the collected data by using filters,

which parse each event, identify named fields to build structure and transform them to converge

on a common format for more powerful analysis and business value.

o Ship the data to various supported output destinations (e.g. Elasticsearch).

o Extend and improve the previous pipeline (ingest-filter-ship) with new plugins, which can be

connected through specific APIs.

o Guarantee at-least-once delivery for the data received with a persistent queue in case of failure,

and also provide scalability to ingestion spikes without having to use an external queueing layer.

o Monitor the status of the nodes and pipelines through the Data Visualization tool in the Portal

GUI.

• Data indexing and storage tool (Elasticsearch):

o Provide a RESTful search and analytics engine with one centralized data storage.

Data Collection and Storage

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 19 / 54

o Allow to perform and combine many types of searches (structured, unstructured, metric…), and

also performing data aggregation in order to explore trends and patterns in the data.

o Leverage and access to all managed data at a very high speed thanks to the use of indexes for

saving data.

o Scale horizontally if needed, going from prototype to production seamlessly by running this

component on a single node the same way that in a cluster.

o Rank the search results based on a variety of factors (from term frequency or recency to popu-

larity and beyond). Mix and match these along with functions to fine tune how the results show

up to the experimenters.

o Detect failures to keep the deployed environment and the data safe and available with cross-

cluster replication, using a secondary cluster as a hot backup.

o Allow to connect, build and maintain clients in many languages such as Java, Python, .NET,

SQL and PHP through the usage of standard RESTful APIs and JSON.

1.1.4 File Storage

The File Storage module is intended to be used by other modules or by some actors to upload large files, similar

to a cloud storage system. The main user of this module is the VNF Storage component at the Portal GUI layer,

which is used by VNF providers to upload VNF packages, so the site managers selected in this process will

receive a ticket requesting the onboarding of the selected packages in their sites. As commented before, the File

Storage module, after a successful uploading of the file, has to create as many tickets as the sites selected by the

VNF provider. These tickets should include the link to the uploaded package, so site managers can download

such file.

Files uploaded to this module will be removed after a given time (to be still decided, although this information

will be conveniently provided to the user) because of space constraints. Furthermore, this module must provide

a configuration file to fix the maximum file size that the user may upload.

1.1.5 Catalogue Service

The Portal Catalogue is used to store all the blueprints and descriptors associated to the definition of a 5G EVE

experiment. In particular, it manages the information elements for Vertical Services, experiment execution con-

texts, test cases and experiments. Its functionalities have been fully documented in deliverable D4.1 [1], section

5.

1.1.6 Ticketing System Backend

The Ticketing System Backend (TSB) component offers a service to other modules at the backend and to the

Ticketing GUI module through the Itsb interface to create, comment and delete tickets. The main goal of this

module is to notify events like errors, experiment requests, VNF onboarding requests, etc. to the corresponding

actors who have to manage such events. The design of this module has been already presented in D4.1 [1],

section 4.2.

1.2 Portal backend northbound interface

This subsection includes a detailed information of the REST API offered by the Portal backend layer. This

definition is done component by component, starting with an overall view of all endpoints offered by each

component. Then, each endpoint is totally specified with the request body, the response body, and the code after

a successful transaction as well as possible error codes.

1.2.1 Role-Based Access Control Interface (Irbac)

The RBAC component allows requests to register a new user, create a new user session, refresh an access token,

and close a user session. The REST API endpoints are defined in Table 4, having the details of each endpoint

in the subsequent tables (Table 5 to Table 8).

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 20 / 54

Table 4. Role-Based Access Control (RBAC) REST API.

HTTP method URI Description

POST /portal/rbac/register Endpoint to create a new user at the portal

POST /portal/rbac/login

Allows the creation of a new session for a spe-

cific user who is already registered at the por-

tal.

POST /portal/rbac/refreshtoken
Allows users to obtain a new access token

once the one they have is expired

GET /portal/rbac/logout Closes a user session

Table 5. REST API - POST /portal/rbac/register

POST /portal/rbac/register

 Parameter name Parameter type Description

Request Body

(JSON)

email String Email address of the new user

username String Username of the new user

firstName String First Name of the new user

lastName String Last Name of the new user

password String Password

Response body

Successful response HTTP code: 201 CREATED

Error response HTTP code: 400 BAD REQUEST, 500 INTERNAL ERROR

Table 6. REST API – POST /portal/rbac/login

POST /portal/rbac/login

 Parameter name Parameter type Description

Request Body

(JSON)

email String Email address of the new user

password String Password

Response body

access_token String
Access token to include in all the

requests for resources

Refresh_token String
Refresh token that allows access

token renewal

Successful response HTTP code: 200 OK

Error response HTTP code: 400 BAD REQUEST, 500 INTERNAL ERROR

Table 7. REST API – POST /portal/rbac/refreshtoken

POST /portal/rbac/refreshtoken

 Parameter name Parameter type Description

Request Body

(JSON)
refresh_token String

Refresh token to generate a new

access token

Response body

access_token String
Access token to include in all the

requests for resources

refresh_token String
Refresh token that allows access

token renewal

Successful response HTTP code: 200 OK

Error response HTTP code: 400 BAD REQUEST, 500 INTERNAL ERROR

Table 8. REST API – GET /portal/rbac/logout

GET /portal/rbac/logout

 Parameter name Parameter type Description

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 21 / 54

Authentication

Headers

Authorization: bearer

+ access_token
String

Header that stores the access to-

ken of the user

Request Body

(JSON)

Response body

access_token String
Access token to include in all the

requests for resources

refresh_token String
Refresh token that allows access

token renewal

Successful response HTTP code: 204 NO_CONTENT

Error response HTTP code: 401 UNAUTHORIZED, 500 INTERNAL ERROR

1.2.2 Experiment Lifecycle Manager Interface (Ielm)

The ELM REST API allows to request the creation, management and monitoring of experiments in the 5G EVE

platform. The list of the ELM REST APIs is defined in Table 9. The following tables Table 10 – Table 17

specify the single REST APIs.

Table 9. Experiment Lifecycle Manager REST API

HTTP method URI Description

POST /portal/elm/experiment Creates a new experiment.

GET
/portal/elm/experiment<?[filter_pa-

rameters]>

Returns a list of experiments matching a given

filter, i.e. based on the experiment identifier or

the experiment descriptor identifier. The ac-

ceptable filter_parameters are the following:

<Exp_ID; ExpD_ID>.

PUT
/portal/elm/experiment/{expId}/sta-

tus

Changes the status of an experiment. The per-

mitted changes are the following:

- from scheduling to accepted

- from scheduling to refused

- from accepted to ready

PUT
/portal/elm/experiment/{ex-

pId}/timeslot

Changes the proposed timeslot for an experi-

ment. The experiment must be in scheduling

state.

POST
/portal/elm/experiment/{expId}/ac-

tion/deploy

Deploys the virtual environment to run the ex-

periment (i.e. instantiates the associated NFV

network service). The experiment must be in

ready state.

POST
/portal/elm/experiment/{expId}/ac-

tion/execute

Executes of one or more tests for a given ex-

periment. The experiment must be in instanti-

ated state.

POST
/portal/elm/experiment/{expId}/ac-

tion/terminate

Terminates the virtual environment where the

experiment has been executed (i.e. terminates

the associated NFV network service). The ex-

periment must be in instantiated state.

DELETE /portal/elm/experiment/{expId}

Removes an experiment and its record from

the system. The experiment must be in refused,

terminated or failed state.

Table 10. REST API – POST /portal/elm/experiment

POST /portal/elm/experiment

 Parameter name Parameter type Description

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 22 / 54

Request body

experimentDescrip-

torId
String

ID of the experiment descriptor

defining the characteristics of the

experiment to be created.

timeslot ExecutionTimeSlot

Definition of the timeslot pro-

posed for the execution of the ex-

periment. Includes startTime and

endTime.

targetSites List<EveSite>
List of sites where the experiment

must be instantiated and executed.

