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Abstract 

Zero-VOC technologies combining ecological and economic efficiency are destined to occupy a growing place 

in the polymer economy. Today, Polymerization in dispersed systems and Photopolymerization are the two 

major key players. The hybrid technology based on photopolymerization in dispersed systems has emerged 

as the next technological frontier, not only to make processes even more efficient and eco-friendly, but also 

to expand the range of polymer products and properties. This review summarizes the current knowledge in 

research relevant to this field in an exhaustive way. Firstly, fundamentals of photoinitiated polymerization in 

dispersed systems are given to show the favourable context for developing this emerging technology, its 

specific features as well as the distinctive equipment and materials necessary for its implementation. 

Secondly, a state-of-the-art and critical review is provided according to the seven main processing methods 

in dispersed systems: emulsion, microemulsion, miniemulsion, dispersion, precipitation, suspension, and 

aerosol. 
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LIST OF SYMBOLS AND ABBREVIATIONS 

a   radius of a single particle 
AA  acrylic acid 
AIBN  azoisobutyronitrile 
AMP  azobis-2-methyl–propamidinium dichloride 
AOP  advanced oxidation processes 
AOT  aerosol-OT, sodium dioctyl sulfosuccinate 
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CLP  classification, labeling and packaging 
cmc  critical micellar concentration 
CTA  chain transfer agent 
CTAB  cetyl trimethyl ammonium bromide 
DBK  dibenzylketone 
DHA  dihydroxyacetone 
DMPA  2,2-dimethoxy-2-phenylacetophenone 
DPE  1,2-diphenyl-ethane 
DTAB  dodecyltrimethyl ammonium bromide 
DTBK  di-tert-butyl ketone 
DS  dodecylsulfonate 
DTBA  p-(4-diethylthiocarbamoylsulfanylmethyl) benzoic acid 
DVB  divinyl benzene 
Ei  activation energy of initiation [kJ mol-1] 
𝐸𝜆  extinction coefficient [m-1] 
EGDMA  ethylene glycol methacrylate 
FTIR  Fourier transform infrared 
GPC  gel permeation chromatography 
HDTCl  hexadecyltrimethylammonium chloride 
HMB  hydroxymethyl butanone 
I-PDMS-I diiodo-poly(dimethylsiloxane) macrophotoiniferter 
ICAR  initiators for continuous activator regeneration 
INISURF  molecule combining the properties of initiator and surfactant 
ISC  intersystem crossing 
𝐾𝜆  absorption coefficient [m-1] 
KPS  potassium persulfate 
𝑙  optical path length [m] 
𝜆  wavelength [nm] 
𝜆0  wavelength of the incident radiation [nm] 
Lp photon radiance emitted per unit solid angle in a given direction [photon m-2 sr-1 s-1] 
LED  light-emitting diode 
LVREA  local volumetric rate of energy absorption 
m ratio of the refractive index of the particle (n) to that of the surrounding water 
μ chemical potential 
MA methyl acrylate 
MDEA methyldiethanolamine 
MMA methyl methacrylate 
𝑁  number density of droplets (or particles) [cm-3] 
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n  refractive index of the particle 
NHC  N-heterocyclic carbene 
NIR  near-infrared 

  solid angle [steradian] 
𝑃𝑎𝑏𝑠  volumetric absorbed photon flux [photon m-3 s-1] 
𝑃𝑎𝑏𝑠(𝑠) polychromatic volumetric absorbed photon flux at any point of the irradiated system 
𝑃𝑎𝑏𝑠,𝜆(𝑠) monochromatic volumetric absorbed photon flux at any point of the irradiated system 
𝑃0(𝜆, 𝑠)  monochromatic incident photon flux as a function of 𝜆 and 𝑠 
𝑃0,𝜆   monochromatic incident photon flux [photon L-1 s-1] 
𝑃𝑡,𝜆  monochromatic transmitted photon flux [photon L-1 s-1] 

P() phase function (angular distribution of irradiance scattered by a particle at a given 
wavelength) 

PDMS poly(dimethylsiloxane) 
PEG-DA poly(ethylene glycol) diacrylate 
PEO poly(ethylene oxide) 
PETA pentaerythritol triacrylate 
PET-RAFT photochemical electron transfer reversible addition-fragmentation chain transfer 
photoINISURF molecules combining the properties of a photochemical initiator and surfactant 
PISA  polymerization-induced self-assembly 
PLP  pulsed laser photopolymerization 
PMMA  poly(methyl methacrylate) 
PNAEI  poly(N-acetylethylenimine) 
PPEGMA poly(poly(ethylene glycol) methyl ether methacrylate 
POENPE poly(oxyethylene)20-p-nonyl phenyl ether 
PSA  pressure sensitive adhesives 
PVA  poly(vinyl alcohol) 
PVAc  poly(vinyl acetate) 
PVP  poly(vinyl pyrrolidone) 
𝑄𝑠,𝜆  Mie scattering efficiency 
RAFT  reversible addition-fragmentation chain transfer 
REACH  registration, evaluation, authorization and restriction of chemicals 
RTE  radiative transfer equation 
𝑠 distance between a point on the surface of the radiation source and a point in the irradiated 

system [m] 
  scattering coefficient [m-1] 

𝜎𝑠,𝜆  scattering cross-section [cm2] 

SDS  sodium dodecyl sulfate 
TERP  tellurium mediated radical photopolymerization 
𝑇𝜆  internal transmittance 
θ  angle relative to the direction of the incident beam 
TFSA  trifluoromethanesulfonic acid 
UV  ultra-violet 
UVA  spectral domain from 315 to 400 nm 
UVB  spectral domain from 280 to 315 nm 
UVC  spectral domain from 200 to 280 nm 
VAc  vinyl acetate 
VIS  visible 
VOC  volatile organic compound 
X  size parameter for the dispersion 
ZnTPP  zinc tetraphenylporphyrin 


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1. INTRODUCTION 

Polymerization in dispersed systems ─ mostly suspensions and emulsions ─ accounts for 20 % of the 

world polymer production. In most cases, water is used as continuous phase, resulting in two major 

advantages with regards to process conditions. Firstly, volatile organic compounds (VOCs) are avoided, 

making the process environmentally friendly; and secondly, the viscosity of the system is kept at a moderate 

level, facilitating polymerization heat removal, and therefore, the achievement of high throughput rates [1]. 

Heterogeneous waterborne polymerization has been a tremendous success story at both industrial and 

academic levels, and market growth is expected in all segments and regions. In the domain of waterborne 

coatings only ─ a leading product derived mainly from emulsion polymerization ─ the market size was 

estimated in 2015 at 17.7 million tons worth EUR 52.4 billion [2]. The main drivers identified for 

polymerization in dispersed systems are (i) regulatory pressure based on environmental concerns, (ii) 

increasing awareness among consumers of plastic products, and (iii) growth in its broad applications 

spectrum, particularly in the Asia-Pacific region. This very buoyant context is anticipated to create 

opportunities for future innovations, breakthrough polymerization processes and launches of novel 

waterborne polymer products.  

To upgrade this technology, ultra-violet (UV)-visible (VIS) photopolymerization [3] ─ to date 

implemented primarily as a film curing process [4] ─ has emerged as one of the most promising methods. 

Although research in this field began some 35 years ago, recent developments on energy-efficient light-

emitting diodes (LEDs), photoinitiators absorbing in the VIS spectral domain, low scattering monomer 

miniemulsions, and new designs of photochemical reactors, to name but a few, have shed new light on the 

possible improvements and innovations provided for a photochemically initiated polymerization in dispersed 

systems. In the foreground, photochemical initiation opens avenues for improved process conditions in 

regards to reaction efficiency, energy consumption and safety. Additionally, original latexes can be achieved 

resulting from photoinitated thiol-click, controlled radical photopolymerizations or photopolymerization-

induced self-assembly (photo-PISA) with unusual composition, functionality, architecture or morphology 

compared to those obtained by conventional means (using redox or thermal radical initiators). 

The aim of this review is to summarize for the first time the current knowledge in research relevant to 

this field in an exhaustive way, from the first photopolymerization in emulsion reported in the 1980s by 

Turro’s group [5] to the most recent developments in photoinitiated radical polymerization in miniemulsion 

using VIS light [6]. Some fundamentals of photoinitated polymerization in dispersed systems are given in the 

first section to show the favorable context for developing this emerging technology, its specific features and 

issues as well as the distinctive equipment and materials necessary for its implementation. The second 

section is a state-of-the-art and critical review organized according to the processing method in dispersed 

systems: emulsion, microemulsion, miniemulsion, dispersion, precipitation, suspension, and aerosol 

photopolymerization. Didactically, each sub-section begins with a short description of the process and the 

general principles governing particle formation. Even when discussing each process separately, the diversity 

of experimental conditions often makes direct comparison of results difficult. For this reason, we have 

attached particular importance to provide detailed irradiation conditions as much as is reasonably practical. 

Whenever possible, radiation data are reported systematically as follows: [type of radiation source, electrical 

and/or radiant power, spectral distribution, irradiance]. When only partial irradiation conditions are provided 

by authors, either assumptions have been made from experimental data, or the missing data have been 

clearly noted. As a final comment, note that this review will not cover photochemically initiated 

functionalization of particles, UV post-curing and cross-linking of waterborne heterogeneous systems such 

as paints or lacquers. Additionally, only the electromagnetic spectrum corresponding to UV-VIS wavelengths 
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will be considered for triggering polymerization; gamma rays, X-rays or ultrasound initiated polymerization 

in dispersed systems will not be discussed. 

2. FUNDAMENTALS OF PHOTOINDUCED POLYMERIZATION IN DISPERSED SYSTEMS 

2.1 POLYMERIZATION IN DISPERSED SYSTEMS MAKES THE SHIFT TOWARDS RADIATION CONTROL 

2.1.1 The context: A mature technology facing new challenges 

In polymer industry, there are currently considerable societal and legislative constraints to become 

compliant with more stringent environmental and health regulations: formulations with low or no VOCs, less 

energy-intensive processes, greater integration of renewable resources, and minimal waste production [7]. 

Polymerization in dispersed systems is today at the forefront of this polymer economy of the future which 

must be sustainable but also eco-efficient. In fact, polymerization in dispersed systems encompasses a 

number of distinct processes such as emulsion, suspension, microemulsion, miniemulsion, or dispersion 

polymerization, to cite the most important, where water is generally the continuous phase [8]. In addition, 

inverse heterophase polymerization techniques in continuous organic media have been developed for the 

preparation of a number of very important water-soluble industrial polymers, such as poly(acrylic acid) or 

poly(methacrylic acid) used in wastewater treatment, detergents, and super-absorbent polymers [9]. 

Polymerization in dispersed systems has a number of key advantages: first, VOCs are obviated, making 

the process and the final waterborne product environmentally friendly. Second, the viscosity of the system 

is low, enabling an efficient heat transfer from exothermic polymerization reactions. Therefore, high yields 

may be achieved in reasonable times. Central to this technology is chain-growth radical polymerization 

performed in stirred tank reactors using thermal or redox initiators, and a wide majority of polymerizations 

in dispersed systems is based on this water-tolerant polymerization mechanism. Among the variety of 

techniques, only emulsion and suspension have been applied industrially at a very large scale.  

● Suspension polymers are estimated to be produced at 30 million metric tons (dry basis), i.e. nearly 

13 % of the total polymer production. Suspension polymerization yields some of the most important 

commodity thermoplastics, which are produced as dry solid beads (0.1 - 10 mm) after filtration and washing. 

The most emblematic polymers derived from this process are poly(vinyl chloride), poly(methyl methacrylate), 

expandable polystyrene, and styrene-acrylonitrile copolymers [10]. 

● Emulsion polymers are stable waterborne polymer dispersions, with a typical particle size spanning 

50 – 200 nm. They are often referred to as polymer colloids or latex. The annual production was estimated 

in 2016 at 12.7 million metric tons (dry basis) with an annual growth rate of 5.1 % [2]. Emulsion polymers 

account for over 80 % of the waterborne dispersions produced annually. Step-growth polymers 

(polyurethane, polyester…), alkyd and silicone are completing the list. Although the latter are waterborne 

products, they do not result from a polymerization performed in a dispersed system but in organic solution. 

Adequate functional groups introduced during the synthesis or surfactant addition make them dispersible in 

water, as a second stage after synthesis. Their specific properties - low viscosity, no VOC, film-forming ability 

- make them essential in many industrial sectors including coatings, adhesives, paper coating, inks, additives 

for construction materials, and non-woven textiles. Although the level of production is lower than for 

suspension polymers, emulsion polymerization offers higher versatility, in particular more latitude in 

achieving broad and customized properties, because the polymer microstructure and composition can be 

easily tuned in semi-continuous operation. Emulsion polymers can be used in dry form or directly as 

waterborne dispersions for film formation (coatings and adhesives). Industrial formulations are characterized 

by high solid or polymer contents (> 50-60 % by weight). The principal advantages are an increased space-

time yield of the reactor, more efficient product transport, and faster drying times during film application. 
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Today, the most common emulsion polymers include copolymers based on styrene-butadiene (approx. 37 % 

of the market share), (meth)acrylates (30 %), vinyl acetate (28 %) and so-called specialty monomers (5 %) 

such as vinylidene chloride for high barrier coatings [11]. 

Although polymerization in dispersed systems has proved to be a tremendous success at both 

academic and industrial levels, there are mainly two incentives to go beyond the current technology:  

- Broadening the range of latex products and properties available. Waterborne systems account for 

nearly 75 % of the architectural coatings (building and construction industries) , but they hold a much lower 

share of the industrial coatings market (< 20 %). Industrial coatings (automotive, protective, marine, wood, 

coil, packaging...) generally require higher performance, and are still heavily dominated by solvent borne 

products. For many coating manufacturers, the most important technological improvement would be the 

generalized usage of waterborne products in every possible area [12]. In addition, more than 90 % of 

waterborne coatings prepared from emulsion polymers contain acrylic monomers. Although acrylate 

monomers have high structural versatility, broadening the range of latex and properties available as well as 

improving the waterborne products’ performance are needed to meet future societal challenges. The 

penetration of new markets such as high barrier, maintenance coating applications is expected to drive 

innovations. Furthermore, the implementation of European’s REACH legislation and new regulations on 

hazard classification and symbols will act as strong incentives for the displacement of solvent borne polymer 

products. Many of these products authorized today may be labelled hazardous in the near future, even 

without change in their safety datasheet.  

- Making the process even more efficient, eco-friendly and safer. Most industrial polymer dispersions 

are produced under semi-continuous operations with typical polymerization times of several hours. Although 

some conventional monomers such as acrylates have high propagation rate coefficients (kp), the highly 

exothermic nature of radical polymerization makes heat dissipation a critical issue. Controlled addition of 

monomers in semi-continuous processes is thus mandatory for most polymerizations, not only to master 

polymer composition, but also to obviate that the resulting accelerating reaction may proceed to the point 

of loss of control (runaway), leading to drift in polymer architecture, fire or explosion. To overcome this 

limitation, the development of reactors for continuous processes (tubular and continuous-stirred tank 

reactors referred to as CSTR) featuring higher heat removal has been investigated [13]. CSTRs in series is the 

main commercial continuous process implemented today for the large scale production of styrene–

butadiene rubber latex. Nonetheless, prone to plugging (coagulation), tubular reactors have not been 

implemented commercially except for the production of vinyl acetate homopolymers and ethylene-acrylate 

copolymers. Reduction in energy consumption is a second key challenge. Indeed, heating is necessary in a 

majority of polymerizations in dispersed systems as the thermal homolytic dissociation of initiators carried 

out at 75–90 °C is today the most widely used mode of generating initiating radicals. Water has about two 

times the heat capacity of a common organic solvent such as acetone. This means that heating and cooling 

at the end of the reaction as well as temperature regulation during polymerization require a large amount of 

energy. Consequently, possible improvements cover a more extended use of polymerization at ambient 

temperature and a wider use of more economical energy sources. 

2.1.2 Photopolymerization: From film curing to waterborne dispersions 

The use of radiation to initiate polymerization in dispersed systems may appear prima facie as a very 

unconventional alternative, or at least a choice far from being intuitive. Obviously, except from optically 

transparent or translucent microemulsions, the first difficulty has to do with the strong turbidity of most 

monomer or polymer dispersed systems. In addition to scattering, absorption (from photoinitiator but also 

monomer or surfactant) causes a significant attenuation of the radiation penetration within the reactor, 
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particularly for the short UV wavelengths (UVC: 200 - 280 nm). Based on this challenge, it seems logical that 

photoinitiated polymerization has developed essentially as a cross-linking technology for films having a 

maximum thickness of 50-100 µm (Fig. 1) [4]. Radiation–curing is applied today in many industrial areas, 

including mainly graphic arts (inks, overprint varnishes), optoelectronics (photoresists) and industrial 

coatings [14]. 