Response body experimentId String ID of the created experiment.

Successful response HTTP code: 201 CREATED

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR

Table 11. REST API – GET /portal/elm/experiment<?[filter_parameters]>

GET /portal/elm/experiment<?[filter_parameters]>

 Parameter name Parameter type Description

URI Query

Parameters

expId String ID of the requested experiment.

expDId String

ID of the experiment descriptor

associated to the requested experi-

ments.

Response body experiments List<Experiment>

Information about the requested

experiments, including their re-

sults if available.

Successful response HTTP code: 200 OK

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR

Table 12. REST API – PUT /portal/elm/experiment/{expId}/status

PUT /portal/elm/experiment/{expId}/status

 Parameter name Parameter type Description

Request body status Enum New status of the experiment.

URI Variables expId String
ID of the experiment to be up-

dated.

Response body -- -- --

Successful response HTTP code: 202 ACCEPTED

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 409 CON-

FLICT, 500 INTERNAL ERROR

Table 13. REST API – PUT /portal/elm/experiment/{expId}/timeslot

PUT /portal/elm/experiment/{expId}/timeslot

 Parameter name Parameter type Description

Request body timeslot ExecutionTimeSlot

Definition of the new timeslot

proposed for the execution of the

experiment. Includes startTime

and endTime.

URI Variables expId String
ID of the experiment to be up-

dated.

Response body -- -- --

Successful response HTTP code: 202 ACCEPTED

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 409 CON-

FLICT, 500 INTERNAL ERROR

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 23 / 54

Table 14. REST API – POST /portal/elm/experiment/{expId}/action/deploy

POST /portal/elm/experiment/{expId}/action/deploy

 Parameter name Parameter type Description

Request body -- -- --

URI Variables expId String
ID of the experiment to be de-

ployed.

Response body -- -- --

Successful response HTTP code: 202 ACCEPTED

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 409 CON-

FLICT, 500 INTERNAL ERROR

Table 15. REST API – POST /portal/elm/experiment/{expId}/action/execute

POST /portal/elm/experiment/{expId}/action/execute

 Parameter name Parameter type Description

Request body
testCaseDescriptor-

Configuration

Map<String, Map<String,

String>>

Specification of the test cases to

be executed and their user config-

uration. The key of the outer map

is the testCaseDescriptorId. The

value is an inner map with the

user parameters for that test cases.

The test cases and the user param-

eters specified in the request over-

rides the ones defined in the ex-

periment descriptor. If this field is

empty, all the test cases defined in

the experiment descriptor are exe-

cuted by default.

URI Variables expId String
ID of the experiment to be exe-

cuted.

Response body -- -- --

Successful response HTTP code: 202 ACCEPTED

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 409 CON-

FLICT, 500 INTERNAL ERROR

Table 16. REST API – POST /portal/elm/experiment/{expId}/action/terminate

POST /portal/elm/experiment/{expId}/action/terminate

 Parameter name Parameter type Description

Request body -- -- --

URI Variables expId String
ID of the experiment to be termi-

nated.

Response body -- -- --

Successful response HTTP code: 202 ACCEPTED

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 409 CON-

FLICT, 500 INTERNAL ERROR

Table 17. REST API – DELETE /portal/elm/experiment/{expId}

DELETE /portal/elm/experiment/{expId}

 Parameter name Parameter type Description

URI Variables expId String
ID of the experiment to be de-

leted.

Response body -- -- --

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 24 / 54

Successful response HTTP code: 204 NO CONTENT

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 409 CON-

FLICT, 500 INTERNAL ERROR

1.2.3 Data Collection and Storage Interface (Idcs)

As presented in 5GEVE deliverable D4.1 [1], the Elastic Stack will be used in the 5G EVE project to implement

the DCS and the Data Visualization components. As a result, the REST APIs of all the components of the Elastic

Stack (Logstash, Elasticsearch and Kibana) are available and can be used for a given experiment.

In the case of the DCS REST API, it will be defined and described based on the Elasticsearch REST API, as it

is the component which directly interacts with the Data Visualization (Kibana) component. This REST API is

available in the Elastic official website1. Note that Elasticsearch (and also Logstash) can be managed directly

through Kibana, but this REST API enables the possibility to configure and access Elasticsearch features di-

rectly, as long as the user has enough privileges to access to the selected resources.

Some of the most interesting functionalities for the 5G EVE project provided by Elasticsearch through its REST

API are presented below. However, the final REST API definition will be specified in future implementation

deliverables. Table 18 to Table 27 introduce the relevant REST APIs.

Table 18. Data Collection and Storage REST API

HTTP method URI Description

GET /_ingest/pipeline/{pipeline}

Returns information about one or more ingest

pipelines. This API returns a local reference of

the pipeline.

PUT /_ingest/pipeline/{pipeline}
Creates or updates an ingest pipeline. Changes

made using this API take effect immediately.

DELETE /_ingest/pipeline/{pipeline} Deletes one or more existing ingest pipeline.

GET /{index}
Returns information about one or more in-

dexes.

PUT /{index} Creates a new index.

PUT /{index}/_mapping
Adds new fields to an existing index or

changes the search settings of existing fields.

POST /{index}/_graph/explore

Extracts and summarizes information about the

documents and terms in an Elasticsearch index.

The easiest way to understand the behaviour of

this API is to use the Graph UI to explore con-

nections.

GET/POST /{index}/_search
Returns search hits that match the query de-

fined in the request.

DELETE /{index} Deletes an existing index.

Table 19. REST API – GET /_ingest/pipeline/{pipeline}

GET /_ingest/pipeline/{pipeline}

 Parameter name Parameter type Description

Request body -- -- --

URI Variables pipeline String

(Optional) Comma-separated list

or wildcard expression of pipeline

IDs used to limit the request.

Query Parame-

ters
master_timeout Time units

(Optional) Specifies the period of

time to wait for a connection to

1 https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/rest-apis.html

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 25 / 54

the master node. If no response is

received before the timeout ex-

pires, the request fails and returns

an error. Defaults to 30s.

Response body

description String Description of the ingest pipeline.

processors List<Processor>

Array of processors used to pre-

process documents before index-

ing. Processors are executed in the

order provided.

version Integer

(Optional) Version number used

by external systems to manage in-

gest pipelines. Versions are not

used or validated by Elas-

ticsearch; they are intended for

external management only.

Successful response HTTP code: 200 OK.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

Table 20. REST API – PUT /_ingest/pipeline/{pipeline}

PUT /_ingest/pipeline/{pipeline}

 Parameter name Parameter type Description

Request body

description String Description of the ingest pipeline.

processors List<Processor>

Array of processors used to pre-

process documents before index-

ing. Processors are executed in the

order provided.

version Integer

(Optional) Version number used

by external systems to manage in-

gest pipelines. Versions are not

used or validated by Elas-

ticsearch; they are intended for

external management only.

URI Variables pipeline String
ID of the ingest pipeline to create

or update.

Query Parame-

ters
master_timeout Time units

(Optional) Specifies the period of

time to wait for a connection to

the master node. If no response is

received before the timeout ex-

pires, the request fails and returns

an error. Defaults to 30s.

Response body

description String Same as in request body.

processors List<Processor> Same as in request body.

version Integer Same as in request body.

Successful response HTTP code: 200 OK.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

Table 21. REST API – DELETE /_ingest/pipeline/{pipeline}

DELETE /_ingest/pipeline/{pipeline}

 Parameter name Parameter type Description

Request body -- -- --

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 26 / 54

URI Variables pipeline String

Pipeline ID or wildcard expres-

sion of pipeline IDs used to limit

the request. To delete all ingest

pipelines in a cluster, use a value

of *.

Query Parame-

ters

timeout Time units

(Optional) Specifies the period of

time to wait for a response. If no

response is received before the

timeout expires, the request fails

and returns an error. Defaults to

30s.

master_timeout Time units

(Optional) Specifies the period of

time to wait for a connection to

the master node. If no response is

received before the timeout ex-

pires, the request fails and returns

an error. Defaults to 30s.

Response body -- -- --

Successful response HTTP code: 200 OK.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

Table 22. REST API – GET /{index}

GET /{index}

 Parameter name Parameter type Description

Request body -- -- --

URI Variables index String

Comma-separated list or wildcard

expression of index names used to

limit the request. Use a value of

_all to retrieve information for all

indices in the cluster.

Query Parame-

ters

allow_no_indices Boolean

(Optional) If true, the request does

not return an error if a wildcard

expression or _all value retrieves

only missing or closed indices.

This parameter also applies to in-

dex aliases that point to a missing

or closed index.

expand_wildcards String

(Optional) Controls what kind of

indices that wildcard expressions

can expand to. Valid values are:

all: Expand to open and closed in-

dices.

open (default): Expand only to

open indices.

closed: Expand only to closed in-

dices.

none: Wildcard expressions are

not accepted.

flat_settings Boolean
(Optional) If true, returns settings

in flat format. Defaults to false.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 27 / 54

include_defaults String

(Optional) If true, return all de-

fault settings in the response. De-

faults to false.

ignore_unavailable Boolean

(Optional) If true, missing or

closed indices are not included in

the response. Defaults to false.

local Boolean

(Optional) If true, the request re-

trieves information from the local

node only. Defaults to false,

which means information is re-

trieved from the master node.

master_timeout Time units

(Optional) Specifies the period of

time to wait for a connection to

the master node. If no response is

received before the timeout ex-

pires, the request fails and returns

an error. Defaults to 30s.

Response body index Index Information about the index.

Successful response HTTP code: 200 OK.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

Table 23. REST API – PUT /{index}

PUT /{index}

 Parameter name Parameter type Description

Request body

aliases Alias
(Optional) Index aliases which in-

clude the index.

mappings Mapping

(Optional) Mapping for fields in

the index. If specified, this map-

ping can include: Field names,

Field datatypes and Mapping pa-

rameters.

settings IndexSetting
(Optional) Configuration options

for the index.

URI Variables index String
Name of the index you wish to

create.

Query Parame-

ters

wait_for_ac-

tive_shards
String

(Optional) The number of shard

copies that must be active before

proceeding with the operation. Set

to all or any positive integer up to

the total number of shares in the

index (number_of_replicas+1).

Default: 1, the primary shard.

timeout Time units

(Optional) Specifies the period of

time to wait for a response. If no

response is received before the

timeout expires, the request fails

and returns an error. Defaults to

30s.

master_timeout Time units

(Optional) Specifies the period of

time to wait for a connection to

the master node. If no response is

received before the timeout

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 28 / 54

expires, the request fails and re-

turns an error. Defaults to 30s.

Response body -- -- --

Successful response HTTP code: 200 OK.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

Table 24. REST API – PUT /{index}/_mapping

PUT /{index}/_mapping

 Parameter name Parameter type Description

Request body properties Mapping

Mapping for a field. For new

fields, this mapping can include:

Field name, Field datatype and

Mapping parameters.

URI Variables index String

Comma-separated list or wildcard

expression of index names used to

limit the request. To update the

mapping of all indices, omit this

parameter or use a value of _all.

Query Parame-

ters

allow_no_indices Boolean

(Optional) If true, the request does

not return an error if a wildcard

expression or _all value retrieves

only missing or closed indices.

This parameter also applies to in-

dex aliases that point to a missing

or closed index.

expand_wildcards String

(Optional) Controls what kind of

indices that wildcard expressions

can expand to. Valid values are:

all: Expand to open and closed in-

dices.

open (default): Expand only to

open indices.

closed: Expand only to closed in-

dices.

none: Wildcard expressions are

not accepted.

ignore_unavailable Boolean

(Optional) If true, missing or

closed indices are not included in

the response. Defaults to false.

timeout Time units

(Optional) Specifies the period of

time to wait for a response. If no

response is received before the

timeout expires, the request fails

and returns an error. Defaults to

30s.

master_timeout Time units

(Optional) Specifies the period of

time to wait for a connection to

the master node. If no response is

received before the timeout ex-

pires, the request fails and returns

an error. Defaults to 30s.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 29 / 54

Response body -- -- --

Successful response HTTP code: 200 OK.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

Table 25. REST API – PUT /{index}/_graph/explore

Table 26. REST API – GET/POST /{index}/_search

PUT /{index}/_graph/explore

 Parameter name Parameter type Description

Request body

query Query

A seed query that identifies the

documents of interest. Can be any

valid Elasticsearch query.

vertices List<Vertex>

Specifies or more fields that con-

tain the terms you want to include

in the graph as vertices.

connections List<Connection>

Specifies or more fields from

which you want to extract terms

that are associated with the speci-

fied vertices.

controls List<Control>
Direct the Graph API how to

build the graph.

URI Variables index String
Index to which you want to apply

the Graph explore operation.

Query Parame-

ters
-- -- --

Response body

vertices List<Vertex>

An array of all of the vertices that

were discovered. A vertex is an

indexed term, so the field and

term value are provided. The

weight attribute specifies a signif-

icance score. The depth attribute

specifies the hop-level at which

the term was first encountered.

connections List<Connection>

The connections between the ver-

tices in the array. The source and

target properties are indexed into

the vertices array and indicate

which vertex term led to the other

as part of exploration. The

doc_count value indicates how

many documents in the sample set

contain this pairing of terms (this

is not a global count for all docu-

ments in the index).

Successful response HTTP code: 200 OK.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

GET/POST /{index}/_search

 Parameter name Parameter type Description

Request body query Query
(Optional) Defines the search def-

inition using the Query DSL.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 30 / 54

Table 27. REST API – DELETE /{index}

DELETE /{index}/

 Parameter name Parameter type Description

Request body -- -- --

URI Variables index String

Comma-separated list or wildcard

expression of indices to delete. In

this parameter, wildcard expres-

sions match only open, concrete

indices. You cannot delete an in-

dex using an alias.

Query Parame-

ters

allow_no_indices Boolean

(Optional) If true, the request does

not return an error if a wildcard

expression or _all value retrieves

only missing or closed indices.

This parameter also applies to in-

dex aliases that point to a missing

or closed index.

expand_wildcards String

(Optional) Controls what kind of

indices that wildcard expressions

can expand to. Valid values are:

all: Expand to open and closed in-

dices.

open (default): Expand only to

open indices.

closed: Expand only to closed in-

dices.

none: Wildcard expressions are

not accepted.

2 This request manages a lot of Query parameters and have been omitted for better readability of the document. They can be found in

the following link: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html#search-search-api-request-

body

URI Variables index String

Comma-separated list or wildcard

expression of index names used to

limit the request.

Query Parame-

ters2
(see footnote 2) (see footnote 2) (see footnote)

Response body

took Integer
Milliseconds it took Elasticsearch

to execute the request.

timed_out Boolean

If true, the request timed out be-

fore completion; returned results

may be partial or empty.

_shards Object
Object containing a count of

shards used for the request.

hits Object
Contains returned documents and

metadata.

Successful response HTTP code: 200 OK.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html#search-search-api-request-body
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html#search-search-api-request-body

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 31 / 54

ignore_unavailable Boolean

(Optional) If true, missing or

closed indices are not included in

the response. Defaults to false.

timeout Time units

(Optional) Specifies the period of

time to wait for a response. If no

response is received before the

timeout expires, the request fails

and returns an error. Defaults to

30s.

master_timeout Time units

(Optional) Specifies the period of

time to wait for a connection to

the master node. If no response is

received before the timeout ex-

pires, the request fails and returns

an error. Defaults to 30s.