 
 

Fig. 1: Types of processes and products of photopolymerization in dispersed systems 

 
Despite this morphological limitation, UV-VIS curing technology features many interesting advantages, 

a number of which are relevant for improving energy-efficiency and the green credentials of polymerization 

in dispersed systems: 100 % solid content formulation (no solvents or volatiles), ambient temperature 

process, high energy savings and production speed process, and small space requirement. As proof of the 

interest generated by this technology, UV-curable coatings were expected to grow at 9 % from 2015 to 2020, 

compared to 6 % for waterborne coatings [15]. Radiation curing and polymerization in dispersed systems 

thus have in common being two VOC-free technologies, performed respectively in water and without organic 

solvent (the other VOC-free processes include powder polymer technology and reaction in ionic liquids or 

compressed (supercritical) fluids). By “merging” these two approaches, there is the expectation of a 

synergistic eco-efficient technology based on photopolymerization in dispersed systems. Obviously, one of 

the main challenges in this turbid medium is to cope with heterogeneous distribution of radiation and the 

consequent spatial variations in the generation of initiating radicals. This may undermine the polymerization 

activity, raise problems of local overheating or polymer precipitation in limited irradiated regions. 

Research on photopolymerization in dispersed systems started more than 35 years ago [16], but 

cutting–edge technologies remain to be developed. However, recent developments in photochemical 

engineering, energy-saving radiation sources, photoinitiators and photoinitiated radical-based 

polymerizations based on photocatalytic processes or click reactions constitute a sound basis from which to 

re-assess the potential of these systems. Historically, the first photopolymerizations in a heterogeneous 

environment were reported by Turro et al. in the early 1980’s using styrene macroemulsions [5]. Meanwhile, 

Fouassier et al. photopolymerized methyl methacrylate-based microemulsions, investigating mainly kinetic 

aspects [17]. Following these pioneering studies, the technology has been implemented in various dispersed 
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systems such as aerosol, suspension, dispersion and other emulsion-type processes, which are for the first 

time not only gathered, but also inter-linked and commented on in this review. While there are more than 

200 examples proving its feasibility, the question of the applicability of this novel platform in modern-day 

society remains a crucial issue. Meeting the challenge of radiation penetration requires paying greater 

attention to photochemical engineering aspects (design of reactor, choice and geometrical arrangement of 

radiation sources), and also to colloidal properties and composition of the dispersed systems. In practice, 

most photopolymerizations in dispersed systems described in the literature were conducted without any 

serious attempt being made to optimize utilization of radiation or colloidal dispersed system characteristics. 

Consequently, there is still plenty of scope for further development in this area, and many opportunities to 

seize at both industrial and university levels. 

2.1.3 Photoinitiation, when a tiny change creates great opportunities! 

Unlike a conventional method where initiation is triggered by the addition of active substances 

(oxidizing/reducing agent pair) or thermolatent agent (peroxides or azo compounds), a photoinitiated radical 

polymerization involves, in most instances, a photochemically reactive initiator able to generate initiating 

species when irradiated to trigger polymerization. Consequently, except for the primary step of creating the 

active centers, the mechanism and final products remain unchanged. Despite this seemingly insignificant 

change, photopolymerization in dispersed systems can open avenues for many improvements: 

• Photochemical polymerizations have several advantageous features:  

- Contactless stimulation [18]; 

- Specific reactivity of electronically excited states compared to ground states resulting in a greater range 

of initiation pathways: fragmentation, electron transfer, energy transfer, or hydrogen abstraction; 

- Temporal control of reaction (ms); 

- High spatial resolution (µm); 

- Reaction rate and molecular weights tunable by precise energetic and spatial dosage of radiation; 

- Higher decomposition rates of photochemical initiators compared to their thermal analogues; 

- No effect of temperature on initiation stage. 

• A technology potentially scalable towards industrialization. Today, one of the principal industrial 

applications of photochemistry lies in the area of radical chain reactions including chlorination and 

sulfochlorination of alkanes. Although these reactions allow the preparation of low-molecular weight 

compounds, they have two important points in common with chain-growth radical polymerization: the 

mechanism (initiation, propagation, termination) and very high quantum yields, larger than 1000, meaning 

that one photon absorbed induces the addition of more than 1000 monomer units. 

• Low energy consumption and safety. Photoinitiated polymerizations can occur at ambient 

temperature and rely on the use of energy-saving UV or VIS radiation sources. In addition, some reactions 

may even be carried out using sunlight as renewable energy source. Because chain-growth polymerization 

reactions are exothermic in nature, the issue of heat removal should also be taken into consideration given 

it may negatively impact the energy efficiency of the process (see section 2.2.6 on Photoreactor for details). 

• A range of polymerization reactions can be facilitated under radiation activation. Radiation-

initiation has attracted growing interest for performing controlled/living radical polymerization in dispersed 

systems due to the mild reaction conditions. The synthesis of novel water-borne materials based on thiol-

click chemistry is also a promising contemporary research area. Additionally, some thiol-ene or acrylate 

photopolymerizations can even occur without initiator by appropriate choice of the irradiation wavelength, 

which minimizes the formation of by-products.  
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2.2 CONSIDERATIONS FOR THE DEVELOPMENT OF PHOTOPOLYMERIZATION IN DISPERSED SYSTEMS 

2.2.1 Temporal control 

• Control of polymerization in terms of time. A first key feature of photoinitiated polymerization is 

temporal control of the reaction. Given that initiating radicals cannot be generated without electronic 

excitation of a photoinitiator, polymerization initiation by carbon-centered radicals will stop instantaneously 

when the incident radiation is switched off. However, polymerization will continue as long as there are 

primary or propagating radicals present whose lifetimes are controlled by their electronic structure, the 

concentration of potential reaction partners and temperature. The lifetimes of these radical species might 

span from only a few hundred nanoseconds to fractions of seconds. Consequently, the generation of initiating 

radicals can be performed in a controlled fashion by switching on and off the radiation source, or by using a 

shutter, which is a distinctive feature compared to the use of thermal or redox initiators. In this way, reactions 

can be stopped almost instantly. As a result, the risk of runaway reaction is strongly mitigated while for 

thermal polymerization, the thermal inertia continues to generate radicals in the reaction medium even after 

the heat source has been stopped. A broad range of radical photoinitiators are commercially available from 

e.g. IGM Resins, Lamberti, Lambson and BASF. Although a minority of initiators are water-soluble (necessary 

condition for e.g. emulsion polymerization, see section 2.3.4 on Photoinitiators for details), most of the oil-

soluble initiators originally developed for UV-curing technology may also be used for photopolymerization in 

dispersed systems. The unique characteristic of temperature-independent decomposition rates yields a more 

robust process since a temperature deviation is unlikely to alter the overall initiator radical concentration 

photochemically generated in the medium. Furthermore, the radical generation can be controlled by the 

emission characteristics, the power of the radiation source and by the absorption conditions set by the 

geometry of the photochemical reactor. 

• Excellent temporal resolution (≈ ms or even less). This opens an avenue for non-steady state 

radical polymerization conditions since the change of radiant power or frequency of a pulsed emission can 

cause the radical concentration to deviate from a constant, steady-state value. The consequence of a tunable 

rate of change of the concentration of radicals is to obtain defined conversions (synthesis of pre-polymers) 

[19]. For e.g., pulsed-laser photopolymerization (PLP) was reported in the late 1980s [20]. Involving 

alternating light and dark periods, it has been mainly exploited for the determination of propagation rate 

coefficients in radical chain polymerization. It was also shown that the variation of the frequency of pulsed 

irradiation affected the molecular weight dispersity of the prepolymer [21]. Today, the instant on/off capacity 

of LEDs opens new horizons to use radiation to control polymer architecture and composition. By contrast, 

traditional UV arc radiation sources (other than xenon flash arcs) are switched on and off only when needed, 

not only due to the warm up time to reach stable exitance but also due to the negative impact of switching 

on their lifetime. 

2.2.2 Spatial control and in situ photopolymerization 

• Control of polymerization in terms of space. Spatial control in photopolymerizations refers to the 

ability to control precisely where the polymerization reaction occurs at 2D or 3D level [22]. One of the most 

common and successful applications is photolithography, a widely disseminated process in industry used to 

photochemically generate (micro)structures, e.g. at the surface of semiconductor (mostly silicon) wafers [23]. 

In dispersed systems, spatial control is largely expressed through the use of microfluidic devices, taking 

advantage of the UV transparency of quartz or poly(dimethyl siloxane)-based microreactors. In a 

conventional process, microsized multifunctional monomer droplets are generated, at the junction of two 

microchannels or at the tip of a capillary, to be cross-linked downstream under short UV-exposure. Polymer 

microparticles with a narrow size distribution and complex morphologies (Janus, core-shell…) have been 
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realized, taking advantage of complex flow fields and high spatial resolution (µm) as reported by many 

authors including Serra [24], Kumacheva [25], or Doyle [26]. These studies, close to a suspension 

polymerization (described in section 3.6), have been discussed elsewhere [27]. 

• Miniaturization and online monitoring. As an extension, spatial control also enables in situ 

(localized) polymerization through the use of focalized radiation performed by e.g. a waveguide. A first 

benefit is the down-scaling of the polymerization reactor that could lead to the use of very small 

microreactors (see details in section 2.2.6). Additionally, online monitoring of the reaction progress can be 

facilitated. While fiber optic probes for spectroscopic sensors (near-IR or Raman spectroscopy) are necessary 

in emulsion processes, the low dimensions of the irradiated sample (small optical path) may allow the use of 

conventional transmission FTIR spectroscopy, making possible the contact-free measurement of monomer 

conversion during irradiation. Furthermore, the modest cost and standard availability of time-resolving 

features on commercial FTIR spectrometers also make the implementation of time-resolved studies (sub-

second time scale) possible, which is particularly relevant to assess online very fast photopolymerization 

kinetics of thiol-click polymerization reactions occurring in the matter of seconds. Real-time FTIR 

spectroscopy has been widely implemented for in situ monitoring of very fast cross-linking of UV-curable 

coatings mainly based on acrylate monomers [28]. 

2.2.3 Radiation penetration and distribution 

• An “optically thick” medium. Like (nano)composite or pigmented UV-curable coatings, dispersed 

monomer or polymer systems are mostly “optically thick” media due to the conjugated effect of absorption 

and scattering. However, the issue is likely to be exacerbated in the case of polymerization in dispersed 

systems because of two factors:  

1. With the exception of microreactors (having an internal channel diameter ≤ 1 mm), the optical path 

of most reactors is much larger than the thickness of coatings.  

2. Dispersed monomer systems of practical utility (e.g. monomer emulsions) are highly scattering due 

to several effects: (i) a concentration effect because industrial standards impose solids content greater than 

50 wt%; (ii) the difference of refractive indices between the dispersed phase and the continuous aqueous 

phase is usually marked. While this difference is relatively small for a monomer such as methyl methacrylate 

(0.081 at 20°C), it is almost three times higher for styrene (0.213); (iii) most monomer emulsifications result 

in broad droplet size distributions, with a significant proportion of highly scattering particles with a diameter 

larger than 100 nm. 

To understand the effect of absorption, one must note that most UV-curable varnishes, which are non-

scattering and only a few tenths of micron thick, are already considered as "optically thick". This means that 

a significant amount of radiant energy is absorbed within a few micrometers from the irradiated surface of 

the material. The second challenge is backscattering  opposing radiation entry due to monomer droplets 

(except for dispersion polymerization, in which case no droplets are initially present) and particles. Scattering 

being an elastic phenomenon, forward scattering contributes to light penetration in contrast to 

backscattering. Characterized by high organic phase concentration (> 50 wt%) and broad droplet size 

distributions (100 -10 µm), acrylate monomer macroemulsions as used industrially for emulsion 

polymerization exhibit very high scattering coefficients (vide infra). The corollary is that irradiance falls off 

very rapidly with increasing distance from the irradiated surface. Generally, UVB (280 – 315 nm) and UVA 

(315 – 400 nm) do not exceed the first 50 µm from the reactor wall in such a system, resulting in a minimal 

irradiated reactor volume fraction. Radiation of even shorter wavelength is absorbed or scattered in a much 

thinner layer, implying that polymers can only be formed in the close vicinity of the irradiated surface. It is 

therefore hardly surprising that some authors mention the formation of a tarry deposit on the wall of the 
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cooling well or plugging when using tubular-type reactors. Therefore, the question of how far the emitted 

radiation penetrates the dispersed reaction medium is important not only from a reactivity point of view but 

also to preserve colloidal stability and constant process characteristics. 

• Concomitant absorption and scattering. Inside an efficiently stirred reactor, a thermal reaction is 

carried out statistically throughout the reactor. By contrast, a photochemical chemical reaction is only 

possible in irradiated volumes. In a heterogeneous or dispersed medium, the incident photon flux is 

attenuated in accordance with: 

𝑃𝑡,𝜆 = 𝑃0,𝜆10−𝐸𝜆𝑙 

where  the monochromatic incident photon flux [photon L-1 s-1], the monochromatic 

transmitted photon flux [photon L-1 s-1], 𝐸𝜆 the extinction coefficient [m-1], and 𝑙 the optical path length [m].  

 

The extinction coefficient 𝐸𝜆 is usually defined as the sum of the absorption  [m-1] and scattering  [m-

1] coefficients: 

𝐸𝜆 =  𝐾𝜆 + 𝑆𝜆 

These two variables are usually difficult to obtain individually. For dispersions,  and , can be determined 

experimentally by nonconventional spectrophotometric methods using diffusive reflectance and 

transmittance requiring typically spectrophotometers equipped with an integrating sphere [29, 30]. For more 

details on optical properties of particles, we refer interested readers to two reference publications in this 

field: one general from van de Hulst [31], and a second more advanced by Bohren [32]. To reveal the impact 

of scattering on radiation penetration, Figure 2 shows more simply the results of internal transmittance 𝑇𝜆 =
𝑃𝑡,𝜆

𝑃0,𝜆
 (obtained with a conventional UV-VIS spectrophotometer) between a photoinitiator emulsion system ─ 

combining scattering and absorption ─ and a concentration equivalent solution system where only 

absorption is effective.  

 

Fig 2: Internal transmittance measured at 366 nm by spectrophotometric analysis in regular transmission for two 
concentration equivalent systems in solution and emulsion containing 2,2-dimethoxy-2-phenylacetophenone (DMPA, 
see Table 1). Only this photoinitiator absorbs at the incident wavelength. The emulsion system contains DMPA droplets 
(average diameter: 115 or 300 nm) dispersed in water and pre-dissolved in CH2Cl2 (2 vol.%) having an overall 
concentration of 0.05 mol L-1. The solution system corresponds to DMPA dissolved in CH2Cl2 at three different 
concentrations (0.005 – 0.5 mol L-1). The dispersed system shows a significantly higher shielding effect assigned to 
scattering while the radiation penetration of the solution system can be modulated upon changing the initiator 
concentration because only absorption occurs. 
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• Scattering by particles: General considerations. The scattering coefficient can also be related to the 

scattering cross-section 𝜎𝑠,𝜆 [cm2]:  

𝑆𝜆 = 𝜎𝑠,𝜆𝑁,  

where 𝑁 is the number density of droplets (or particles) [cm-3].  

Interestingly, 𝜎𝑠,𝜆 can be estimated by Mie theory calculations which are valid for spherical particles of any 

size provided that their concentration is dilute enough to avoid multiple scattering. Multiple scattering takes 

place when some light scattered out of the original beam by a particule might be scattered again by another 

and reach finally the detector. Prediction of the extent of Mie scattering involves complicated calculations 

(complex mathematical expression is detailed in ref [33]), but computer codes are readily available online 

[34] and offer a highly useful overview of the effect of particle size and the refractive indexes of the two non-

miscible media, or of the wavelength of excitation on scattering. Figure 3A shows the evolution of the Mie 

scattering efficiency (solid curve) 𝑄𝑠,𝜆 =
𝜎𝑠,𝜆

𝜋𝑎2⁄  (dimensionless) which is related to the scattering ability of 

a single particle of radius a as function of the quantity mx, where m is the ratio of the refractive index of the 

particle (n) to that of the surrounding water (nwater), x = 
2𝜋𝑎𝑛𝑤𝑎𝑡𝑒𝑟

𝜆0
⁄ is the size parameter for the dispersion 

(polystyrene), and 𝜆0 the wavelength of the incident radiation (500 nm) [35]. 

 
Fig. 3: A) Plot of scattering efficiencies 𝑄𝑠,𝜆, for Mie scattering (solid curve) and Rayleigh scattering (dashed curve) vs 

mx for a polystyrene dispersion of radii ranging from 5 to 5000 nm, m = 1.59/1.33, λ0 = 500 nm (data from [35]). The 

dotted line indicates the limiting value of 𝑄𝑠,𝜆 for large particles. B). Graph showing the phase function P() (unpolarized 

radiation) for four different radii of single polystyrene particles (50, 200, 500 and 5000 nm) as a function of angle θ 
which is relative to the direction of the incident beam. The values have been normalized so that the value of the peak 
at 0° (angle with incident beam) is one. These values were calculated using the interactive Mie Scattering Calculator at 
http://omlc.org/calc/mie_calc.html [34]. 