Response body -- -- --

Successful response HTTP code: 200 OK.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

1.2.4 File Storage Interface (Ifs)

This component is mainly used to exchange VNF packages between VNF providers and site managers to request

the onboarding of a VNF package. Table 28 to Table 30 introduce the relevant REST API end-points.

Table 28. File Storage REST API

HTTP method URI Description

POST /portal/fs/upload
Used to upload a single zip file and a list of

one or more sites that have to be notified.

GET /portal/fs/download/{fileUuid}
A user requests to download the file identified

with UUID.

Table 29. REST API - POST /portal/fs/upload

POST /portal/fs/upload

 Parameter name Parameter type Description

Request body

dzuuid String UUID of the uploaded file

dzchunkindex Integer
Index of the chunk being trans-

mitted.

dztotalfilesize Integer Total size of the file.

dzchunksize Integer
Size of the chunk being transmit-

ted.

dztotalchunkcount Integer
Total number of chunks of the

file.

dzchunkbyteoffset Integer Offset of the chunk in the file.

List<site> String
Sites to be notified about the cur-

rent uploading.

URI Variables -- -- --

Response body -- -- --

Successful response HTTP code: 202 ACCEPTED

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 409 CON-

FLICT, 500 INTERNAL ERROR

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 32 / 54

Table 30. REST API - GET /portal/fs/download/{fileUuid}

GET /portal/fs/download/{fileUuid}

 Parameter name Parameter type Description

Request body - - -

URI Variables Uuid String
UUID of the file to be down-

loaded

Response body File Base64 The requested file

Successful response HTTP code: 200 OK

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 409 CON-

FLICT, 500 INTERNAL ERROR

1.2.5 Catalogue Service Interface (Ics)

The Portal Catalogue REST APIs allow to create, retrieve, and remove blueprints and descriptors for vertical

services, experiment execution contexts, test cases, and experiments. Their full specification is available in the

5G EVE deliverable D4.1 [1], section 5.3.1.

1.2.6 Ticketing System Backend Interface (Itsb)

Similar to other modules, the TSB will be offered by using an open source project, in this case Bugzilla. The

REST API provided by Bugzilla can be found in their website3. Some examples of the Bugzilla REST API are

shown in Table 31 to Table 34.

Table 31. Ticketing System backend REST API

HTTP method URI Description

POST /portal/bugzilla/rest/bug Create a new bug

PUT /portal/bugzilla/rest/bug/{Id} Update an existing bug

GET /portal/bugzilla/rest/bug/{Id} Gets information about a particular bug

Table 32. REST API - POST /portal/bugzilla/rest/bug

POST /portal/bugzilla/rest/bug

 Parameter name Parameter type Description

Request body

Product String
The name of the product the bug

is being filed against.

Component String
The name of a component in the

product above.

Summary String
A brief description of the bug be-

ing filed

Version String
A version of the product above;

the version the bug was found in

Description String

(defaulted) The initial description

for this bug. Some Bugzilla instal-

lations require this to not be blank

Op_sys String
(defaulted) The operating system

the bug was discovered on

Priority String
(defaulted) What order the bug

will be fixed in by the developer,

3 https://wiki.mozilla.org/Bugzilla:REST_API

https://wiki.mozilla.org/Bugzilla:REST_API

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 33 / 54

compared to the developer's other

bugs

URI Variables -- -- --

Response body Id Integer
This is the ID of the newly-filled

bug.

Successful response HTTP code: 202 ACCEPTED

Error response HTTP code: 51 INVALID OBJECT, 103 INVALID ALIAS, 104 INVALID FIELD, 105

INVALID COMPONENT, 106 INVALID PRODUCT, 107 INVALID SUMMARY, 504 INVALID

USER

Table 33. REST API - PUT /portal/bugzilla/rest/bug/{Id}

PUT /portal/bugzilla/rest/bug/{Id}

 Parameter name Parameter type Description

Request body

Product String
The name of the product the

bug is being filed against.

Component String
The name of a component in

the product above.

Summary String
A brief description of the bug

being filed

Version String

A version of the product

above; the version the bug was

found in

Description String

(defaulted) The initial descrip-

tion for this bug. Some

Bugzilla installations require

this to not be blank

Op_sys String
(defaulted) The operating sys-

tem the bug was discovered on

Priority String

(defaulted) What order the bug

will be fixed in by the devel-

oper, compared to the develop-

er's other bugs

URI Variables -- -- --

Response body Id Integer
This is the ID of the newly-

filled bug.

Successful response HTTP code: 202 ACCEPTED

Error response HTTP code: 51 INVALID OBJECT, 103 INVALID ALIAS, 104 INVALID

FIELD, 105 INVALID COMPONENT, 106 INVALID PRODUCT, 107 INVALID SUMMARY,

504 INVALID USER

Table 34. REST API - GET /portal/bugzilla/rest/bug/{Id}

GET /portal/bugzilla/rest/bug/{Id}

 Parameter name Parameter type Description

Request body -- -- --

URI Variables Id String The ID of the requested bug

Response body Actual_time Double

The total number of hours that

this bug has taken so far. If you

are not in the time-tracking group,

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 34 / 54

this field will not be included in

the return value

Alias Array

The unique aliases of this bug. An

empty array will be returned if

this bug has no aliases

Assigned_to String
The login name of the user to

whom the bug is assigned

Creator String
The login name of the person who

filed this bug (the reporter)

Status String The current status of the bug

… … …

URI Variables -- -- --

Response body Id Integer
This is the ID of the newly-filled

bug.

Successful response HTTP code: 202 ACCEPTED

Error response HTTP code: 101 INVALID BUG ALIAS, 101 INVALID BUG ID, 102 ACCESS DE-

NIED

1.3 Portal backend southbound interface

The Southbound Interface (SBI) of the portal backend is responsible of the communication between the different

components of the Interworking framework. The SBI implements a REST client to consume the services defined

by the following components of the Interworking framework, and highlighted in Figure 7:

• Data Collection Manager (DCM)

• Runtime Configurator

• Multi-site Network Service Orchestrator

• Multi-site Catalogue/Inventory

Figure 7: Simplified architecture of Southbound Interface of Portal backend and I/W Layer

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 35 / 54

1.3.1 DCM Interface (Idcm)

The Data Collection Manager of the Interworking Layer exposes the Idcm interface4 to the DCS and ELCM in

order to enable the interaction between these components through the publish-subscribe queue. This interface

can be implemented with two different technologies:

• Kafka native protocol: this is the case for the interconnection between the DCM and the DCS, as the

DCS will use both Logstash and Python clients for deploying the subscribers to the different topics that

may be present for each experiment.

• REST API: built for components that are not compatible with the Kafka native protocol, e.g. the

ELCM. In this case, the three main operations provided by the DCM (subscribe, publish and unsub-

scribe note that the delivery operation is performed automatically) are exposed through a REST API.

The different interactions between components are described in D4.1 [1] with the different phases that belong

to the experiment monitoring and performance analysis: subscription phase, monitoring and data collection

phase, and withdrawal phase.

In order to achieve the process automation in all these phases, the DCM OpenAPI specification has been slightly

modified, as it was directly based on the Kafka Confluent REST API, but it has been detected that it is not

enough for the workflows that are intended to be executed. As a result, the server which holds the DCM will

also include a REST Proxy, which receives the requests from external components and redirects them to Kafka

in order to execute properly the three operations aforementioned. This new OpenAPI specification is presented

below and will be extended in the future D3.4 related to the update of the I/W Layer implementation, including

all the feedback obtained during the implementation phase that will be performed in the following months.

Table 35. Updated Data Collection Manager OpenAPI specification.

HTTP method URI Description

POST /dcm/subscribe

Subscribe to the given list of topics. This oper-

ation also creates the topics in Kafka if they do

not already exist (subscribe operation).

POST /dcm/publish/{topicName}
Post messages to a given topic (publish opera-

tion).

DELETE /dcm/unsubscribe

Unsubscribe to the given list of topics. This

operation also deletes the topics in Kafka if it

has not been done before (unsubscribe opera-

tion).

Table 36. Data Collection Manager REST API – POST /dcm/subscribe

4 This interface is also exposed to the Results Analysis and Validation module, which is currently defined in WP5 and is out of the

scope of this deliverable.

POST /dcm/subscribe

 Parameter name Parameter type Description

Request body
topics List<String>

Array of topics, separated by

commas. They can be topics re-

lated to signalling operations, in-

frastructure and application met-

rics, KPIs and results (if needed).

expId String Experiment ID.

URI Variables -- -- --

Query Parame-

ters
-- -- --

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 36 / 54

Table 37. Data Collection Manager REST API – POST /dcm/publish/{topicName}

Table 38. Data Collection Manager REST API – DELETE /dcm/unsubscribe

Response body -- -- --

Successful response HTTP code: 201 Accepted.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

POST /dcm/publish/{topicName}

 Parameter name Parameter type Description

Request body record List<value>

“value” data is provided to the

components subscribed to top-

icName.

The content of this “value” pa-

rameter depends on the publisher.

In case of VNFs/PNFs, this must

contain, at least, the metric name

and its value. For the ELCM,

which interacts with the DCM for

delivering the topics to be

(un)subscribed, the parameters in-

cluded within “value” must be the

following:

“topic” (String): topic to be

(un)subscribed. It can be a topic

related infrastructure and applica-

tion metrics, KPIs and results (if

needed).

“expId” (String): experiment ID.

“action” (String): can be “sub-

scribe” or “unsubscribe”, depend-

ing on the phase in which this op-

eration is executed.

URI Variables topicName String Topic name.

Query Parame-

ters
-- -- --

Response body -- -- --

Successful response HTTP code: 201 Accepted.

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

DELETE /dcm/unsubscribe

 Parameter name Parameter type Description

Request body
topics List<String>

Array of topics, separated by

commas. They can be topics re-

lated to signalling operations, in-

frastructure and application met-

rics, KPIs and results (if needed).

expId String Experiment ID.

URI Variables -- -- --

Query Parame-

ters
-- -- --

Response body -- -- --

Successful response HTTP code: 201 Accepted.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 37 / 54

1.3.2 Multi-site Network Service Orchestrator Interface (Imnso)

The Experiment Lifecycle Manager (ELCM) implements REST client that is able to request resources defined

in MNSO. The ELCM provides ability to request Lifecycle Management operations defined by MNSO and

executed through multiple site orchestrators.

The API published by the 5G EVE project for the Multi-Site Network Orchestrator5 contains full ETSI NFV

SOL 005 Network Service LCM API (defined in standard [5]). Table 39 highlights the available method at the

MNSO level, which the ELCM are able to request.

Table 39. Experiment Lifecycle Manager to Multi-site Network Service Orchestrator API specification.

HTTP

METHOD
URI Description

POST
/nslcm/v1/ns_in-

stances
Create a new Network Service in the MSNO.

GET
/nslcm/v1/ns_in-

stances
Returns the information of all NS available at MSNO/MSI

POST

/nslcm/v1/ns_in-

stances/{nsIn-

stanceId}/instantiate

Instantiate a NS in the local NFV-O

GET

/nslcm/v1/ns_in-

stances/{nsIn-

stanceId}

Returns the information of a NS

DELETE

/nslcm/v1/ns_in-

stances/{nsIn-

stanceId}

Deletes a NS from MSNO

POST
/ns_instances/{nsIn-

stanceId}/terminate
Terminate NS instance from MNSO

1.3.3 Multi-Site Service Inventory/Service Catalogue Interface (Imsci)

The interface between the Portal Catalogue and the I/W Framework Catalogue is used to on-board the Network

Service Descriptors (NSD) associated to the blueprints and to retrieve information about the NSDs and the VNF

packages available in the 5G EVE sites. This interface is fully documented in D4.1 [1], section 5.3.2.

1.3.4 Experiment Execution Manager Interface (Ieem)

The interface between the ELM and the EEM is used to create and to run experiment executions, as well as to

receive asynchronous notifications about their progress and to query information about their results. This inter-

face is fully documented in D5.2 [6], section 3.3.2.

1.4 Portal GUI

This subsection introduces the main components defined at the graphical user interface (GUI) layer, where the

user can exploit the services provided by the Portal backend.

5 https://github.com/5GEVE/OpenAPI/v0.2/MSN

Error response HTTP code: 400 BAD REQUEST, 403 FORBIDDEN, 404 NOT FOUND, 500 INTER-

NAL ERROR.

https://github.com/5GEVE/OpenAPI/v0.2/MSN

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 38 / 54

1.4.1 VNF Storage

A VNF provider may access the 5G EVE graphical interface where he/she can select one local file to be up-

loaded to the portal and one or more sites to be contacted, using a multiple-choice list. After a successful up-

loading, the system creates as many tickets as sites selected by the user. The rest of the process can be followed

using the ticketing service.

1.4.2 Sign-up/Login

The Sign-up and login components allow the creation of new users together with a plain and simple way of

authentication across multiple micro-services. Both components are simple to use and the users are guided to

create a new account or perform a correct login to obtain the required access token for accessing all the func-

tionalities provided by the Portal.

1.4.3 Experiment Blueprint Builder

The Experiment Blueprint Builder is a component of the Portal web GUI, it provides a simple wizard to guide

the experiment developer in the definition of an Experiment Blueprint. This wizard is organized in steps where

the user selects the components of the Experiment Blueprint, defines its parameters (e.g. metrics and KPIs) and

on-boards the associated NSD and translation rules. It should be noted that initially, the NSD must be compiled

manually by the user. Upcoming deliverable D4.3 will introduce a new tool to automate the generation of the

NSD starting from the high-level attributes of the blueprint.

The steps of the wizard for building a new experiment blueprint are depicted in Figure 8 to Figure 14. In partic-

ular, the experiment developer initially provides general information about the experiment blueprint, e.g. its

name, version and a textual description (Figure 8). The second step (Figure 9) requires the selection of the site

where to execute the experiment and the corresponding vertical service, this is followed by the selection of the

context blueprint(s) to be used in the experiment (Figure 10). Both vertical service and context can be selected

from the list of available blueprints in a specific site catalogue, proposed in the web GUI.

The next step (Figure 11) allows the developer to on-board the NSD of the service to be deployed on the 5G

EVE site which runs the experiment. The NSD is provided in a json file and structured according to the ETSI

NFV IFA 014 [4] format. After that, the experiment developer specifies how the network service needs to be

instantiated for different configurations of the experiments. This is done through the specification of translation

rules (Figure 12). This allows to match a set of service parameter ranges with the target triple <NSD; deployment

flavour; instantiation level>.

Finally, the experiment developer species all the details related to the experiment execution and validation. This

is done defining the metrics and KPIs to be collected (Figure 13) and the list of Test Cases to be executed (Figure

14).

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 39 / 54

Figure 8: Experiment Blueprint Builder – Specification of general information

Figure 9: Experiment Blueprint Builder – Selection of Vertical Service Blueprint

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 40 / 54

Figure 10: Experiment Blueprint Builder – Selection of Context Blueprint

Figure 11: Experiment Blueprint Builder – NSD onboarding

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 41 / 54

Figure 12: Experiment Blueprint Builder – Specification of translation rules

Figure 13: Experiment Blueprint Builder – Specification of metrics and KPIs

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 42 / 54

Figure 14: Experiment Blueprint Builder – Selection of test case blueprints

1.4.4 Data Visualization

In the Portal GUI, the Data Visualization component is the top layer from the Experiment monitoring and

Maintenance & Results Collection toolchain, as described in D4.1 [1]. It presents the results, metrics and KPIs

collected and saved by the DCS through an intuitive GUI, enabling the monitoring of the progress of the exper-

iment in terms of that information displayed and allowing verticals to interact partially with the visualization

tool in an online fashion.