For mx < 1 (𝑎  < 50 nm for polystyrene), an excellent correlation with the Rayleigh approximation 

(dashed curve in Fig. 3A) offers a simple analytic solution for 𝑄𝑠,𝜆: 
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𝑄𝑠,𝜆 = 
8𝜋

3
𝑎4 (

𝑚2−1

𝑚2+2
)

2

(
2𝜋𝑛𝑤𝑎𝑡𝑒𝑟

𝜆0
)

4

  

For low mx values, the scattering efficiency varies with the fourth power of the particle radius (𝑎) and 

inverse fourth power of the wavelength (𝜆0). Therefore, scattering and thus radiation attenuation may be 

minimized in this range by (i) shifting towards higher irradiation wavelengths and/or (ii) by relying on smaller 

polymerizable entities. With regard to this last point, monomer microemulsions ( 𝑎  < 25 nm ) and 

miniemulsions of very small droplet sizes (𝑎 < 50 nm) may be interesting candidates to improve radiation 

penetration [36]. These two types of emulsion feature indeed the lowest monomer droplet sizes among the 

range of polymerization processes considered in dispersed systems. 

In the intermediate size range (1 < mx < 4 involving a particle radius range of 50 - 200 nm), the increase 

of the scattering efficiency diminishes and becomes proportional to the second power of the particle size. 

The particles are getting even larger (mx > 10, a > 500 nm), the scattering efficiency levels off and settles to 

a value close to 2. This means that under these conditions 𝑄𝑠,𝜆 is much less impacted by particle size and can 

even increase with larger wavelength. Even if this threshold value means that individually, a large particle 

has a higher scattering efficiency than a small particle, at similar polymer concentration, the dispersion made 

up of large particles has much less entities leading to minor scattering compared to a small particles 

dispersion.  

Another characteristic of scattered radiation which may be of importance for radiation penetration is 

that it takes place in all directions, but usually with different intensities in different directions. Fig. 3B shows 

the results of the phase function 𝑃(𝜃) for polystyrene particles of radii a = 50, 200, 500 and 5000 nm. 𝑃(𝜃) is 

the angular distribution of irradiance scattered by a particle at a given wavelength (see Fig. 3B: 𝜆0 = 500 nm). 

It is given for angles θ which are relative to the direction of the incident beam. When mx < 1 (a < 50 nm), the 

signal is not isotropic. With minima at θ = 90°, 𝑃(𝜃) is practically symmetric in the fore (θ = 0°) and aft 

direction (θ = 180°) implying a significant portion of back-scattering (θ > 90° or θ < -90°). By contrast, when 

scattering entities become larger (mx > 1), the anisotropy is more pronounced and scattering is strongly 

biased toward the forward direction. This result is also useful for the understanding of the higher radiation 

penetration in polymer suspensions exhibiting radii >> 5 µm. As a final comment, it is important to 

underscore that Mie theory does not apply to systems where multiple scattering takes place, which is the 

majority of polymerizations in dispersed systems, even if concentrated emulsions are left apart. Scattering 

effects of photopolymerizations may, however, be evaluated by using the approach of Kubelka-Munk that 

has already been found to be very useful in atmospheric science to understand scattering of aerosols [37, 

38]. 

• Absorbed photon flux and radiation distribution. The main challenge is the correct evaluation of the 

volumetric absorbed photon flux: 𝑃𝑎𝑏𝑠[photon m-3 s-1], corresponding to the amount of photons absorbed 

per unit time and reaction volume, that will determine eventually the rate of a photochemical reaction. The 

radiometric equivalent of 𝑃𝑎𝑏𝑠 is identical with the local volumetric rate of energy absorption (LVREA) as 

introduced by Whitaker and Cassano [39]. In a heterogeneous reaction system, the absorbed flux quantities 

depend on 𝐾𝜆  (vide supra) and the diminution of radiation due to forward- and back-scattering. The 

monochromatic incident photon flux 𝑃0(𝜆, 𝑠) at any point of an irradiated heterogeneous system may be 

calculated in applying the radiative transfer equation (RTE) [48, 49] leading to 

𝑃0(𝜆, 𝑠) = ∫ 𝐿𝑝

Ω=4π

Ω=0

(𝜆, 𝑠, Ω)𝑑Ω 

where  [m] is the distance between a point on the surface of the radiation source and a point in the 

irradiated system, and  [steradian], the solid angle [40]. Lp is the photon radiance emitted per unit solid 

s


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angle in a given direction [photon m-2 sr-1 s-1] [80]. Combined with the absorption coefficient, the 

monochromatic volumetric absorbed photon flux at any point of the irradiated system may be obtained by. 

𝑃𝑎𝑏𝑠,𝜆(𝑠) = 𝐾𝜆 ∫ 𝐿𝑝,𝜆(𝑠, Ω)𝑑Ω
Ω=4π

Ω=0

 

For polychromatic irradiations, 𝑃𝑎𝑏𝑠,𝜆(𝑠)  has to be integrated over the spectral domain of interest. 

𝑃𝑎𝑏𝑠(𝑠) = ∫ 𝐾(𝜆)𝑑𝜆
𝜆2

𝜆1

∫ 𝐿𝑝,𝜆(𝑠, Ω)𝑑Ω
Ω=4π

Ω=0

 

Although spectroscopic evidence for such calculations were so far never attempted in the field of 

photopolymerization in dispersed systems, this approach has been extensively investigated in other 

heterogeneous photochemical systems [41]. Photochemical reactors containing aqueous suspensions of TiO2 

particles are a prime example aiming at an optimization of advanced oxidation processes (AOP) used for 

oxidative degradation of pollutants in aqueous systems. The most popular numerical solutions of the 

integrodifferential Radiative Transfer Equation (RTE) has involved Monte Carlo [42], discrete ordinate model 

[43] and finite volume methods [44]. It is expected that a useful transfer of knowledge between radiation 

optimized reactor modeling, design and application might occur shortly. 

• Mitigating the effect of radiation attenuation or living with it? The empirical approach accumulated 

over 35 years by chemists is already sufficient to demonstrate that photopolymerization in dispersed systems 

is feasible over a broad range of conditions despite a non-uniform radiation distribution. As proved 

experimentally in many instances, strong radiation attenuation does not necessarily lead to low 

polymerization rates. For emulsion polymerization involving “optically thick” systems (see section 2.2.3), 

some good results may be rationalized on the basis of high diffusion rates and low viscosity making dispersed 

systems an excellent medium to avoid mass transfer limitations. Clearly, problems of diffusion limitations are 

minimized compared to UV-curable coatings where cross-linking strongly reduces molecular mobility. 

Another reason is that radical photopolymerizations have rather high quantum yields. They are initiated by 

a single photochemical process yielding a pair of primary radicals and subsequently amplified by a large 

number of consecutive thermal reactions, i.e. monomer propagation in the case of polymerization. 

Consequently, a photochemical radical chain reaction can generally take place in a reaction system where 

relatively few photons are absorbed per unit volume, and even at low temperatures. Many radical organic 

chain reactions (e.g. chlorination, bromination, sulfochlorination, some oxidations) have been developed to 

large scale applications since the 1940s [45]. Finally, note that a number of monomer containing entities such 

as micelles or droplets, although not absorbing incident photons (dark area), can indirectly contribute to 

polymerization. When a monomer is sufficiently soluble in water, which is the case even for hydrophobic 

monomers like styrene, it can diffuse through the aqueous phase to reactive entities containing an oligo- or 

macroradical. 

To date, only few works are published with the aim of mitigating the detrimental effect of radiation 

attenuation in photopolymerization in dispersed systems. The current level of knowledge is largely 

insufficient to meet the standards of modern technology and to adapt it to the requirements and challenges 

of industrialization. However, several actions can be implemented as “guidelines” to minimize radiation 

attenuation: 

(i) Reducing the optical path length: The most relevant approaches rely on photochemical reactor 

design (see section 2.2.6) [46]. 

(ii) Increasing the wavelength of irradiation: The shift to higher wavelength (VIS or even near-infrared 

(NIR) radiation and two-photon excitation) provides a significant decrease of the level of scattering, in 
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particular when the Rayleigh approximation is valid (mx < 1). Therefore, this approach may be relevant for 

dispersed systems composed of nanodroplets or nanoparticles (a < 50 nm). One illustrative example is the 

use of photoredox systems, active at visible wavelength [47], for the initiation of miniemulsion 

polymerization [6]. 

(iii) Decreasing the droplet diameter and size distributions: On the contrary of the argument above, 

scattering may also be reduced by adapting a dispersed system to a given irradiation. In such a case, the 

droplet radius should be made much smaller than the wavelength of irradiation (mx < 1). Reducing the 

droplet diameter is experimentally possible by relying on miniemulsion or microemulsion polymerization 

techniques, where the colloidal properties of the dispersed systems can be optimized using high pressure 

homogenizers, static mixers or ultrasonifiers to narrow the droplet size distribution  

(iv) Decreasing the solids content: The concentration of droplets affects the scattering properties of a 

medium by increasing the probability of multiple scattering events (clustered spaces). Thus more radiation is 

lost for initiation in the first layers of the dispersed system. 

(v) Matching the refractive index of the two phases: As shown in Fig. 5, a lower m value can reduce 

the scattering coefficient under certain conditions, mostly for small particles sizes relative to the wavelength 

of irradiation. The feasibility of this approach has been shown for conventional miniemulsions [48] and 

Pickering emulsion polymerization [49], but was never harnessed in a photochemically induced process. 

(vi) Mathematical modelling: The use of advanced numerical tools could provide accurate modelling 

of the radiant distribution within an irradiated volume of given shape and thus enables optimization of 

irradiation conditions.  

2.2.4 Radiation-initiated polymerizations 

At present, most polymerization processes in dispersed systems rely on thermal radical generation, 

photochemical initiation opens the door to a number of applications either unattainable by thermal means 

(because of the specific reaction manifold of excited molecules) or because the photochemical process might 

be easier to realize. 

• Thiol-X reactions. Examples worth highlighting are thiol-ene and thiol-yne polymerizations 

proceeding via an initiated addition of a thiyl radical, RS●, generated by hydrogen abstraction from RSH, to a 

carbon–carbon π-bond (alkenes) or triple (alkynes) bonds. Although thermal or redox initiators can be used, 

radical photoinitiators (in particular α-cleavable initiators, see section 2.3.4 on photoinitiators) are highly 

effective at initiating thiol-ene polymerizations either by hydrogen abstraction from a thiol functional group 

or by addition of the initiator radicals to an alkene. For dithiol-dialkene monomer miniemulsions, the step 

growth mechanism resulted in a 1:1 stoichiometric consumption of thiol and ene functional groups, yielding 

a linear [50], or cross-linked [51] poly(thioether) latex in the matter of seconds, but only small reaction 

volumes and solid contents were addressed so far. Harnessing the enormous potential of the thiol-based 

“toolbox” may in the near future create a novel portfolio of sulfur-containing polymer latexes. 

• “Self-initiated” polymerization. Photochemical monomer (substrate) activation may also occur 

without addition of initiators, thus minimizing the formation of by-products. A broad range of conventional 

monomers such as acrylates may undergo radical polymerization at ambient temperature from their 𝑛𝜋∗-

excited state. Such “self-initiated” photopolymerization in miniemulsion was for example demonstrated in 

2012 with using irradiation sources emitting a part of their radiation spectrum in the UVC and UVB spectral 

range [52]. Unfiltered radiation of a conventional Hg medium-pressure arc (λ > 220 nm) was employed to 

prepare initiator-free polyacrylate nanolatex. By contrast, most monomers used for radical polymerization 

cannot undergo thermal “self-initiated” polymerization below 100 °C when properly purified. 
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• Photo-catalyzed initiation. Very recently, photoredox catalysts have emerged as highly efficient 

initiators for polymerizations in dispersed systems, with very specific advantages: (i) only low irradiance 

required (a few mW cm-2), (ii) electronic excitation in the VIS spectral region, (iii) only catalytic amounts of 

photosensitizer required (because regenerated in the process), and (iv) high specificity (no unwanted side 

reactions). Jung et al. showed that the well-known and commercially available Ir complex Ir(ppy)3 (tris[2-

phenylpyridinato-C2,N]iridium(III)) can photo-catalyze controlled/living radical polymerization of a styrene 

miniemulsion [6]. In this example, a photochemical electron transfer reversible addition-fragmentation chain 

transfer (PET RAFT, vide infra) process plays a key role in the activation/deactivation of radical species. 

Radical polymerization has also been carried out using colloidal or supported TiO2 as non-extractable and 

recyclable heterogeneous photocatalyst [53]. 

2.2.5 Low energy consumption and increased safety 

• Comparison with thermal and redox initiators. Thermal decomposition (homolysis) of peroxides and 

azo compounds is the industry standard to initiate radical polymerization in dispersed systems, generally 

requiring a minimum temperature of 75 °C. Thermal redox initiation may be exploited at room temperature, 

but its implementation has rarely been driven to increase the green credentials of the process. Its use served 

primarily to broaden the scope of achievable polymer microstructures, that are temperature-dependent [54]. 

For redox initiators systems, such as hydrogen peroxide (oxidant) and ferrous salts (reductant), the activation 

energy of the initiation step (Ei) is about 40–60 kJ mol-1 i.e. approx. 80 kJ mol-1 less than for thermal initiator 

decompositions. Consequently, energy and equipment costs can be reduced. Nevertheless, the heat of 

polymerization needs to be diverted via e.g. an “adiabatic process”, where an increase of the reactor 

temperature is leading to a faster rate of initiation and reasonable cycling time can thus be achieved [55]. 

For the photochemically induced polymerization, the initiation step is temperature independent (Ei = 0 kJ 

mol-1) since the energy of the electronically excited state of the initiator chromophore is higher than the 

energy of homolysis required to generate the primary radicals. The overall activation energy of the 

subsequent radical polymerization is approximately 20 kJ mol-1. This value indicates that the polymerization 

rate will be rather insensitive to temperature changes, thus improving robustness and reliability of the 

polymerization process. 

• Benefits. The photochemically initiated polymerization involves a source of radiation to trigger 

polymerization at room temperature without external heat. The possibility of initiating polymerization at 

room temperature is very interesting (i) for monomers whose polymerization is highly exothermic (vinyl 

acetate and most acrylates), that may cause a runaway reaction, or (ii) when the reaction system includes a 

highly volatile organic continuous phase (e.g. dispersion polymerization), an unstable (emulsion) or 

kinetically stable (miniemulsion) dispersed system. Furthermore, more recently developed radiation sources 

allow repeated switching on and off (e.g. LEDs, excimer sources) and may provide the possibility of non-

steady state radical polymerization conditions and a higher factor of safety due to the absence of any hot-

spot. In contrast to a widespread presumption, that radiation is generally more expensive to produce than 

heat, because of considerable losses that occur in the production of electrical energy and its conversion into 

useful radiation energy. These newly developed radiation sources exhibit high radiation efficiencies while 

consuming much less electrical energy. However, medium-pressure Hg arcs emitting a broad line spectrum 

extending from UVC to VIS spectral domain and being recognized as the workhorses in industrial applications 

of photochemistry, consume a significant amount of energy and represent, with operating temperatures of 

more than 850 °C, hot-spots that are subject to particular safety requirements. Beside the higher radiant 

efficiency of LEDs, their narrow spectral emission allows optimization of the fraction of emitted radiation to 

be absorbed by a given redox initiator (see section 2.3.1 for details on irradiation sources). In addition, 
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excitation in the VIS spectral range often circumvents interactions with other components mostly absorbing 

in the UV spectral domain such as monomers, surfactants and polymers.  

2.2.6 Photoreactors and continuous flow operations  

• Batch photoreactors. Photopolymerizations in dispersed systems were often carried out in improper 

reaction vessels such as round bottom flasks or Schlenk tubes implying major drawbacks such as significant 

losses of incident radiation and indeterminable and fluctuating irradiance values (irradiance means radiant 

power or photon flux arriving at the surface per unit area for a specific wavelength ou within a specific 

wavelength range). Modern research conditions call for photochemical reactors to optimize incident 

radiation, improve reproducibility and increase the uniformity of radiation distribution within the reactor. 

The results of the development of photochemical technology are already extensively exploited in preparative 

organic photochemistry, for the disinfection of drinking water, and the oxidative treatment of waste water 

and air. Large scale applications of photoreactors in the domain of polymer chemistry are only implemented 

for polymer modifications (e.g. chlorination of poly(vinyl chloride) [56], but are yet to be developed for 

proper photopolymerization. In 2011, Chemtob et al. used an immersion-type photoreactor ([57], Fig. 4) 

equipped with a medium-pressure Hg arc for acrylate miniemulsion photopolymerization [66]. Such compact 

batch reactor designs have been employed for more than 50 years to carry out preparative photochemistry 

on scales of milligrams to up to tens of kilograms. The radiation source is contained in a double-jacketed 

water-cooled well immersed into a stirred or recirculated reaction system, with the key advantage that the 

emitted radiation is entirely incident to the photochemically reactive system. Because irradiance falls off very 

rapidly with increasing distance from the radiation source due to absorption and scattering, non-

homogeneous radiation distribution is often observed in conjunction with poor turbulence and insufficient 

control of irradiation time per unit volume. Development in photochemical engineering led to designs and 

geometries of photoreactors where these parameters can be controlled. Practically all recently developed 

and applied photochemical reactors are designed for processes in closed circuit or continuous regimes [58]. 