The component implementing this functionality is Kibana6, from the Elastic Stack, as presented in Figure 6. Its

main functionalities are the following:

• Visualize the data provided by the DCS and navigate all the Experiment monitoring and Maintenance

& Results Collection stack from the same point.

• Provide freedom to select the way to give shape to the data, using a huge variety of interactive visuali-

zations.

• Share visualizations to other actors easily by using the sharing option that works for each stakeholder

(e.g. embed a dashboard, share a link, or export to PDF, PNG or CSV files and send as an attachment).

• Organize the dashboards and visualizations through specific spaces.

• Use role-based access control to invite users to certain spaces (and not others), giving them access to

specific content and features.

• Monitor the whole Experiment monitoring and Maintenance & Results Collection stack, enabling the

configuration of additional features (e.g. add data, secure access, manage pipelines, read the content of

ingested files, etc.) by using a visual UI.

• Customise the way of representing data with unique logos, colours and design elements, uploading these

designs to the platform in order to use them.

6 https://www.elastic.co/products/kibana

https://www.elastic.co/products/kibana

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 43 / 54

As user management in the Elastic Stack is provided by the Elasticsearch component, Kibana can also leverage

on the functionalities provided by the Role-Based Access Control (RBAC) component for ensuring the Single

Sign-On authentication and authorization of users in the monitoring platform.

1.4.5 Browse and look-up

The Browse and look-up tool provides a graphical interface to facilitate to 5G EVE’s users the browsing and

visualization of the elements stored in 5G EVE catalogues, at the portal and at the I/W framework. The tool

provides a view of blueprints and descriptors for vertical services, experiment execution contexts, test cases,

experiments, NFV network services, VNFs and PNFs, showing their main information and graphical represen-

tations. A full description of the browse and look-up tool is available in D4.1 [1], section 4.3.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 44 / 54

2 Experimental Portal implementation
This section presents implementation details about all the components included in the 5G EVE Portal, both at

the backend and the GUI layers. The software can be found following the links shown in Table 40.

Table 40. Links to the 5G EVE Portal software.

Component URL

Sign-up/Login and RBAC https://github.com/5GEVE/5G-EVE-PORTAL-BACKEND-

rbac

VNF storage and File storage https://github.com/5GEVE/5G-EVE-PORTAL-BACKEND-

fs

Experiment Blueprint Builder Included in Portal Catalogue GUI, available at: https://gi-

thub.com/nextworks-it/slicer-catalogue/tree/5geve-re-

lease/EVE_CATALOGUE_GUI

Experiment Lifecycle Manager https://github.com/nextworks-it/experiment-portal/tree/mas-

ter/ExperimentLifecycleManager

Ticketing System Backend https://github.com/5GEVE/5G-EVE-PORTAL-BACKEND-

tsb

Other components declared in D4.1 https://www.5g-eve.eu/wp-content/uploads/2019/11/5g-eve-

d4.1-experimentation-tools-and-vnf-repository.pdf

2.1 Portal backend

The Portal backend is composed by a number of stand-alone software components that interact with each other

and with the underlying I/W framework, mainly using REST APIs. The entities that provide services for the 5G

EVE users also offer north-bound APIs towards the Portal GUI, which mediates the access to the different

functionalities implemented in the backend. The following sections provide the details of the implementation

for the components of the Portal backend.

2.1.1 Role-Based Access Control

The RBAC component is implemented in Python using the Flask microframework. Flask is a super lightweight

WSGI web application framework that provides simplicity, flexibility and fine-grained control. Based on that,

we implemented a set of endpoints that conforms a REST API exposed both to front-end application and back-

end components. RBAC can be seen as a middleware interface between the front-end application and the IAM

service for making this communication decoupled and avoid HTTP redirections.

For the IAM service, we deployed one of the most valuated open source options called Keykloak. The Keycloak

service is based on Java and provides Identity and Access Management together with Single Sign-On capabili-

ties. In order to communicate with the IAM service, we have implemented an OpenID client in python in order

to enable the communication between the Flask application and Keycloak. The OpenID client uses both OpenID

and administration endpoints exposed by Keycloak. We have included the client as a module of the Flask ap-

plication to combine the endpoints exposed by Flask and the functionality provided by the OpenID client.

2.1.2 Experiment Lifecycle Manager

The Experiment Lifecycle Manager (ELM) is implemented in Java, as a Spring-boot application. It adopts

Apache Maven [7] as building tool, PostgreSQL [8] as backend database and RabbitMQ [9] as internal bus for

the exchange of asynchronous messages among the ELM internal components.

The ELM high-level software architecture is represented in Figure 15. At the ELM northbound, the REST APIs

offered to the ELM clients is implemented through the “ELM REST controller” module. The HTTP messages

are based on JSON and they are parsed and formatted using the Jackson library [10]. The authentication and

authorization of the HTTP messages is handled interacting with the RBAC system, using Keycloak as backend

server (this interaction is omitted from the picture for simplicity).

https://github.com/5GEVE/5G-EVE-PORTAL-BACKEND-rbac
https://github.com/5GEVE/5G-EVE-PORTAL-BACKEND-rbac
https://github.com/5GEVE/5G-EVE-PORTAL-BACKEND-fs
https://github.com/5GEVE/5G-EVE-PORTAL-BACKEND-fs
https://github.com/nextworks-it/slicer-catalogue/tree/5geve-release/EVE_CATALOGUE_GUI
https://github.com/nextworks-it/slicer-catalogue/tree/5geve-release/EVE_CATALOGUE_GUI
https://github.com/nextworks-it/slicer-catalogue/tree/5geve-release/EVE_CATALOGUE_GUI
https://github.com/nextworks-it/experiment-portal/tree/master/ExperimentLifecycleManager
https://github.com/nextworks-it/experiment-portal/tree/master/ExperimentLifecycleManager
https://github.com/5GEVE/5G-EVE-PORTAL-BACKEND-tsb
https://github.com/5GEVE/5G-EVE-PORTAL-BACKEND-tsb
https://www.5g-eve.eu/wp-content/uploads/2019/11/5g-eve-d4.1-experimentation-tools-and-vnf-repository.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/11/5g-eve-d4.1-experimentation-tools-and-vnf-repository.pdf

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 45 / 54

The ELM REST controller manages the received requests providing the parsing and a first validation of the

message format, delegating the actual implementation of the requested functionalities to the “ELM Engine”.

The ELM Engine represents the core of the ELM prototype and it is developed as a singleton that implements

the java “ELM Service Interface”, which in turn offers all the primitives related to the creation, retrieval and

lifecycle management of 5G EVE experiments.

Whenever the ELM receives a request for the creation of a new experiment, the ELM Engine creates a new

entry in the internal records and instantiates a new “Experiment Instance Manager”. This module is in charge

of managing the Finite State Machine (FSM) regulating the lifecycle of the experiment (see section 1.1.2 for

details about the FSM of 5G EVE experiments) and implements the logic that coordinates the interaction with

the 5G EVE platform external entities. For persistency reasons, the information related to the experiments are

kept not only in the local memory, but also in the PostgreSQL-based database. The access to the database is

handled using the Java Persistency API (JPA), that mediates the interaction with the ELM JPA repositories, and

it is wrapped through the “ELM Records Manager”. This component provides a set of synchronized methods to

create, update, query and delete experiments from the internal records.