 

Fig. 4: Immersion-type closed circuit photoreactor (Peschl Ultraviolet GmbH, Mainz, Germany). 

 

• Closed and open circuit photoreactors. These reactors consist of one or multiple UV and/or VIS 

radiation transparent channels through which a reaction system is circulated continuously. Their length and 

optical path may vary from several meters to a few millimeters and from tens of centimeters to some tens 

of micrometers, respectively. For dispersed systems with high extinction coefficients, down-scaling of the 

optical path to the micrometer scale in precisely engineered channels will lead to a quasi-uniform volumetric 
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incident photon flux [59]. Such tubular microflow reactors with channels of internal diameters < 1 mm and 

typical flow rates < 1 mL min-1 were used for miniemulsion photopolymerization [60]. To ensure such low but 

constant flow rates, syringe pumps are ideally suited. Down-scaling the production of latexes from monomer 

miniemulsions to volumes of microscale photoreactors keeps the advantages of open circuit photochemical 

reactors and continuous processing (control of all primary process parameters: irradiance, flow rate, 

temperature) and opens the possibility to use radiation sources that may be dedicated for irradiating small 

surfaces (LEDs, excimer sources, fibers). However, micro channel plugging might occur and is attributed to 

adhesion wetting [61]. “Macroflow reactors” (internal channel diameter  1 mm) were more adapted to 

provide high throughput, while still offering a large surface-to-volume ratio to ensure an acceptable 

irradiated volume fraction. For e.g., a tubular photoreactor [46] (Fig. 5) was employed for the 

photopolymerization of miniemulsions. Externally irradiated tubular reactors bear the disadvantage of 

considerable loss of radiant energy, even when radiation sources are equipped with reflectors [57]. In 

addition, very high rates were achieved with a helix-type tubular reactor (Fig. 6) made up of UV-transparent 

fluoropolymer tubing wrapped at a defined distance around a radiation source of low electrical power (e.g. 

“black light” fluorescent tube) and with flow rates usually > 1 mL min-1 [62]. However, a transfer from batch 

to continuous process mode is by no means trivial. As recently highlighted by Asua et al. [13], the main 

challenges include run-to-run irreproducibility, clogging and variability in polymer architecture. At present, a 

wide choice of photochemical reactors is commercially available with different designs and volumes to be 

used for a large scope of radiation sources and flow rates, hence, providing superior versatility and 

compactness compared to conventional thermal reactors. It is expected that photochemical reactors will be 

one of the main levers and tools to stimulate future development of photopolymerization in dispersed 

systems. 

 

Fig 5: Laboratory scale set-up for a continuous process of photopolymerization of an aqueous polyurethane/acrylic 
hybrid miniemulsion using a tubular reactor with an inner diameter of 1 mm. This figure has been reproduced from 
[46] with permission of the copyright owners. 
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Fig 6: Photochemical helix minireactor in macroflow conditions: monomer miniemulsion tank (1), pump (2), helical 
photoreactor (3), UVA “black light” fluorescent tube (4) and collecting flask (5). The inset shows a magnification of the 
helically coiled tubing constructed by winding a PTFE tubing (1.5 mm inner diameter) around a quartz cylinder. This 
figure has been reproduced from [62] with permission of the copyright owners. 
 

• Managing heat removal in photoreactors. A common feature to all above mentioned examples is 

that reactions may be performed at ambient temperature as a means to reduce energy consumption. 

However, polymerizations being mostly exothermic processes, heat removal is typically required. In order to 

maintain ambient temperature, the use of a cooling fluid, a very low polymerization rate or a sufficient heat 

transfer area may be required. On industrial scale, exothermic photochemical processes (e.g. chain reaction 

of photo-chlorination) are mostly performed as batch processes in tank reactors with negative irradiation 

geometry which may be reduced in volume, multiplied and/or mounted in parallel to limit the heat removal 

rate per reactor. For smaller installations, tubular reactors with positive irradiation geometry and much 

higher cooling areas are used. Tubular reactors in closed circuit batch or continuous regime may be 

associated with heat exchangers at the reactor exit, from where the heat may be transferred to other 

installations. For now, all these solutions concern examples of the organic preparative photochemistry, but 

the accumulated experience is considered with confidence to be transferable to exothermic 

photopolymerization reactions in dispersed systems. 

 

2.3 MATERIALS AND EQUIPMENT 

2.3.1 Radiation sources 

The efficiency of the initiation step depends strongly on the characteristics of the source of excitation: 

radiant power, spectral distribution and geometry. Photopolymerization, primarily exploited as a thin film 

curing technology for coatings, inks and adhesives, has finally expanded to preparative projects with an 

increased scope of radiation sources and an expanded spectrum of irradiation reaching from UVC (> 200 nm) 

to VIS (< 800 nm). Aside from the emission range of these sources, polymerization in dispersed systems can 

be carried out using other means of radiation. Several examples include ionizing radiation such as -rays to 

achieve polymerization in emulsion [63]. On the low energy side of the electromagnetic spectrum, emulsion 

polymerization processes of conventional monomers (styrene, acrylates) can be triggered by ultrasound [64-

67]. In a very limited way, microwaves have been used to realize polymerizations in emulsion [68]. For 

photopolymerization in dispersed systems, wavelengths of excitation are generally > 250 nm because 

radiation of lower wavelengths is strongly absorbed by other components of the formulation, and may also 

cause photodegradation reactions involving dissolved molecular oxygen [69]. The primarily used radiation 
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sources to trigger polymerization emit in the UVA (315-400 nm), UVB (280-315 nm) and in part of the UVC 

region (250-280 nm). The two former regions are the main absorption areas of commercial radical 

photoinitiators. Over the last 10 years, the attractiveness of the VIS domain for radiation-curing has 

substantially increased due to several advantages compared to UV radiation: safe use (provided that 

irradiance and exposure are reasonable), better through cure opening the way for cross-linking of millimeter-

thick materials, and lower cost. Given that photopolymerization in dispersed systems employs the same 

photoinitiators as used for radiation-curing, it is logical that the same type of radiation sources are used: 

mainly medium-pressure Hg-arcs and, to a minor extent, high-pressure Xe arcs, compact fluorescent tubes, 

LEDs, excimer sources, lasers, and laser diodes [57]. 

• Medium-pressure Hg arc: The workhorse among radiation sources. Medium-pressure Hg-arcs emit 

a wide spectral distribution (220-600 nm) of lines whose importance and wavelengths can be varied by 

doping with metal halides [80]. In addition, different qualities of the surrounding quartz or borosilicate 

materials decide on the lower spectral limit of the incident radiation [70]. The use of the polychromatic 

radiation of a medium-pressure Hg arc allows selecting photoinitiators within a wide range of absorption 

spectra. Air- or water-cooling of the operating arc is compulsory but the heat released is not always fully 

dissipated. Consequently, the temperature of the irradiated reactor volume may be higher than ambient 

temperature, and should eventually be regulated, but must be in any case specified because it can 

significantly affect the polymerization. 

• Fluorescent tubes. Fluorescent tubes emit the luminescence of a solid located at the inside surface 

of the tube. The luminescing solid is excited by a low-pressure Hg arc, the emission of the latter is absorbed 

by the solid and the glass tube and cannot penetrate the latter [57]. As fluorescent tubes have been 

developed for electric lighting, their emission is a white light (wide polychromatic emission from 380 to 700 

nm) with shades of blue, red, green or yellow depending on the luminescent solids employed. If a luminescent 

solid emitting in the UVA and VIS spectral domain is attached to the inner surface of the tube, the latter 

acting as a filter absorbing the VIS luminescence, the fluorescent tube emits only between 315 and 400 nm, 

sometimes 430 nm. These tubes are called actinic fluorescent lamps or “black light” tubes and have proven 

very useful for the photochemical initiation of polymerizations in dispersed reaction systems [71]. 

• LED systems. The adoption of LEDs for applications using visible radiation such as television, 

communication, sensor or lighting has been extremely prolific. Their commercial adoption for UV/VIS-curing 

technology is rather recent, and the result of intense efforts to mitigate many barriers: cost, limited 

availability, low output, and thermal management. Although LEDs do not really have a higher luminous 

efficiency compared to conventional medium-pressure Hg arcs (≈ 70 lm/W versus ≈ 50 lm/W), their 

polychromatic emission is narrow and may be matched with the absorption spectrum of the photoinitiating 

system. This is a key point to improve energy efficiency in addition to their instantaneous switching on/off 

ability. Furthermore, LEDs are now offered with higher peak irradiances (> 50 mW cm-2) and longer lifetimes 

(≈ 30000 h vs 10000 h for medium-pressure Hg arcs). Monochromatic LEDs emit in the UVB, UVA and VIS 

spectral domains. With lines (half width < 15 nm) in the UVA domain at 365 nm, 385 nm, 395 nm and 405 

nm, they may be used for photopolymerization in dispersed systems. Although, there are currently only very 

few examples known of LED utilization in this field, UV LED business is expected to grow from $45M in 2012 

to $270M in 2017 and LEDs are likely to be important equipment component driving the development of 

polymerization technology. 

2.3.2 Continuous phase 

• Water. The majority of photopolymerizations in dispersed systems are conducted using water as 

continuous phase. Water is ideal because of its abundance, low cost, negligible environmental impact, and 
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high heat capacity (4.18 J g-1 K-1) [72] which is amenable to energy dissipation during polymerization. An 

additional advantage is the high transparency of pure water over a large UV spectral range. Residual 

absorption in the range between 200 and 340 nm is lower than 10-3 cm-1 and may be partially explained by 

Rayleigh scattering [73]. The absorbance remains below 1 cm-1 until 187 nm but the line emitted by a low-

pressure Hg arc (in Suprasil®) at 185 nm is already used for the photochemical homolysis of water, which is 

exploited for the oxidative degradation of organic pollutants in waste water. Thus, water offers a broad 

spectral window to work with UV irradiation, in sharp contrast with many organic solvents. 

• Organic solvents. An organic solvent transparent to the wavelengths required for the photochemical 

polymerization must be selected. In dispersion or precipitation photopolymerization (see sections 3.4 and 

3.5, respectively) starting from a solution, the choice of an organic continuous phase is very limited because 

it must also fulfil specific solubility criteria (good solvent for monomer, poor solvent of polymer). 

Consequently, mainly mixtures of water, ethanol and acetonitrile have been used [74]. Ionic liquids have also 

been considered but are generally highly absorbing in the UV range [75]. 

• Gases. Gas, e.g. nitrogen or helium, have also been used as continuous phase, in particular for aerosol 

photopolymerization (see section 3.7 on aerosol photopolymerization) because of their inertness and 

transparency over the total UVC to VIS spectral range [76]. 

2.3.3 Emulsifiers 

The stability of a dispersed system such as an emulsion or suspension is ensured by electrostatic and/or 

steric interactions, provided by use of ionic or non-ionic surfactants [77]. In the case of photopolymerization 

in dispersed systems, a very limited scope of surfactants has been used to date. The most common ionic 

types are sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB), widely found in 

conventional emulsion polymerization. With regard to non-ionic surfactants, poly(ethylene oxide) (PEO) and 

poly(vinyl pyrrolidone) (PVP) have been used in dispersion photopolymerization [78] and poly(vinyl alcohol) 

(PVA) in suspension polymerization [79]. There are also examples of polymeric surfactants including 

photocleavable groups [80]. Molecules combining the properties of initiator and surfactant (INISURFS), were 

also used [81]. An interesting example is Dowfax 2A1, a branched C12-alkylated diphenyl ether disulfonate 

surfactant widely used in industrial emulsion polymerization. The photoINISURF properties of Dowfax 2A1 

can be rationalized in terms of an electronic excitation of the diphenyl ether group to the first excited singlet 

state and a subsequent homolysis to intermediate phenoxyl and phenyl radicals, able to initiate 

polymerization, in a manner similar to type I photoinitiators (see next section 2.3.4) [82]. 

2.3.4 Photoinitiators 

• Overview of photoinitiators used for photopolymerizations in dispersed systems. There is a great 

diversity of photoinitiating systems mainly developed for UV-curing technology [14]. However, three types 

of photoinitiators are mainly employed for the photopolymerization in dispersed systems and will be 

described and classified in accord with the mechanism of the generation of the intermediate reactive species, 

their nature and their chemical reactivity, as shown in Fig. 7. 

a. Type I radical photoinitiators. Compounds reacting upon electronic excitation by homolysis to 

yield mainly C-centered radicals might be considered as type I photoinitiators, if (i) they absorb in a 

convenient spectral region, (ii) exhibit a high quantum yield of homolysis and (iii) generate radicals of 

lifetimes and reactivity enabling them to initiate polymerization rather than to deactivate by 

disproportionation. Some examples are given in Table 1. Among the many examples, monoaryl ketones with 

electronegative substituents linked to the -position are taking a particular position. Usually, the lowest 

triplet state of the carbonyl chromophore (3n,*) reacts by hydrogen abstraction if adequate hydrogen 
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donor molecules are present. However, the homolysis of the C–C bond adjacent to the electronically excited 

chromophore (𝛼-cleavage, Norrish I reaction) would be favoured when adequate substituents bound to the 

-position are stabilizing the alkyl radical to be generated (see Fig. 7a) [83]. Consequently, in order to exploit 

𝛼 -cleavage of electronically excited monoaryl ketones as a mechanistic concept for the generation of 

primary radicals initiating polymerization, functional groups, such as hydroxy, alkoxy, alkylamino groups, are 

linked to the 𝛼-C-position to enhance the rate of 𝛼-cleavage by stabilizing the corresponding -hydroxy-

alkyl-, 𝛼-alkoxyl-alkyl- and 𝛼-(alkylamino)-alkyl radicals generated in slightly exothermic reactions. 

b. Type II radical photoinitiators are mixtures of hydrogen acceptors (oxidant) and donors (reductant, 

see Fig. 7b). The first are usually chosen from ketones that react from their first triplet state (3(𝑛, 𝜋∗)-state) 

with high quantum yield and predominantly by abstracting hydrogen from reducing molecules (DH, route 

). In order to avoid electronic excitation but to ensure high reactivity, the latter are chosen from aliphatic 

tertiary amines, thiols or secondary alcohols [83, 84]. The “Type II” makes reference to the bimolecular 

reaction between an electronically excited oxidant (which should not be confused with photosensitizer, 

because it is not regenerated), and a reductant, called co-initiator (or co-synergist). Generally, ketyl radicals 

react rapidly by disproportionation, and it may be assumed that the radicals generated from the co-initiator 

(D) trigger the polymerization. The mechanistic details of the hydrogen abstraction might vary with the 

nature of the oxidant, and electron-transfer might occur upon electronic excitation of the oxidant with a 

subsequent proton transfer (e.g. with tertiary amine as reductant, route ). 

c. Photoacid generators are mostly based on onium salts that consist of a triarylsulfonium (Ar3S+) or 

diaryliodonium (Ar2I+) cation and an anion (X-) with the characteristics of a weak nucleophile and weak base 

(typically the anion of a super acid such as BF4
- or PF6

-). Upon electronic excitation, the cations undergo 

homolysis to yield iodonium (ArI+) or sulfonium (ArS+) radical cations and C-centered radicals (see 

mechanism in Fig. 7c for the specific case of iodonium salts). The C-centered radicals are highly reactive 

phenyl radicals (Ar) that react with organic compounds (DH) by hydrogen abstraction to yield benzene (ArH) 

or recombine to form biphenyl (Ar2). The iodonium (or sulfonium) radical cations also react by hydrogen 

abstraction from DH to generate the corresponding hydroiodonium (ArIH+) (or hydrosulfonium ArSH+) cations 

where the first subsequently deprotonate to yield more or less stable aryliodides (ArI) and bisaryliodides 

(Ar2I). The combination of proton and the original anion (X-) act as Brønsted superacid capable of protonating 

e.g. epoxy or vinylether monomers thus initiating cationic polymerization. Basically, cationic reactions are 

precluded in the presence of water, but Crivello described in 2003 the synthesis of epoxy functionalized 

polyether beads by way of a cationic photopolymerization in suspension [85] (see section 3.6 on suspension 

photopolymerization). 
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Fig. 7: Mechanistic schemes of the initiating processes of radical (A and B), and cationic photopolymerizations (C). 

• Requirement of water-solubility of radical photoinitiator. Table 1 lists the photoinitiators mainly 

employed for photopolymerizations in dispersed systems. Oil-soluble Type I photoinitiators are most 

commonly employed due to their wide availability. However, within the context of this review, oil-soluble 

initiators may not always be the best choice. When the initiator radical pairs are produced in a very confined 

space (polymer particles, monomer swollen micelles or monomer nanodroplets), the probability of 

recombination is higher than that of being scavenged by a monomer molecule. Consequently, water-soluble 

photoinitiators may be better suited under these conditions. In fact, it was observed that conventional 

emulsion polymerization relies primarily on primary radicals located in the continuous phase [86]. However, 

only a limited range of water-soluble photoinitiators is commercially available, and currently, 2-hydroxy-1-

[4-(2-hydroxyethoxy) phenyl]2-methyl-1-propanone (Irgacure 2959, P4) is used almost exclusively when 
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water solubility is required, although, its water-solubility is rather limited (≈ 1 g/100 mL). Recent 

developments were directed to the modification of acylphosphine oxides (e.g. P7 and P15) with hydrophilic 

poly(ethylene oxide) chains or carbohydrate residues [87, 88], and very recently, Li- and Na-salts of mono-

acylphosphine oxide and bis-acylphosphine oxide (P14) exhibiting good water-solubility and high reactivity 

were reported by Liska et al. [89].  

• Alternative photoinitiatinng systems. To overcome the challenge of designing water-soluble 

photoinitiator, we foresee the development of alternative approaches: firstly, innovative methods to convert 

conventional water-insoluble photoinitiators into water-dispersible nanoparticles. For example, spray-drying 

of a volatile TPO (P7) nanoemulsion led to a water-dispersible photoinitiator powder used recently in the 3D 

printing of hydrogels [90]. Alternatively, aqueous colloidal dispersions of semiconductor nanoparticles, best 

known as photocatalysts for advanced oxidation processes, could also be implemented for 

photopolymerization in dispersed systems. Upon excitation, subsequent photoinduced electron-hole pairs 

have been reported to contribute to the formation of initiating radicals in aqueous solution [91], but also in 

miniemulsion [53].  

Table 1: Main type I radical photoinitiators used for photopolymerizations in dispersed systems. Further data on 
photoinitiators can be found in [92]. Photoinitiators P2, P4, P5, P6 and P8 are commercial and contain a common aryl 
alkyl ketone group: R1-Ph-C(=O)-Alkyl-R2. The nature of R1 and R2 will change the absorption wavelength and the 
efficiency of cleavage process. P7, P14 and P15 are also commercial structures based on phosphine oxides. They absorb 
in near UV-vis region, and produce both benzoyl and phosphinyl initiating radicals. 

Photoinitiator Chemical structure Initiating radicals Abbreviation 

Azobisisobutyronitrile 
(AIBN) 

  

P1 

2-Hydroxy-2-methyl-1-phenylpropan-
1-one 
(Darocure 1173) 

  

P2 

1,3-Diphenylacetone 
(DBK) 

  

P3 

1-[4-(2-Hydroxyethoxy)-phenyl]-2-
hydroxy-2-méthyl-1-propane-1-one 
(Irgacure 2959)  
Water-soluble 

  

P4 

2,2-Dimethoxy-2-
phenylacetophenone 
(DMPA) 

  

P5 

2-Methyl-4'-(methylthio)-2-
morpholinopropiophenone 
(Irgacure 907) 

 
 

P6 

Diphenyl(2,4,6-
trimethylbenzoyl)phosphine oxide 
(TPO) 

  

P7 

1-Hydroxycyclohexyl phenyl ketone 
(Irgacure 184) 

  

P8 

Di-tert-butyl ketone 
(DTBK) 

  

P9 

2
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3-Hydroxy-3-methyl-2-butanone 
(HMB) 

 
 

P10 

Potassium persulfate 
(KPS) 
Water-soluble 

 
 

P11 

-ketoglutaric acid 
(KGA) 
Water-soluble 

  

P12 

Dihydroxyacetone 
(DHA) 
Water-soluble   

P13 

Sodium salt of 
bis(mesitoyl)phosphinic acid 
(Na-BAPO) 
Water-soluble 

  

P14 

Bis(2,4,6-
trimethylbenzoyl)phenylphosphine 
oxide (BAPO) 
Oil-soluble 

  

P15 

3 PHOTOINDUCED POLYMERIZATION PROCESSES IN DISPERSED SYSTEMS 

3.1 EMULSION PHOTOPOLYMERIZATION 

3.1.1 General considerations 

Emulsion polymerization is a well-established latex manufacturing process that is employed 

extensively for the production of conventional linear polymer colloids such as e.g. poly(vinyl acetate) (PVAc), 

styrene-butadiene copolymers, styrene-acrylate copolymers and poly(acrylate) [86, 93]. As a result of the 

high demand of polymers produced by emulsion polymerization, process development has long been a major 

economic issue in chemical industry. Although emulsion polymerization has been known since the end of 

World War II, photochemical initiation of this process has only been a subject of research since the 1980s, 

and to date, only rather few research has in fact been conducted. A summary of the investigations published 

is shown in Table 2. In general, laboratory scale photochemically initiated emulsion polymerization is 

relatively straightforward to implement. It is important to consider the partitioning behavior of the 

photoinitiator to ensure a conventional emulsion polymerization mechanism (main polymerization locus in 

polymer particles as opposed to in monomer droplets). It is therefore essential that the photoinitiator is 

located in the aqueous phase.  

The polymerization in a conventional O/W emulsion requires special conditions of implementation: (i) 

aqueous medium used as the continuous phase, (ii) micron-sized monomer droplets dispersed in the aqueous 

medium, (iii) a surfactant providing effective stabilization of the monomer droplets in water and forming 

micelles (not required for e.g. in surfactant-free emulsion polymerization), and (iv) an initiator soluble in the 

aqueous phase. The mechanism of emulsion polymerization is complex, and one of its main features is that 

polymerization does not occur in the monomer droplets, but in polymer particles generated in the aqueous 

phase. As the monomer is consumed in the polymer particles, it is replenished by monomer diffusion from 

the droplets to the particles. The progression of an emulsion polymerization may be divided into three 

distinct intervals (Fig. 8) [86, 93]. 
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Fig 8: Schematic illustrations of the initial monomer emulsion and of the three different intervals of an emulsion 
polymerization. 

Initially, (stage 0, Fig. 8), the emulsion contains monomer-swollen micelles and predominantly micron-

sized monomer droplets (1 - 20 m). Under the effect of heat or radiation, the water-soluble initiator 

generates radicals in the aqueous phase. These radicals add to monomers present in the aqueous phase, the 

growing (oligo)radicals (so called “z-mers”) become surface active and enter the monomer-swollen micelles 

where polymerization occurs (micellar nucleation). During interval I (Fig. 8, typically 0 - 10% conversion), the 

number of polymer particles increases gradually to reach a constant value marking the end of the nucleation 

period. In the absence of surfactant, or when the surfactant concentration is below the critical micellar 

concentration (cmc), particle formation may also occur via homogeneous nucleation (which may involve 

precipitation of oligomers in the aqueous phase). In Interval II (Fig. 8, typically 10 - 40 % conversion), new 

polymer particles are no longer formed, and particle growth occurs as monomers diffuse through the 

aqueous phase from droplets to particles. During this interval, the monomer concentration in the particles 

remains approximately constant. In Interval III (Fig. 8, typically 40 - 100 % conversion), all monomer droplets 

have been consumed, but polymerization continues within the polymer particles. An emulsion 

polymerization typically yields nanoparticles in the size range of 50 - 500 nm.  

3.1.2 Adaptation to photoinitiation: O/W emulsion 

The first photochemically initiated emulsion polymerization was reported by Turro et al. in 1980 [5], 

who conducted polymerizations using the system styrene and SDS and employing a number of oil-soluble 

ketone photoinitiators including 1,3-diphenylacetone (dibenzylketone (DBK), P3), benzoin and di-tert-butyl 

ketone (DTBK, P9). Polymerization rates and molecular weights obtained were comparable to those 

determined when using thermal initiators, but the resulting particle sizes were not analyzed. As outlined 

above, in the presence of surfactant at concentrations above cmc, the emulsion polymerization involves 

particle formation via micellar nucleation. Due to low water solubility, photoinitiators commonly used in 

radical photopolymerization tend to be predominantly located within micelles [16] and in monomer droplets 

in contrast to typical water soluble initiators such as potassium persulfate (KPS, P11). Oil-soluble initiators 

are often associated with low initiator efficiencies in emulsion-type reaction systems due to a fast 

bimolecular termination (recombination) of the radical pair generated upon initiator decomposition 

occurring within the confined space of monomer-swollen micelles or small monomer droplets [86, 94, 95]. 

The effect of this phenomenon on the kinetics of styrene, methyl methacrylate (MMA) and acrylic acid (AA) 

emulsion polymerization was studied by Turro et al. in the 1980s [5, 96-98].  
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In fact, electronic excitation of a C=O-chromophore is leading, depending on the substituents, to a n*-

transition with a subsequent, mostly quantitative singlet to triplet intersystem crossing to generate the 

corresponding triplet state (3(n*)-state). 3(n*)-states react preferentially by hydrogen abstraction (see Fig. 

7B, Type II photoinitiators), but introducing appropriate substituents at the -position(s) of the carbonyl 

compound (see Fig. 7A, Type I photoinitiators), the 3(n*)-state undergoes homolysis of a 𝜎-bond adjacent 

to the excited chromophore to generate a triplet radical pair [99]. A recombination of a triplet radical pair 

requires a preceding triplet to singlet intersystem crossing, as only spin paired radicals can reform a 𝜎-bond. 

The rate of a (bimolecular) singlet radical pair combination depends on the (local) concentration of the 

radicals and is particularly important if the reaction is taking place in a confined space (micelle). Given the 

rate of triplet to singlet intersystem crossing, the probability that radicals of the triplet radical pairs would 

initiate polymerization with monomers present within the aggregate or would exit from the micellar 

aggregate into the aqueous bulk phase is rather low, and emulsion photopolymerization using hydrophobic 

initiators is known to be inefficient. In order to minimize radical recombination within micelles, Turro et al. 

applied an external magnetic field [5, 96] to shift the equilibrium of the reversible fast intersystem crossing 

process (Fig. 9) toward the triplet radical pairs. In fact, already a low magnetic field (< 500 G [5]) is leading to 

a Zeeman splitting of the triplet sublevels (T±) [100], hence creating an energy sink that increases the lifetime 

and, consequently the probability of initiation within the aggregate or of a radical escape into the bulk phase. 

An increase of the magnetic field to values > 1000 G had no impact on yield or molecular weight of e.g. 

polystyrene, but may affect the molecular weight distribution. In fact, Turro et al. could show that the 

technique of applying a magnetic field of ≥ 1000 G would allow to use suitable hydrophobic photoinitiators 

(for e.g. aromatic ketones) to initiate emulsion polymerizations of styrene, MMA and AA emulsions, with 

efficiencies similar to processes employing water-soluble photoinitiators.  

As predicted, the magnetic field effect on the polymerization can only be observed for photoinitiators 

generating triplet radical pairs (typically aryl ketone, see Table 1), but is non-existent for singlet radical pairs 

generated by azo type initiators such as AIBN [99,[101].  

 

Fig. 9: Effect of an external magnetic field on the intersystem crossing (ISC) of benzyl radical pairs putting the fast rate 
of recombination of singlet radical pairs at a disadvantage by creating an energy sink at the triplet levels. Turro et al. 
could not determine the effect of an external magnetic field on the primary radical pair (before decarbonylation) but 
assume that the quantum yield of DBK consumption increases [96]. 

The hypothesis of a magnetic field effect on the radical pairs generated within micellar aggregates is 

supported by replacing Na+ as counterion of dodecylsulfonate (DS) aggregates by Mg2+, La3+ or Gd3+ [97]. It is 

assumed that larger counterions would increase the size of the micelles and therefore lower the rate of 

radicals initiating polymerization within the aggregates or exiting the micelles, and, in fact, in the absence of 
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a magnetic field, the yield of polystyrene was found to decrease by factors from 5 to 10. Applying a magnetic 

field of 2000 G afforded for Na+, Mg2+ and La3+ the same high yields of 80 to 90 %. The paramagnetic Gd3+ 

enhances the intersystem crossing while shielding the aggregates from the external magnetic field, and the 

yield of polystyrene was equivalent to that found in the absence of a magnetic field. However, the presence 

of either of the ions mentioned (in the presence or absence of an external magnetic field) had no effect on 

the photoinitiated emulsion polymerization of methyl methacrylate (MMA). The authors speculated that this 

striking difference compared to the styrene system may be caused by the fact that initiation occurs primarily 

in the aqueous bulk phase, since MMA exhibits a significantly higher solubility in water. Emulsion 

polymerization of styrene using water soluble initiators was confirmed later [86], and further work would be 

required to differentiate between initiation within micellar aggregates and in the continuous aqueous phase.  

Investigating in more detail the magnetic field effect on recombination within and escape from the 

micelles of the benzyl radicals generated by decarbonylation (Fig. 9), Turro et al. [99] focused analyses on the 

product of recombination (1,2-diphenyl-ethane (DPE), Fig. 9) and defined with a cage effect (ratio between 

the concentration of DPE and the concentration of DPK consumed after a given time of photolysis) the 

efficiency of recombination, or, inversely, the efficiency of initiation by or of escape from micelles of benzyl 

radicals. For experiments made in hexadecyltrimethylammonium chloride (HDTCl) micellar systems, cage 

effects for DPK of 32 and 17 % were observed in the absence and presence of a magnetic field (500 G), 

respectively. System inherent magnetic effects were found in investigating two differently 13C-labeled DBKs 

(Fig. 10). For DBK-1-13C, the dibenzylketone I3C-enriched (90 %) at the carbonyl function, the cage effect was 

practically identical (33 %). The result could be anticipated, as the I3C-labeling at the carbonyl function is no 

longer system relevant after decarbonylation. However, the cage effect increased to 46 % for DBK-2,2'-I3C, 

the dibenzylketone I3C-enriched (90 %) at the two -methylene positions, due to the faster triplet-singlet 

intersystem crossing of the germinal I3C-radical centers. 

The investigations of the Turro group exhibit the large potential for the application of low magnetic 

fields to optimize efficiency, molecular weight and molecular weight distribution of photochemically 

initiated emulsion polymerizations.  

  

Fig 10: The efficiency of polymerization initiation in micellar systems depending on system inherent magnetic effects 
(13C-labeling) [96]. 

One of the obvious advantages of photopolymerization is the fact that elevated temperature is not a 

requirement. This has been exploited in the production of poly(vinyl acetate) in emulsion, the final goal being 

the synthesis of poly(vinyl alcohol) (saponification of PVAc). The final product exhibited improved mechanical 

properties as a result of less branching, as the relative rate of chain transfer to polymerization decreases with 
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decreasing temperature [102]. In 2002, Mah et al. prepared PVAc using an anionic surfactant, ammonium 

poly(oxyethylene)10-p-nonyl phenyl ether sulfate (APOENPES) and its nonionic equivalent 

poly(oxyethylene)20-p-nonyl phenyl ether (POENPE; see Fig. 11) [103, 104], KPS (P11) having been used as 

photoinitiator. The experiments were conducted in the absence of molecular oxygen using a round bottom 

flask (Pyrex®) into which an immersion well (glass quality undefined) containing a Hg arc (500 W) was placed. 

More details concerning the arc are not known, since the cited arc does no longer exist in the product line of 

Ushio. In addition, the authors do not describe, how the emulsion has been agitated. Nevertheless, the 

experiments yielded polymers with low degrees of branching and high molecular weights when vinyl acetate 

(VAc) was photopolymerized at 0 °C. Similar results were obtained using the non-ionic surfactant POENPE 

[104]. 

 

Fig. 11: Ionic and non-ionic surfactants used by Mah et al. in the emulsion photopolymerization of VAc [103, 104]. 

In 2003, Lacroix-Desmazes and coworkers synthesized poly(methyl methacrylate) (PMMA) by radical 

photopolymerization in emulsion using p-(4-diethylthiocarbamoylsulfanylmethyl) benzoic acid (DTBA; see 

Fig. 12) as photo-surf-iniferter, i.e a molecule able to act as surfactant, photoinitiator and control agent at 

the same time [105]. The molecular weight data indicated some controlled/living character as anticipated 

considering previous work on iniferter systems, e.g. the pioneering work of Otsu [106, 107]. The 

controlled/living character was negatively impacted by addition of a conventional surfactant (SDS) due to the 

formation of micelles. Aside from providing some level of control/livingness during the polymerization, 

another advantage of the use of DTBA is the functionalization of PMMA chain ends by carboxylic acid groups, 

as the initiating radical adds to the C-C-double bond of monomer and oligomer. This feature enabled grafting 

of PMMA on a poly(ethylene-b-glycidyl methacrylate) copolymer, demonstrating how this synthetic 

approach can be used effectively to modify polyolefins.  