Figure 15: Experiment Lifecycle Manager: high-level architecture

The ELM engine acts as a message dispatcher towards the different instances of Experiment Instance Managers,

enabling an efficient management of concurrent experiments and the asynchronous communication with exter-

nal software components, like the I/W framework MSNO and the EEM. In particular, the ELM Engine receives

requests or notifications coming from external entities, it identifies the particular experiment instance, the mes-

sage is referred to and, where needed, it dispatches the message to the related Experiment Instance Manager,

feeding its FSM process. The interaction between ELM Engine and Experiment Instance Manager is handled

through RabbitMQ queues, using topics with the structure “lifecycle.<action>.<experimentId>”. Each Experi-

ment Instance Manager is registered to receive all the messages with topic “lifecycle.*.<experimentId>”, where

the “experimentId” field indicates the unique identifier of the managed experiment.

The queries received by the ELM Engine, e.g. from the ELM NBI through the ELM REST controller, are pro-

cessed synchronously directly interacting with the ELM Records Manager.

The interaction with the other elements of the 5G EVE platform is handled through a set of “south-bound ser-

vice” components. Each of them is implemented as a singleton that wraps the complexity of the tool-specific

communication and offers a single point of contact, modelled as a well-defined java interface, towards the

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 46 / 54

external tool for all the ELM internal entities. The details of the communication are handled through dedicated

drivers, allowing to easily manage future changes in the external components.

The drivers are implemented as REST clients for all the external components requiring only a synchronous

interaction with the ELM. These components are the DCS, used to register and unregister experiments metrics

and KPIs; the Portal Catalogue, used to query blueprints or descriptors and to retrieve the translation towards

the NFV network service descriptors; and the Bugzilla-based Ticketing tool used to send tickets to the 5G EVE

users.

The drivers towards entities with an asynchronous and bidirectional interaction with the ELM include not only

a REST client, but also a REST controller. This module is in charge of receiving and parsing the external noti-

fications, forwarding them to the ELM Engine where they are processed and dispatched to the associated Ex-

periment Instance Manager. This kind of interaction is implemented for the MSNO and the EEM.

The ELM software is released as open source software under the Apache 2.0 license and it is available in the

following public repository:

https://github.com/nextworks-it/experiment-portal/tree/master/ExperimentLifecycleManager

2.1.3 Data Collection and Storage

As described previously, the Data collection and storage component will be implemented with Logstash and

Elasticsearch, including different plugins for value-added functionalities, such as the management of the infra-

structure and application metrics, KPIs and results that are provided by the ELCM, or the integration of authen-

tication and authorization mechanisms provided by the RBAC with Keycloak.

Currently, a “dockerized” environment for testing the 5G EVE Monitoring & Data Collection tools is available

in the following repository:

https://github.com/5GEVE/5geve-wp4-monitoring-dockerized-env

This project implements the Elastic Stack connected to a Kafka cluster, which plays the role of the Data Col-

lection Manager component of the Interworking Layer.

Currently, it misses the following functionalities, which will be detailed, included and referenced in the next

deliverable D4.5:

• Decoupling of Data Collection Manager and ELK Stack in the repository aforementioned. It is intended

to deploy both components separately in the integration phase and check that the workflows are exe-

cuted correctly.

• Full integration of Keycloak for enabling Single Sign-On procedures for authentication and authoriza-

tion of users. This will be done with the installation of a Keycloak Proxy in the server which holds the

DCS, handling the communication with the RBAC.

• Definition of roles for establishing the permissions for accessing to the different REST APIs of each

component that belongs to ELK.

• Deployment of a Python client for the interaction with the Data Collection Manager during all phases

of the experiment monitoring and performance analysis workflow, using the Kafka native protocol for

the communication between both components.

2.1.4 File Storage

This component is implemented using Python and several Python libraries like flask and werkzeug. Because a

file could be sent in several chunks, the file storage backend is prepared to receive several POST methods for

https://github.com/nextworks-it/experiment-portal/tree/master/ExperimentLifecycleManager
https://github.com/5GEVE/5geve-wp4-monitoring-dockerized-env

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 47 / 54

the same file. For the first chunk, the server checks if a file with the same name already exist in the data directory.

If so, the server replies with a 400 error.

After receiving a chunk, the server appends the chunk to the file by using the dzchunkbyteoffset parameter

included in the request, which identifies the starting position of the chunk within the whole file. When the last

chunk of the file is received, and after checking that the local file size matches the dztotalfilesize parameters

included in the request, the server replies back with a success message.

2.1.5 Catalogue Service

The 5G EVE Portal Catalogue is developed as an extension of the Vertical Service Blueprint catalogue embed-

ded in the 5G-TRANSFORMER Vertical Slicer
7
. The software design of the Portal Catalogue is fully docu-

mented in deliverable D4.1 [1], section 5.4.

The 5G EVE Portal Catalogue software is released as open source software under the Apache 2.0 license and it

is available in the following public repository:

https://github.com/nextworks-it/slicer-catalogue/tree/5geve-release

2.1.6 Ticketing System Backend

As already described in deliverable D4.1 [1], this component will be deployed using the Bugzilla open source

software [11].

2.2 Portal GUI

2.2.1 VNF Storage

The VNF storage component will be implemented as a component of the 5G EVE Portal Catalogue. This com-

ponent will be implemented inside Angular 8 framework, following the approach of implementing a stateless

component that relies on a service to perform all the functionality.

2.2.2 Sign-up/Login

The sign-up and login components are implemented inside the web-based GUI for the 5G EVE Portal Catalogue.

Both sign-up and login are implemented as components inside Angular 8 framework. We have implemented

two angular services supporting the authentication functionality that consumes the RBAC component placed at

the back-end. Following this structure, the functionality and visualization of the component is decoupled from

the service that consumes the RBAC component.

The implementation will be included as part of the 5G EVE Portal Catalogue repository at “EVE_CATA-

LOGUE_GUI”.

2.2.3 Data Visualization

As described previously, this component will be implemented with Kibana from the Elastic Search, providing

an environment which integrates both Data Collection and Storage and Data Visualization components.

This Data Visualization component is also integrated in the “dockerized” environment which has been men-

tioned in the Data Collection and Storage implementation subsection (2.1.3). As a first approach, the integration

of this component in the Portal GUI will be done providing a single URL to access to all the capabilities exposed

by Kibana, but it is expected to integrate both GUI in a single view eventually, aspect that will be covered in

next implementation deliverables.

2.2.4 Browse and lookup

7 https://github.com/5g-transformer/5gt-vs

https://github.com/nextworks-it/slicer-catalogue/tree/5geve-release
https://github.com/5g-transformer/5gt-vs

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 48 / 54

The Browse and lookup tool is implemented as a web-based GUI for the 5G EVE Portal Catalogue. The web

application runs on Node JS, it is written in TypeScript and it is based on the Angular 8 framework, using the

Angular Material toolkit for the graphical layout. Its implementation is reported in deliverable D4.1 [1], sections

4.3.2-4.3.4.

The software is an open source software under the Apache 2.0 license, and it is available in the following public

repository (in the “EVE_CATALOGUE_GUI” folder):

https://github.com/nextworks-it/slicer-catalogue/tree/5geve-release

https://github.com/nextworks-it/slicer-catalogue/tree/5geve-release

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 49 / 54

3 Service handbook
This section presents the main steps to design, define, prepare and execute experiments using the 5G EVE Portal

GUI. This explanation will be structured based on the three different phases already presented in D4.1 [1]: (i)

experiment design and definition, (ii) experiment preparation and (ii) experiment execution. For the sake of

completeness, in this deliverable we include Figure 16, which is also included in D4.1. This figure describes the

workflow and iterations between the different actors and the 5G EVE Portal GUI to implement each phase.

Figure 16: Experiment phases, main actions and actors involved.