 

Fig. 12: UV photocleavage of DTBA photo-surf-iniferter used by Lacroix-Desmazes and coworkers in emulsion 
photopolymerization [105]. 

Shim et al. [108] performed UV-induced controlled/living radical polymerization of MMA in an 

emulsion using a surface active reversible addition-fragmentation chain transfer agent (CTA) or RAFT agent, 

whereby the surface activity was imparted by a carboxylate (COO-) moiety of the RAFT R-group agent. Radical 

generation presumably occurs by homolysis of the C-S bond of the RAFT agent [109]. Good control/livingness 

was obtained with polymeric nanoparticles of narrow size distribution in the submicron range. Very recently, 

Yamago and coworkers carried out controlled/living radical photopolymerization of MMA employing a water-

soluble organotellurium CTA (photo-TERP) [110]. Taking advantage of the Te-C bond’s reversible 

photoinduced homolysis under visible light, polymerization was initiated through a white LED. 

Controlled/living characteristics were demonstrated as well as good temporal control through a series of “on-
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off” cycles. Nevertheless, the conditions to achieve control over molecular weights were challenging since 

the authors mentioned the importance of precise radiation filtering (without providing irradiance data) and 

the need for heating (65 °C) for 9 h to obtain full conversion. 

In 2009, Yang et al. carried out emulsion polymerization of styrene under UV irradiation in a beaker 

shaped container covered by a quartz cap through which the magnetically stirred reaction system was 

irradiated under a nitrogen blanket by a short high pressure Hg arc (375 W) [111]. Two radical photoinitiators 

were employed: the water-soluble Irgacure 2959 (P4, Table 1) and the hydrophobic DMPA (P5). After 

irradiation for 2 h, the styrene emulsion (10 wt%) polymerized with DMPA exhibited high turbidity with an 

average particle size of 80 nm, while the one initiated by Irgacure 2959 was completely transparent with an 

average particle size of only 30 nm (Fig. 13). This latter approach provides an attractive route to very small 

particles without the use of excessive amounts of surfactants (as in microemulsion polymerization. Strategies 

for the synthesis of high-solids-content, low-surfactant/polymer ratio nanolatexes has have already been 

reported [112]. Since the chosen range of wavelengths of irradiation is not selective for the excitation of 

either one of the two photoinitiators, excitation of the monomer cannot be excluded. Nevertheless, the 

results may indicate that experiments with Irgacure 2959 led to hydroxylated polystyrene chains would 

enhance the colloidal stability. The same equipment was used to initiate the emulsion polymerization of 

MMA by electronic excitation of Fe3+ ions that are known to react from their excited state with H2O yielding 

hydroxyl radicals [113] as initiating species. The fast thermal reversibility of the photochemical Fe3+-

reduction and the high rates of hydrogen abstraction and addition to 𝜋-bonds ensure a high efficiency of the 

MMA polymerization (90 %) within 10 min of irradiation with particle diameters in the range 20-90 nm 

depending on conditions [114]. 

 

Fig. 13: Initial styrene emulsion (a), PS latex prepared using DMPA (b, turbid) and I 2959 (c, transparent). This figure has 

been reproduced from [111] with permission of the copyright owners. 

Muller et al. [115] conducted surfactant-free emulsion polymerization of styrene using Na-BAPO. (P14) 

under blue light (LED emitting at 465 nm). If blue light is used, the resulting particles were quite 

monodisperse with diameters ~100 nm, although the molecular weights were unusually low with Mw = 1500-

3500 g/mol. More anecdotic, photochemically induced seeded emulsion polymerization has been reported 

for the synthesis of core-shell particles, whereby the shell-polymer is polymerized using photoinitiation [116, 

117]. 
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Fig 14: Photoinitiators (and decomposition pathways) used by Tauer/Yagci and coworkers for styrene emulsion 
photopolymerization (BAPO (top) and BAG (bottom)). Reproduced from [118] with permission of the copyright owners. 

In 2011, Tauer, Yagci and coworkers investigated photoinitiated emulsion and bulk polymerizations of 

styrene using two different Type I photoinitiators (bis(2,4,6-trimethylbenzoyl)phenylphosphine (BAPO, P15) 

and bis(4-methoxybenzoyl)diethylgermanium (BAG) (Fig. 14) [118] employing two white fluorescent lamps 

(18 W; fluorescence tubes also used for indoor illumination).  

The use of these hydrophobic photoinitiators leads to two types of polymerization mechanisms: (i) 

polymerization in growing particles (largely accepted emulsion polymerization mechanism; final particle 

diameter approx. 100 nm) as well (ii) as polymerization in very large polydisperse monomer droplets (100 

nm - 200 μm), the latter eventually forming a coagulum. The two-stage decomposition patterns of BAPO and 

BAG (Fig. 19) might lead to the attachment of an initiator moiety to a polymer chain being able to further 

decompose and generate a polymer radical at the end of the polymer, where the initiator residue is located. 

Consequently, the molecular weight is increasing with conversion in a manner similar to a controlled/living 

radical polymerization. In fact, the authors observed that photopolymerization also occurs after consumption 

of the initiators or in the absence of the two initiators investigated. Upon total consumption of the 

photoinitiators, phenacyl chromophores bound to the polymer might act after homolysis as photochemical 

radical generators by hydrogen abstraction or addition to -systems. The effect of molecular oxygen adding 

to C-centered radicals and the subsequent initiation by peroxyl radicals may also explain part of their results. 

But the increase of molecular weight of polystyrene under similar conditions and in the absence of molecular 

oxygen might indicate additional mechanisms of initiation. For experiments, where no photoinitiators were 

added, the authors suggested that electronic excitation of the styrene monomer would lead in the presence 

of polystyrene to an electron transfer generating a styrene radical cation and a polystyrene radical anion that 

react to yield a radical pair by hydride transfer. Branching along the polystyrene chain would be in favor for 

such a mechanistic hypothesis, but radical ions and hydride transfer seem highly improbable in aqueous 

systems, unless these intermediates would be strongly protected in the organic phase. In fact, the 

photoinitiated polymerization rates in emulsion were higher than those in the corresponding homogeneous 

(bulk) systems, and the rate enhancement may be explained by compartmentalization.  

Tauer and co-workers [119] later described, based on a somewhat similar concept, an emulsion-type 

photopolymerization of styrene using a water-soluble acetic acid-modified BAPO photoinitiator (phenyl 

group adjacent to the P=O group in BAPO is substituted with acetic acid) in a flow reactor under UV 

irradiation. A rather large amount of SDS (0.17 mol L-1) was employed, and extremely high polymerization 

rates and molecular weights were obtained. Calculations indicated that the average number of propagating 

radicals per particle exceeded one, despite the small particle size, thus not consistent with zero-one kinetics. 

The authors interpreted this result with photoinitiator end chain fragments (phenacyl groups) incorporated 

into the polymer backbone (as already mentioned above) generating upon electronic excitation new initiating 

radicals by hydrogen abstraction and called it a “snowballing radical generation” effect. Very recently, Lacôte 

and coworkers described the first use of visible light in emulsion photopolymerization using styrene as 

monomer and a photoinitiating system based on three different water-soluble compounds [120]. Although 
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not studied, the mechanistic details may involve a first step of electron-transfer upon electronic excitation 

of a dye (acridine orange), leading to the photoreduction of a disulfide compound, further decomposed into 

thiyl radicals. While these latter are not able to trigger the polymerization, proton transfer with a third 

compound (N-heterocyclic carbene borane) may generate NHC-boryl initiating radicals. 

Table 2: Summary of main studies describing emulsion photopolymerization. 

Monomer 
Continuous 

phase 
Surfactant Photoinitiator 

Polymerization time/ Irradiation 
system 

Particle 
diameter 

Ref. 

Styrene or MMA/AA Water SDS P1/P3/P9/P13 

[5][96]: 450 W, Hanovia, medium 
pressure Hg-arc, immersed, Pyrex®, l 
= 313 nm (K2CrO4 ). [101] : no details 
concerning irradiation 

- [5, 96-98] 

Vinyl acetate Water 
APOENPES, 
POENPE (Fig. 
11) 

P11 
Degassed, 500 W, high(?)-pressure Hg 
arc, immersed, most probably: 
quartz, irradiation time: < 180 min 

- [103, 104] 

MMA Water DTBA (Fig. 12)/SDS 

N2 purged, 125 W, medium-pressure 
Hg arc Philips HPK, external, most 
probably Pyrex®, irradiation time: 24 
h 

- [105] 

MMA Water 
Surfiniferter (4-thiobenzoyl 
sulfanylmethylsodium benzoate) 

UV (no details), 6 h, N2 purged, 375 
W, high(?)-pressure Hg arc, external, 
quartz, irradiation time: 150 min, λ = 
365 nm 

300 – 400 
nm 

[108] 

MMA Water 
Brij98/SDS/ 
CTAB 

Organotellurium, 
CTA/4,4'-azobis(4-
cyanovaleric  acid) 

Up to 9h, LED Visible range, 50% 
Filter, 6 W 

45-350 nm [110] 

Styrene Water SDS P4/P5 
150 min, high-pressure Hg arc, λ = 
365 nm, 375 W 

24 – 139 
nm 

[111] 

MMA Water CTAB FeCl3 
N2 purged, 1000 W, high-pressure Hg 
arc, quartz, external, irradiation time: 
10 min, radiant exitance: 20 mW cm-2 

20 – 90 nm [114] 

Styrene Water 
Surfactant-
free 

P14 
LED, 465 nm (60 LEDs per meter), UV 
(no details) 

80 – 400 
nm 

[115] 

Styrene/MMA Water SDS Benzoin 

125 W, medium-pressure Hg arc, N-
HPL 125W, Peschl Ultraviolet GmbH, 
Duran, immersion, irradiation time: 
180 min 

100 – 700 
nm 

[116] 

Styrene/n-isopropyl 
acrylamide 

Water - 

2-[p-(2-hydroxy-2-
methylpropiophenone
)]-ethylene glycol 
methacrylate 

N2 purged, 150 W, doped medium-

pressure Hg arc, Heraeus TQ 150 Z3,), 
immersed, most probably Pyrex®, 
irradiation time: 60 min, 

260 nm [117] 

Styrene Water SDS 
P15/BAG 
(Fig. 14) 

< 300 h, 2 fluorescent tubes (white 
light), 2 x 18 W, 0.5 mW cm-2 

100 nm 
(latex). 0.1- 
10 µm 
(coagulum) 

[118] 

Styrene/Butyl 
methacrylate 
(BuMA)/MMA 

Water SDS 
P15/acetic acid-
modified BAPO 

450 W, medium-pressure Hg arc, 
Hanovia, external (centered on 
minireactor,), residence time: 36.5 to 
146 s, 

50 nm [119] 

Styrene Water SDS 
Acridine orange 
(dye)/Disulfide 
(oxidant)/NHC borane 

Conventional stirred tank reactor 
surrounded by a visible LED strip (?), 
external, no details concerning 
irradiance, irradiation time: 6 – 10 h. 

60 – 330 
nm 

[120] 

 

3.2 MICROEMULSION PHOTOPOLYMERIZATION 

3.2.1 General considerations 

A microemulsion [121-124] is a macroscopically homogeneous mixture of two immiscible liquids (of 

main interest here: water and vinyl monomer), a surfactant and sometimes a cosurfactant (a medium-chain 

length aliphatic alcohol) that forms spontaneously without external shear forces, i.e. it is thermodynamically 

stable. The interfacial tension between the two liquids must be close to zero. Due to the high surfactant 

content of microemulsions, the micelles are able to incorporate all monomer in the system within their 

hydrophobic cores by swelling. Before polymerization (stage 0 in Fig. 15), the system contains monomer-
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swollen micelles (diameter  1-10 nm [125, 126]), and some of these micelles are transformed into polymer 

particles during the polymerization. Only a fraction of monomer-swollen micelles is getting nucleated - the 

remaining monomer-swollen micelles provide monomer to the growing particles via diffusion across the 

continuous phase (stage I in Fig. 15). Taking into account that some coalescence will also occur, the final 

particle size is typically in the range 20-60 nm (stage II in Fig. 15). In general, among polymerization processes 

in heterogeneous media, microemulsion polymerization yields the smallest particles, but also works with by 

far the highest surfactant concentrations, typically as much as 100 – 300 wt% of the monomer concentration. 

Depending on the relative amounts of the two liquids and the type of surfactant, microemulsions can exist 

either as oil in water (O/W) or as W/O microemulsions. By varying the surfactant content, the formation of 

bicontinuous systems may be observed with a random organization with interconnections between the 

different phases. At high surfactant concentrations, monophasic lamellar structures might be present. 

Microemulsion polymerization directly relates to conventional monomers such as styrene [124, 127], or 

acrylates [128, 129]. Inverse systems mainly involve water-soluble monomers such as acrylamide [130]. O/W 

microemulsion polymerization of styrene is illustrated in Fig. 15. 

 

Fig. 15: Main stages of a typical O/W microemulsion polymerization. 

The kinetics of microemulsion polymerizations are characterized by the compartmentalization of 

propagating radicals – it is a zero-one system (as in zero-one emulsion polymerizations), where monomer-

swollen micelles and particles never contain more than 1 radical for a kinetically significant period of time 

[121, 124] (stage I in Fig. 15). In general, the polymerization rates are high and the molecular weight typically 

reaches the chain transfer to monomer limit [131] (very high molecular weight), i.e. chain transfer to 

monomer is the main end-forming event. The final polymer particles (20-60 nm) are larger than the initial 
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monomer-swollen micelles, as a result of monomer diffusion from non-nucleated monomer-swollen micelles 

to polymer particles during the course of the polymerization (stage I in Fig. 15). Non-nucleated monomer-

swollen micelles remain in the system to high conversion (stage II in Fig. 15).  

3.2.2 Adaptation to photoinitiation: O/W microemulsion 

Microemulsion polymerizations are highly suited for photochemically induced initiation. They are 

typically optically transparent/translucent, especially at low conversion, as a result of the small size of the 

monomer-swollen micelles and polymer particles. Various studies reported on photoinduced polymerization 

processes in microemulsion are summarized in Table 3. 

Merlin and Fouassier reported the first photochemically initiated polymerization in a microemulsion 

in 1981 [17]. These authors referred to their system as an emulsion polymerization – however, given the very 

high surfactant:monomer ratio (260 wt% sodium lauryl sulfate relative to MMA), it is likely that this was in 

fact a microemulsion polymerization. Photochemical initiation was carried out using various saccharides 

(fructose, glucose, sucrose…). The authors used mono- and disaccharides that may be represented as 𝛼-

hydroxylated aliphatic carbonyl compounds, and as such, may undergo 𝛼 -cleavage upon electronic 

excitation. 𝛼 -Hydroxylated ketones and aldehydes absorbing at wavelengths > 300 nm, 

photopolymerizations of MMA were observed for excitations at 313 and 365 nm using medium-pressure Hg 

arcs. A scission of carbohydrate bonds was already earlier postulated [132]. Irradiation with the same 

unfiltered radiation sources (i.e. including the spectral range from 200 to 300 nm) resulted in much higher 

polymerization rates due to a significant contribution from MMA self-initiation. Encinas et al. [133] 

investigated the MMA/SDS system employing the radical photoinitiators dihydroxyacetone (DHA, P13 Table 

1), DTBK (P9, Table 1) and hydroxymethyl butanone (HMB, P10, Table 1), the latter two being hydrophobic. 

The experiments carried out with quasi-monochromatic radiation at 313 nm (Hg-line) confirm the earlier 

results concerning the use of substituted aliphatic carbonyl compounds as photoinitiators. DHA, soluble in 

the aqueous phase, provided the highest polymerization rate and highest initiation efficiency. But this study 

also highlights a recurring problem of the photoinitiation in emulsion-based systems: the inefficiency of 

hydrophobic radical photoinitiators. As already mentioned in the previous section on emulsion 

polymerization (section 3.1), fast bimolecular termination (recombination) of the radical pair generated from 

a single initiator molecule in the confined space of a monomer-swollen micelle/polymer particle is thought 

to be the major cause [5, 96-98]. 

Turro and El-Aasser conducted photoinitiated polymerizations of styrene in a microemulsion using SDS 

as surfactant, irradiating with the 313 nm-line of a high-pressure mercury arc (radiant exitance: 3.6 mW cm-

2) and using DBK (P3) as oil-soluble initiator [134]. The polymerization rate increased with increasing initiator 

concentration and with increasing radiant power. The increase of the polymerization rate was accompanied 

by a decrease in molecular weight, rationalized by increased triplet radical pair concentration and 

consequently a greater termination rate. An increase of the initiation rate (by varying initiator concentration 

or radiant power) also led to larger particles, proposed to be caused by enhanced coagulation of primary 

particles at high initiation rates. The particle diameters were in the range 35-56 nm. Larpent and Tadros 

studied the photoinduced microemulsion polymerization of styrene, MMA and vinyl acetate using KPS (P11, 

Table 1), azobis-2-methyl–propamidinium dichloride (AMP) and AIBN (P1, Table 1) as initiators [135]. The 

stability of the final emulsions was evaluated by addition of electrolyte to determine the critical flocculation 

concentration. revealing that charged particles (from ionic initiators such as the KPS or APM) were less stable 

than particles (diameters 23-61 nm) obtained with the non-ionic initiator (AIBN). 

The mechanism of photoinduced microemulsion polymerization of butyl acrylate (BA) using SDS as 

surfactant was examined in detail by Capek et al. in the mid-1990s [136-138]. Photochemical initiation was 
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first carried out using AIBN under UV irradiation at 365 nm. Polymerization did not occur when BA itself or 

BA/SDS was irradiated. However, polymerization did proceed when irradiating microemulsions of 

BA/SDS/water without any photoinitiator. Interestingly, the authors found that the polymerization continued 

for a significant time period even after the irradiation was switched off (post-polymerization; Fig. 16). Similar 

data were later reported for other systems [139]. The rate of radical decay contained a significant 

contribution from first-order kinetics (as opposed to second-order kinetics for “normal” bimolecular 

termination) [136]. This effect was proposed to originate from the existence of relatively immobile high 

molecular weight radicals that could only terminate via reaction diffusion [140]. Another significantly 

contributing factor is the segregated environment afforded by nanoparticles as in a typical zero-one emulsion 

polymerization system [86, 93]. In addition, the number of particles increased during post-polymerization, 

which is evidence of chain transfer to monomer followed by exit and subsequent re-entry into (non-

nucleated) monomer-swollen micelles.  

 

Fig. 16: Post-polymerization in the photoinduced microemulsion polymerization of BA. Continuous irradiation (), stop 
5 min (), stop at 10 min (). Reproduced from [136] with permission of the copyright owners. 

Wang et al. [125] conducted photoinduced microemulsion polymerization of styrene using a 

specifically designed cationic amphiphilic perester photoinitiator (structure presented in Fig. 17). Due to its 

surface activity, this initiator would be primarily located at the interface of monomer-swollen micelles and 

polymer particles. Homolysis under UVA-irradiation (8 W,  = 350 nm) would generate a radical cation and 

an uncharged radical. It is presumed that the first would be solubilized in the aqueous phase, add to 

monomer in the aqueous phase and subsequently enter into a monomer-swollen micelle or polymer particle 

close-by, whereas the uncharged radical would initiate polymerization within the monomer-swollen micelle 

or polymer particle where it was generated. In case of an anionic surfactant such as SDS, the radical cation 

would remain associated with the negatively charged surfactant, thereby increasing the probability for 

recombination with the uncharged radical. However, in case of a cationic surfactant, such as DTAB, the radical 

cation would exit more readily from the interfacial region (Fig. 17) due to repulsion between the two positive 

charges. This rationale was invoked to explain the fact that the polymer molecular weight was higher for SDS 

than for dodecyltrimethyl ammonium bromide (DTAB), given that a lower initiation rate would result in 

higher molecular weight. 
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Fig 17: Positively charged amphiphilic photoinitiator used for the microemulsion photopolymerization of styrene (a). 
Interactions at the interface of a monomer-swollen micelle/particle upon irradiation for both types of surfactant: 
Negatively charged SDS (b), and positively charged DTAB (c). Reproduced from [125] with permission of the copyright 
owners. 

In 2000, Capek [139] reported photopolymerization of microemulsions of various methacrylates in the 

presence of poly(ethylene oxide) methacrylate macromonomers employing a Type II radical photoinitiator 

(see Fig. 7b for initiation mechanism), methyldiethanolamine (MDEA) and dodecyl thioxanthone. The 

macromonomer gives rise to in situ generation of branched chains with amphiphilic character that can 

provide steric stabilization in addition to the electrostatic stabilization provided by SDS. The presence of the 

macromonomer led to an increase in particle size and a decrease in polymerization rate and molecular weight 

relative to the corresponding systems using SDS only. The extent of compartmentalization (segregation of 

propagating radicals) decreases with the increase in particle size, thus explaining the decrease in both 

polymerization rate and molecular weight. In both emulsion and miniemulsion polymerization, the use of 

nonionic surfactants tends to result in larger particle sizes. The macromonomer approach was also employed 

by David et al. [141], who photopolymerized microemulsions of MMA and BuMA by self-initiation under UV 

irradiation using a high-pressure Hg arc (300 W) in the presence of the macromonomer poly(N-

acetylethylenimine) (PNAEI; Fig. 18). The incorporation of the macromonomer, present at the surface of the 

polymer particles in the form of hydrophilic branches, resulted in enhanced particle compatibility with 

commodity polymer matrices investigated for improvements in film formation properties.  

 

Fig 18: PNAEI macromonomer employed by David et al. [141]. 

Jain et al. employed photoinitiated microemulsion (SDS/1-pentanol) polymerization of BA to prepare 

highly hydroxyl functionalized nanoparticles [142]. Functionalization was achieved by use of the 

photoinitiator system MDEA / Rose Bengal (RB) providing the desired chain end functionality and allowing 

irradiation in the VIS spectral range ( > 380 nm). The presence of hydroxyl groups enables these polymers 

to act as precursors for synthesizing hybrid structures (acrylate/urethane by reaction of the hydroxyl function 

with isocyanate). In 2008, Wan et al. prepared nanoparticles (34 - 52 nm) of styrene-BA-silane acrylate 
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copolymer [143]. Subsequent film formation studies revealed inter-particle crosslinking (sol-gel process) 

resulting in the formation of a siloxane network.  

3.2.3 Adaptation to photoinitiation: W/O microemulsion 

Inverse (W/O) microemulsion polymerization involves nanoscale hydrophilic monomer droplets 

dispersed in a continuous organic phase. Inverse microemulsions are, just like O/W microemulsions, optically 

transparent due to the small micelle/particle size, and are typically employed for water soluble monomers 

such as acrylamide [122, 144]. These studies involved sodium dioctyl sulfosuccinate (aerosol-OT; AOT) as 

surfactant (Fig. 19) which is commonly employed in inverse microemulsion systems. 

 

Fig 19: Sodium dioctyl sulfosuccinate (aerosol-OT; AOT) 

Photoinduced inverse microemulsion polymerizations of acrylamide (acrylamide/water/toluene/ 

AOT/AIBN) have been investigated by Candau et al. [144, 145]. The polymerizations proceeded very rapidly 

(< 30 min) to full conversion, with initial micelle sizes of 4-12 nm resulting in polymer nanoparticles with 

diameters 28-52 nm as well as small surfactant micelles (~3 nm). This increase in size, similar to what is 

typically observed in O/W microemulsion polymerizations, was attributed to collision-coalescence between 

particles and to monomer diffusion from non-nucleated micelles. The polyacrylamide obtained was of very 

high molecular weight (1-5 x 106 g mol-1) due to compartmentalization of propagating radicals. Holtzscherer 

et al. also reported the photopolymerization of acrylamide inverse microemulsions prepared in using e.g. 

sorbitan sesquioleate as non-ionic surfactant with particle sizes in the range 70 – 105 nm, hence, substantially 

larger than when using AOT [130]. Various trends were reported, such as an increase of particle size with 

increasing monomer content and decreasing surfactant content. A model for the photoinitiated inverse 

microemulsion polymerization of 2-methacryloyl oxyethyl trimethyl ammonium chloride was reported in 

1998 [146]. 

Inverse microemulsion photopolymerization can be used to create cross-linked films by adding a 

crosslinking agent such as 1,6-hexanediol diacrylate to the continuous organic phase. The polymerized 

continuous phase and contains dispersed water droplets in its solid matrix. The synthesis and properties of 

such polyacrylate films were studied by Pojman and coworkers [147]. Photopolymerization affects the 

formation of nanostructures in the films by aggregation of water droplets or self-assembly of surfactant 

molecules as evidenced by small angle neutron scattering [148].  

Inverse microemulsion photopolymerization has also been reported by Yagci and Matyjaszewski and 

coworkers using atom transfer radical polymerization (ATRP) of oligo(ethylene glycol) monomethyl ether 

methacrylate at room temperature with Irgacure 2959 as photoinitiator. Like RAFT or TERP mentioned above, 

ATRP is another example of a reversible-deactivation radical polymerization to obtain well-defined polymers 

in terms of molecular weight distribution and chain-end functionality. ATRP usually employs a transition 

metal complex Mez/L as the catalyst (typically copper with N-containing ligands L) with an alkyl halide as the 

initiator (R-X, X = Cl, Br). In contrast, the authors used herein two relatively new ATRP techniques called 

Activators ReGenerated by Electron Transfer (ARGET) and Initiators for Continuous Activator Regeneration 

(ICAR), which decrease the amount of catalyst needed to only a few ppm (no photoinitiator present for the 
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latter) [149]. The deactivator Cu(II)/L is reduced to Cu(I)/L by radicals from the photoinitiator, and photolysis 

can also generate a bromine atom and Cu(I)/L from Cu(II)/L.  

3.2.4 Photopolymerization in bicontinuous microemulsions 

Depending on the relative amounts of surfactant, continuous phase and monomer, microemulsions may 

exhibit bicontinuous phases. In bicontinuous microemulsions, the dispersed phase domains are 

interconnected as opposed to existing merely as globular entities (Fig. 20).  

 

Fig 20: The various microemulsion structures obtained depending on the relative amounts of water/oil.  

Polymerization of bicontinuous microemulsions enables preparation of microporous materials (pore 

diameter 1 - 4 nm), as reported by using photoinitiation [150, 151]. Photopolymerization of bicontinuous 

microemulsions of monoacrylates and diacrylates has also been studied by Peinado et al. using fluorescent 

probes [152] As is usually the case, photopolymerization led to changes in the monomer microemulsion 

structure. The nanostructure of the initial microemulsion was not retained because of the fluid template 

resulting in phase separation, but mesoporous materials were achieved. Photopolymerization in 

bicontinuous microemulsions can also be adapted to a two-phase solid medium as demonstrated by Gao and 

al. [153]. Porous membranes of cross-linked polymers were produced using a glucose-based dispersed phase 

(dehydrated to generate a solid continuous phase prior to polymerization), which is easily removed by 

washing with water after polymerization. This approach based on a robust solid template ensures that the 
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nanostructure of the initial microemulsion is maintained through the polymerization, whereas the original 

structures are not necessarily retained, when templating techniques are used that based on surfactant self-

assembly. The pores of these structures exhibited an average size of ~25 nm.  

Table 3: Summary of studies related to photopolymerization in microemulsion. 

Monomer(s) 
Continuous 
phase 

Surfactant 
(Costabilizer) 

Photoinitiator 
Polymerization system / 
Irradiation system 

Particle 
diameter 

Ref. 

MMA Water SDS Saccharides 

N2 purged, 500 W, high-pressure 
Hg arc Phillips SP500, 250 W, 
high-pressure Hg arc, Osram HBO 

250,  = 313, 365 nm, external 

- [17] 

Styrene Water SDS/DTAB 
Charged 
perester, see 
Fig. 17  

N2 purged, 16 8 W, “black light” 

tubes, GE, F8T5-BLB,  = 350 nm, 
external. 

ca. 30 nm [125] 

MMA Water SDS P9/P10/P13  = 313 nm (no details) - [133] 

Styrene Water SDS/1-pentanol) P3 
Ar, 1000 W, high-pressure Hg arc, 

Oriel,   = 313 nm, external, 
radiant exitance: 3.6 mW cm-2 

- [134] 

Styrene/MMA/Vinyl 
acetate 

Water 
Various (ionic and 
non-ionic with 
different HLB) 

P1/P11 UV-irradiation (no details) 
23 – 61 
nm 

[135] 

BA Water SDS 
P1/P5 
Self-initiation 

Ar, 250 W, medium pressure Hg 
arc, RVL 250 Tesla Holegovice, 
125 W, medium-pressure Hg arc, 

RVL 250 Tesla Holegovice,  = 
313, 365 nm external 

ca. 70 nm [136-138] 

Alkyl methacrylates Water 
SDS/poly 
(ethylene oxide) 
methacrylate 

MDEA /dodecyl 
thioxanthone 

Optical bench,  = 365 nm 
23 - 55 
nm 

[139] 

MMA/BMA Water 
SDS, 
macromonomer 
(see Fig. 18) 

Self-initiation 
N2, 300 W, high-pressure Hg arc, 
glass, external, 4 h 

17 – 200 
nm 

[141] 

BA Water SDS/1-pentanol) 
MDEA/Rose 
Bengal 

N2 purged, 200 W high pressure 

Hg-Xe arc,  > 380 nm, external, 
5 h, 

- [142] 

Styrene/BA/Silane 
coupling agent 

Water SDS/1-pentanol) Benzophenone 
500 W, high(?)-pressure Hg arc, 
glass, external, 2 – 4 h 

34 – 52 
nm 

[143] 

Acrylamide Toluene AOT (see Fig. 19) P1 
N2 purged, 125 W medium 
pressure Hg-Xe arc, Philips HPK 
125, immersed 

16 - 19 
nm 

[144, 145] 

None (water) 
Dodecyl 
acrylate, 
HDDA 

AOT Irgacure 369 
Film, “black light”, hand-held,  = 
365 nm, external, 1 – 2 min, 
radiant exitance: 2.3 mW cm-2 

- [147, 148] 

None (water) OEOMA 

Polyethylene 
oxide methyl 
ether 
(Polyethylene 
glycol 550) 

P4 

Degassed (3 x) and N2 purged, 16 

UV lamps (Rayonet),  = 350 nm, 
45 mW cm-2, 3 - 24 h 

70 – 130 
nm 

[149] 

MMA/AA/Ethylene 
glycol methacrylate 
(EGDMA) 

Water SDS P5 
450 W, no details, Pyrex®, 
external, 1 h 

10 - 50 
nm 

[150, 151] 

MMA/N,N-
dimethylaminoethyl 
methacrylate/ 
EGDMA 

Water SDS/CTAB P15 

N2, fibre guide, 450 W, medium-
pressure Hg arc, Silvania, quartz, 
50 min, external, radiant power: 
3.13 mW 

Pore : 2.3 
– 2.8 µm 

[152] 

MMA/EGDMA Water SDS/CTAB P15 
Ar, 8 W, UV (no details),  = 365 
nm, external 

ca. 25 nm [153] 

 

3.3 MINIEMULSION PHOTOPOLYMERIZATION 

3.3.1 General considerations 

Miniemulsions typically feature droplet sizes ranging from 40 and 400 nm [154, 155]. In the literature, 

they are also referred to as nanoemulsions when sub-100 nm droplets are generated. By contrast with 

microemulsions (10-50 nm), their preparation requires high energy input usually provided by an ultrasonifier, 
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static mixer or high-pressure homogenizer. This is required to overcome the surface free energy to increase 

the interfacial area between the dispersed monomer phase and the continuous phase. The consequence is a 

high demand in surfactant to stabilize the newly-formed interface, implying that micelles are generally absent 

in well-formulated miniemulsions. In contrast to microemulsions, miniemulsions are not thermodynamically 

stable but instead kinetically stable. Their stability ranges from a few hours to years depending on 

composition and processing conditions. Coalescence can occur when two droplets collide and finally merge, 

but the main destabilization route is Ostwald ripening. This occurs because of a difference in chemical 

potential (μ) between monomer droplets of different sizes due to different curvature radius. Smaller droplets 

have higher Laplace pressures (higher μ) which drives mass transfer towards the larger droplets (lower μ) 

through the aqueous phase [156]. 

Diffusional destabilization may be limited by the dissolution of a costabilizer (a compound of low 

molecular weight with no or very low water solubility) in the oil phase. With monomer diffusion, the 

costabilizer is getting concentrated in the smaller droplets, creating a gradient of composition that accounts 

for the appearance of a new negative term in the expression of µ (entropy of mixing) - absent when the oil 

droplets only contain monomer. The entropy of mixing terms tends to reduce Δμ > 0. After a certain time of 

monomer diffusion, a pseudo-equilibrium is finally established (Δμ = 0). If Ostwald ripening is retarded, 

predominant droplet nucleation may be achieved, and the number of the produced particles is in the same 

range as that of droplets. This mechanism represents the basis of miniemulsion polymerization (see stage I 

in Fig. 21). In contrast to emulsion polymerizations [156, 157], in miniemulsion polymerizations, there is no 

need for monomer transport through the aqueous phase to create polymer particles. The corollary is that 

droplet nucleation can be maximized, which is a distinctive feature of miniemulsion (photo)polymerization 

compared to other techniques of polymerization in dispersed systems. This mechanistic difference makes 

miniemulsion polymerization attractive for the synthesis of hybrid polymer particles [158], hollow polymer 

particles [159], as well as for the implementation of controlled/living radical polymerization in dispersed 

systems [160]. 

 
Fig 21: Schematic illustration of an ideal miniemulsion polymerization with complete droplet nucleation. 
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3.3.2 Adaptation to photoinitiation 

The interest in miniemulsions for photopolymerization is firstly driven by the lower scattering 

coefficient compared to macroemulsions, when droplet sizes are decreased to 50 - 100 nm. As a result, a 

higher volume fraction of the reactor can be irradiated, with a positive impact on the rate of polymerization. 