3.1 Experiment design and definition

This first stage starts with an offline iteration between verticals and both VNF providers and experiment devel-

opers (step 1 in Figure 16). The result of this iteration is a set of VNFs generated by the VNF providers to be

on-boarded in one or different sites and the proper information to define the related Blueprints and NSDs (see

D4.1 [1]). Then, the following actions have to be executed in sequence (steps 2 in Figure 16):

• VNF uploading performed by VNF provider using the VNF storage functionality provided by the Portal

GUI. VNF providers have to upload a zip file including the proper VNFD and constituent images, to-

gether with a list of sites where the uploaded VNF have to be onboarded. This action triggers the crea-

tion of one ticket per selected site, including the link to the uploaded zip package. This way, site man-

agers can download such package to check it and, if valid, onboard it on their local NFVO.

• Blueprints and NSD definition and onboarding by experiment developers. There are different steps to

perform these actions:

o Experiment developers have to define VSB, CB, TCB and NSD supported by the Browse, look-

up and onboarding tool, which can be used to collect the identifiers of the constituent compo-

nents (i.e., VNFs and PNFs). Experiment developers can browse available components, using

the provided information to define all these blueprints and descriptors offline, to finally onboard

them to the 5G EVE catalogue.

o Define Experiment Blueprints (ExpB) by experiment developers using the Experiment Blue-

print Builder available at the Portal GUI. This tool provides the functionality to select a base

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 50 / 54

VSB and then attach zero or more Context Blueprints. Finally, one or more Test Case Blue-

prints could be attached to the ExpB.

The above procedures are summarized in Table 41 below.

Table 41. 5G EVE Portal Experiment design and definition actions summary.

Action Actor
GUI Compo-

nent
Description Output

VNF Uploading
VNF Pro-

vider
VNF Storage

Upload a zip file containing the

proper VNFD and the corre-

sponding images. Can include a

list of sites indicating where the

uploaded VNFs should be

onboarded.

As many tickets as

sites selected.

Blueprints and

NSD definition

and onboarding

Experiment

Developers

BLUO

Define VSB, CB, TCB & NSD,

followed by onboarding of these

descriptors to the 5G EVE cata-

logue

Blueprints and NSDs

onboarded on the 5G

EVE Portal catalogue.

EBB

Define ExpB by attaching to a

VSB one or more CBs and

TCBs.

An ExpB.

3.2 Experiment preparation

Experimenters and site managers are the two actors involved in this phase. The former use Blueprints and NSDs

created in the previous phase to complete the missing information to fully define an experiment. This is done in

steps (3) and (4) shown in Figure 16, and there are two different ways to perform this task:

• Experimenters use one of the functionalities provided by the Intent-Based Networking (IBN) tool to

express their intent to execute an experiment. The IBN tool selects the most appropriate ExpB, filling

in the input parameters using the information provided in the intent. If, after processing the intent, the

tool detects any missing parameter, additional information will be requested from the experimenter.

The result is the creation of an experiment object, which includes a reference to the resulting ExpD.

• Experimenters can also use the guided selection service provided by the IBN tool to select an ExpB and

then the tool requests all input parameters. Similar to the previous case, the result is the creation of an

experiment object, which includes a reference to the resulting ExpD.

The previous steps end with the creation of a new ticket, which will be received by all site managers involved

in the experiment (this information is included in the experiment object). The ticket includes all information

available in the experiment object, such as the experiment descriptor identifier, the proposed days to execute

the experiment, etc. With this information, the site managers have to prepare their infrastructure to accommodate

the experiment. Site managers will reply to these tickets to schedule the experiment. This is further illustrated

in Table 42.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 51 / 54

Table 42. 5G EVE Portal Experiment preparation.

Action Actor
GUI Compo-

nent
Description Output

Experiment

preparation

Experimenters IBN

Use the intent to execute an experiment

and with this intent, the IBN tool selects

the most appropriate ExpB and fills in

the input parameters.

ExpD and

experiment

object.

Creation of a

new ticket Select an ExpB and the IBN tool re-

quests all input parameters

Site Managers

Ticketing

GUI. Run Ex-

periment.

Receive of a new ticket generated by the

previous step and preparation of the 5G

EVE infrastructure to accommodate the

experiment

Schedule

experiment

3.3 Experiment execution

When the experiment is in the ready state, experimenters can request the execution of the experiment (step (7)

in Figure 16). Experimenters, using the Run Experiment service provided by the 5G EVE GUI, requests the

execution of a given experiment object. Finally, experimenters can monitor the metrics defined in the Experi-

ment Blueprint either while the experiment is running or after it is completed, as shown in step (8) in Figure 16:

• Experimenters, using the Data Visualization tool provided by the 5G EVE GUI, can monitor the met-

rics already defined in the Experiment Blueprint.

 A summary of the experiment execution procedure is shown in the following Table 43.

Table 43. 5G EVE Portal Experiment execution.

Action Actor GUI Component Description Output

Experiment

execution
Experimenters

Run Experiment
Request the execution of a given

experiment

Running

Experiment

Data Visualization

Monitor the metrics of a running/

completed experiment as defined

in the ExpB

Experiment

Metrics

It is important to note that there will be other services provided by the 5G EVE GUI such as the performance

diagnostics and validation tool. Note that all these services will be described in deliverables produced in work

package 5.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 52 / 54

4 Conclusions
This deliverable includes the architecture, REST APIs and implementation details of the first release of the 5G

EVE Portal. The services available in this first release are detailed in the introduction of this document, and this

is a subset of all services that have to be offered by the Portal, which is included in D4.1. Actors accessing the

5G EVE end-to-end facility have two different ways to consume the services provided by the Portal: (1) using

the graphical user interface provided by the 5G EVE Portal GUI or (2) by using the REST API offered by the

Portal backend.

The service handbook included in this document shows all steps that have to be done in order to implement the

different phases of an experiment, using the 5G EVE Portal GUI.

The second release of the 5G EVE Portal will provide in month 24 (June 2020) all services defined in D4.1,

including a complete integration among all components inside the Portal backend and the integration between

these components and those provided by other work packages in the 5G EVE project.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 53 / 54

Acknowledgment
This project has received funding from the EU H2020 research and innovation programme under Grant Agree-

ment No. 815074.

Deliverable D4.2 First version of the experimental portal and service handbook

5G EVE (H2020-ICT-17-2018) Page 54 / 54

References
[1] 5G EVE Project, “Deliverable D4.1: Experimentation tools and VNF repository”, October 2019.

[2] Keycloak, https://www.keycloak.org/ Date accessed: 13 December 2019.

[3] ELK stack, https://www.elastic.co/what-is/elk-stack Date accessed: 13 December 2019.

[4] ETSI GS NFV-IFA 014, “Network Functions Virtualisation (NFV) Release 3; Management and Orches-

tration; Network Service Templates Specification”, v3.1.1, August 2018

[5] ETSI GS NFV-SOL 005, “Network Functions Virtualisation (NFV) Release 2; Protocols and Data Mod-

els; RESTful protocols specification for the Os-Ma-nfvo Reference Point”, v2.6.1, April 2019

[6] 5G EVE Project, “Deliverable D5.2: Model-based testing framework”, December 2019

[7] Apache Maven, https://maven.apache.org/ Date accessed: 13 December 2019.

[8] PostgreSQL, https://www.postgresql.org/ Date accessed: 13 December 2019.

[9] RabbitMQ, https://www.rabbitmq.com/ Date accessed: 13 December 2019.

[10] Jackson JSON library, https://github.com/FasterXML/jackson Date accessed: 13 December 2019.

[11] Bugzilla, https://www.bugzilla.org/ Date accessed: 13 December 2019.

https://www.keycloak.org/
https://www.elastic.co/what-is/elk-stack
https://maven.apache.org/
https://www.postgresql.org/
https://www.rabbitmq.com/
https://github.com/FasterXML/jackson
https://www.bugzilla.org/