Although monomer miniemulsions have greater droplet diameters than microemulsions (10 - 50 nm), they 

can be prepared at much higher solid contents (> 50 wt%), but still needing moderate surfactant 

concentrations (< 5 wt% with respect to monomer). In 2009, Lacroix-Desmazes et al. used for the first time 

miniemulsion photopolymerization for a different purpose: the polymerization at ambient temperature of 

VAc miniemulsions by iodine reversible transfer polymerization (IRP) using photoinitiation [161]. Mild 

conditions were necessary to preserve the integrity of the temperature sensitive iodinated chain ends of 

PVAc. Long irradiation (16 h) at low irradiance (2.5 mW cm-2) resulted in a successful self-initiated 

photopolymerization due to the photochemical hemolysis of the C-I bonds of the diiodo-

poly(dimethylsiloxane) macrophotoiniferter (I-PDMS-I, the terminology "iniferter" was given by Otsu to a 

class of compounds acting as radical initiators, chain-transfer agents and chain terminators, see structure in 

Fig. 22). The polymerization resulted in particles (160-360 nm) composed of PVAc-b-PDMS-b-PVAc triblock 

copolymer.  

 

Fig. 22: Macrophotoiniferter I-PDMS-I used by Lacroix-Desmazes et al. for the synthesis of block copolymer by 
photopolymerization in miniemulsion [161]. 

Droplet nucleation is the distinctive feature of miniemulsion polymerization. It allows incorporation of 

hydrophobic compounds into the polymer particles, because mass transfer through the aqueous phase is 

avoided. Exploiting this feature, Fuchs et al. produced hybrid PMMA/gold latex [162] using benzoyl peroxide 

(BPO) as photoinitiator. The radiation produced by a high-pressure Hg arc (830 mW cm-2) for 60 min resulted 

in a maximum conversion of 65 %. However, morphological studies showed only low concentrations of metal 

(about 0.6 wt% compared to the organic phase). Fig. 23 shows the effective incorporation of gold 

nanoparticles into the polymer particles. Room temperature polymerization is thought to be conducive to 

limit aggregation and sedimentation of particles incorporated within the polymer particles. The synthesis of 

magnetic iron nanoparticles encapsulated latexes has also been reported [162, 163]. For this latter 

investigation, miniemulsion photopolymerization of MMA was realized using Irgacure 184 (P8) as 

photoinitiator and a medium-pressure Hg-Xe arc (1.160 mW cm-2), giving 80 % conversion in 15 min.  

 

Fig. 23: Transmission electronic microscopy pictures of the PMMA latex (a), gold nanoparticles (b) and gold 
nanoparticles encapsulated in the latex, the arrows shows some domains including nanoparticles (c). Reproduced from 
[162] with permission of the copyright owners. 
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Film-forming nanolatexes were also obtained by Chemtob et al. from a MMA/BA/AA miniemulsion, 

which is a conventional formulation for coatings applications. In an exploratory study, the authors 

investigated the effect of the photoinitiator solubility and the influence of the solids content (5 to 20 wt%) 

on polymerization rates and colloidal properties [164]. Harnessing spatial control of radiation (using UV light 

guides) enabled in situ monitoring of particle size (via dynamic light scattering) and monomer conversion 

(NIR spectroscopy) throughout the photopolymerization. In 2011, Chemtob et al. conducted a detailed study 

of the same reaction fixing the solids content at 17 wt% [165]. The effect of various experimental parameters 

was studied, including droplet size, radiant power and type of photoinitiator, using a batch annular 

photoreactor (Fig. 24). Full conversion was achieved in less than 40 min for the more water-soluble Irgacure 

2959 versus 2 h for the oil-soluble Irgacure 907. The same team also showed that photopolymerization of a 

MMA/BA/AA miniemulsion was possible in the absence of a photoinitiator using an INISURF (Dowfax 2A1, 

see definition in section 2.3.3) [166]. Initiator-free photopolymerization was also conducted with a range of 

self-initiating monomers, e.g. BA or MMA [52]. These (non-purified) monomers form initiating radicals under 

UV irradiation ( < 300 nm) which may be generated in a quartz vessel by an unfiltered emission a 

conventional medium-pressure Hg arc. 

One important remaining challenge is unveiling the complex relationship between the optical properties 

of a monomer emulsion and its photopolymerizability to optimize the conditions of irradiation. To this end, 

Chemtob and coworkers exploited spectrophotometric techniques using an integration sphere to extract 

absorption and scattering coefficients. The first approach used highly diluted samples (< 0.5 wt%) to avoid 

multiple scattering [36], while in a second step the two-flux theory of Kubelka-Munk was employed to directly 

analyze concentrated miniemulsions (30 wt%) [38]. As a complementary route, actinometry was also 

employed to determine the efficiency of radiation absorption in monomer nanodroplets [71]. For this 

purpose, a well-characterized water-insoluble chemical actinometer (Aberchrome, see e.g. [57]) replaced the 

oil-soluble photoinitiator, and was used as a probe to evaluate UV absorption in miniemulsions as a function 

of droplet size (40-150 nm) and organic phase content. It was found that the absorption in a miniemulsion 

droplet is similar to that of an equivalent organic solution regardless of the water solubility of the initiator or 

the level of dilution. Additionally, radiation penetration can be significantly improved by decreasing the 

droplet size below a threshold of 100-150 nm due to a significant decrease of scattering when using smaller 

droplets. A set of photoreactors displaying different sizes (micro- [60], minireactor [167]) and geometries 

were built and assessed for emulsion radical photopolymerization of acrylate monomers. Notably the helix-

type minireactors (internal tube diameter: 1.5 mm) enabled in continuous operation a flash conversion within 

less than 30 s of residence time. Recently, a polysulfide latex with crystalline properties was synthesized via 

an innovative step-growth radical photopolymerization process (thiol-ene) [50, 168]. 

 

Fig. 24: Miniemulsion photopolymerization carried out in an annular photoreactor using a medium-pressure Hg arc 
immersed in the miniemulsion. The emitted wavelengths below 300 nm are filtered by a borosilicate sleeve. The effect 
of the type of photoinitiator on the polymerization rate is highlighted. Reproduced from [165] with permission of the 
copyright owners.  



44 
 

The use of photoreactors for the synthesis of high solid contents acrylic latex is the focus of research led 

by the group of Tomovska. Using a continuous flow tubular reactor (flow rate: 0.4 to 4.2 mL/min, inner 

diameter of the quartz tube: 1 mm, reactor length: 6.35 m), they studied the photoinduced synthesis of 

organic-inorganic hybrid latexes [46, 61]. They polymerized acrylate-based miniemulsions containing 

preformed polyurethane (Incorez 701) exhibiting isocyanate functional groups able to react with two MMA 

functional co-monomers: MAA and hydroxyethyl methacrylate, allowing the synthesis of covalently linked 

polyurethane/polyacrylate particles. Mild irradiance (< 7 mW cm-2) was provided by 20 “Black Light” tubes 

(315 - 400 nm). Particle sizes ranged between 150 and 190 nm, and the photoinitiator used was the oil-

soluble Irgacure 184 (P8, Table 1). They showed that high conversions (> 80 %) can be achieved for a residence 

time of less than 10 min using a minimum photoinitiator concentration. Molecular weights were varied (30 - 

160 kDa) as well as gel contents by tuning initiator concentration or radiant power. The resulting dispersions 

were implemented for applications in pressure sensitive adhesives (PSA) [169]. While the first study was 

limited to 20 wt% solids content, an increased concentration was prone to coagulation. Such an undesired 

effect was attributed to a lower monomer/quartz interfacial tension compared to the aqueous phase/quartz 

interfacial tension. This difference drives preferential diffusion of the monomer from the droplet to the wall 

of the photoreactor resulting in plugging after photopolymerization [61]. This phenomenon was later 

investigated in further detail and shown to be related to diffusional wetting [170]. By modifying the reactor 

wall, they succeeded in polymerizing 40 wt% solids content styrene/BA miniemulsion [171]. 

 

Fig 25: In a typical PET-RAFT mechanism, a photoredox catalyst (fac-[Ir(ppy)3], Ir(III), in ref [6]) generates an excited 
species (Ir(III)*) under irradiation, acting as a reductor of thiocarbonylthio compounds (RAFT control agent) via a PET 
reaction, resulting in the production of initiating radicals (Pn

•) and Ir(IV) species. In contrast to a conventional RAFT 
mechanism, the RAFT agent behaves both as an initiator and chain transfer agent. The radical (Pn

•) may either participate 
in the RAFT process (dotted frame) or be oxidized by Ir(IV) species to regenerate the initial Ir(III). Reproduced from [6] 
with permission of the copyright owners. 

Miniemulsion polymerization is probably the technique which has attracted the most attention in 

recent years with regards to photopolymerization in dispersed systems. The latest developments in 2016 

cover the synthesis of “monodisperse” poly(hexyl acrylate) nanoparticles [172], the use of microfluidic chips 

as microreactor [173], as well as the cross-linking of commercial water-dispersible acrylated resins under 

batch (immersion-tube photoreactor) [174] and continuous (tubular photoreactor made of polyvinylchloride 

tubing) operation [175]. Although there is no emulsification step in this latter case, the formation of particles 

by oligomer “droplet” nucleation brings this study close to a miniemulsion photopolymerization. Two final 

studies deserving attention are that of Boyer and coworkers reporting controlled/living visible 

photopolymerization in miniemulsion. The first one is based on a specific photoinduced electron transfer 

PET-RAFT mechanism (see Fig. 25 for details on mechanism) and employs a model monomer (styrene) [6]. It 

stands out by different features which may shape the manner by which photopolymerization in dispersed 

systems will be realized in the future: use of energy-saving LEDs emitting in the VIS spectral domain, very low 

irradiance (< 1 mW cm-2), and photoredox catalysts to be used at very low concentration (50 ppm relative to 
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styrene). In the second work, a visible RAFT photoiniferter was employed to polymerize butyl methacrylate 

miniemulsion obviating the need for catalyst or initiator [176]. Although evidences of good control/livingness 

are provided, the amphiphilic properties of the RAFT CTA may result in secondary nucleation, leading to loss 

of control at high surfactant concentration. The main works related to miniemulsion photopolymerization 

and their main characteristics have been summarized in Table 4. 

Table 4: Main studies describing miniemulsion photopolymerization. 

Monomer 
Continuous 

phase 

Surfactant 

(Costabilizer) 
Photoinitiator Polymerization time/Irradiation system 

Particle 

diameter 
Ref. 

Vinyl acetate Water SDS 
P1, I-PDMS-I 
(Fig. 22) 

Ar, 125 W, Philips HPK 125, glass, 
immersed, irradiance: 2.5 mW cm-2, 
irradiation time: 16 h, 

160 – 
360 nm 

[161] 

MMA Water 
Non ionic Tween 
80 (Tetradecane) 

Benzoyl peroxide 
Ar purged, 200 W, high-pressure Hg arc, 
quartz, external, irradiance: 0.83 W cm-2, 
irradiation time: 60 min 

100 – 
200 nm 

[162] 

MMA Water 
SDS 
(Hexadecane) 

P8 
300 W, medium-pressure Hg-Xe arc,  = 
350 nm, glass(?), external, radiant 
exitance: 1.16 mW cm-2 

90 - 126 
nm 

[163] 

MMA/BA/AA Water 
Dowfax 2A1 
(Hexadecane) 

P15/P2/P8/P5 
200 W high-pressure Hg-Xe arc, 
Hamamatsu L2852, quartz, external, 180 
mW cm-2, irradiation time: 20 - 140 min 

50 – 60 
nm 

[164] 

MMA/BA/AA Water 
SDS 
(Hexadecane) 

P15/P2/P4/ 
P5/P6/P8 

200 W, high-pressure Hg-Xe arc, 

Hamamatsu L2852, > 300 nm, external, 
radiant exitance: 4 - 200 mW cm-2 

60 – 90 
nm 

[165] 

MMA/BA/AA Water 
SDS/ Dowfax 2A1 
(Hexadecane) 

P6 
Self-initiation 

200 W, high-pressure Hg-Xe arc, 

Hamamatsu L2852, quartz or > 300 nm, 
external, radiant exitance: 4 - 200 mW cm-

2, 150 W, medium-pressure Hg- arc, 
borosilicate, immersed, Heraeus 
Noblelight TQ 150, irradiation time: 20 -
140 min 

55 – 75 
nm 

[166] 

MMA/BA/AA Water 
SDS 
(Octadecyl 
acrylate) 

Self-initiation 
N2 purged, 150 W, medium-pressure Hg- 
arc, borosilicate, immersed, Heraeus 
Noblelight TQ 150, irradiation time: < 6 h 

40 – 115 
nm 

[52] 

MMA/BA/AA Water 
SDS 
(Octadecyl 
acrylate) 

Self-initiation 
200 W, high-pressure Hg-Xe arc, 
Hamamatsu L2852, quartz, external, 
radiant exitance: 633 mW cm-2 

40 -300 
nm 

[36] 

MMA/BA/AA Water 
SDS 
(Octadecyl 
acrylate) 

P4/P15 

200 W, high-pressure Hg-Xe arc, 

Hamamatsu L2852, quartz, external, > 
300 nm, radiant exitance: 965 mW cm-2, 
irradiation time: 1000 s 

40 –300 
nm 

[38] 

MMA/BA/AA Water 
SDS 
(Hexadecane) 

P4 
18 W, “black light” tube, Osram,  = 280 - 
410 nm, external, radiant exitance: 3 mW 
cm-2, Residence time: 5 and 20 min 

40 - 100 
nm 

[60] 

BA/BuMA Water 
SDS 
(Hexadecane) 

P7 
18 W, “black light” tube, Osram,  = 280 - 
360 nm, external, radiant exitance: 2.6 
mW cm-2, Residence time: 27 s 

120 nm [167] 

Dithiol-diene Water 
SDS 
(Hexadecane) 

P4 

[53]: 200 W, high-pressure Hg-Xe arc, 
Hamamatsu L2852, external, quartz, 

radiant exitance: 965 mW cm-2, or > 300 
nm, radiant exitance: 588 mW cm-2,  
irradiation time: 5 min 
[165]: rradiation time: 220 min 

100 – 
150 nm 

[50, 

168] 

MMA/MAA/HE
MA 
Polyurethane 
(Incorez 701) 

Water 
SDS/ Dowfax 2A1 
(Octadecyl 
acrylate) 

P8 

[49]: N2 purged, 20 “black light” tubes, 

315 – 400 nm, max: 368 nm, quartz, 
radiant exitance: 2.5 – 7 mW cm-2, 
Residence time: 1.5 – 15 min  

150 – 
190 nm 

[46, 61] 

MMA/MAA/HE
MA 
Polyurethane 
(Incorez 701) 

Water 
SDS/ Dowfax 2A1 
(Octadecyl 
acrylate) 

P2/P4/P8/P7 
N2 purged, 20 “black light” tubes, 315 – 

400 nm, max: 368 nm, quartz, Residence 
time: 12 - 16 min 

150 nm [169] 

BA Water 
SDS 
(Hexadecane) 

P7 
18 W, “black light” tube, Osram,  = 280 - 
360 nm, external, radiant exitance: 2.6 
mW cm-2, Residence time: 27 s  

120 nm [170] 

Styrene/BA Water 
Dowfax 2A1 
(Octadecyl 
acrylate) 

P7 

N2 purged, 20 “black light” tubes, 315 – 

400 nm, max: 368 nm, quartz, radiant 
exitance: 2.5 – 7 mW cm-2, Residence 
time: 1.5 – 15 min 

80 – 190 
nm 

[171] 
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Hexyl acrylate Water 
SDS 
(Pentadecane) 

Benzoin methyl ether 
10 – 30 min, 5 UV tubes 8 W,  = 365 nm, 
2.2 – 3.7 mW cm-2  

100 - 200 
nm 

[172] 

Styrene Water 
Lutensol AT 50 
(Hexadecane) 

P15 
10 – 60 s, UV LED,  = 365 nm, 44.2 - 68 
mW cm-2 

120 – 
160 nm 

[173] 

Oligomeric 
acrylated resin 

Water (Hexadecane) P8/Benzophenone 

150 W, medium-pressure Hg arc, Heraeus 
Noblelight, quartz, immersion, radiant 
exitance: 35 mW cm-2, irradiation time: 
60 min 

40 – 500 
nm 

[174] 

Oligomeric 
acrylated resin 

Water - P8/Benzophenone 
100 W, medium-pressure Hg arc, Hönle, 

external, PVC, > 340 nm,  irradiation 
time: < 250 s 

40 – 500 
nm 

[175] 

Styrene Water 
Dowfax 8390 
(Hexadecane) 

Photo redox catalyst: fac-
[Ir(ppy)3] / RAFT agent: 3-
benzylsulfanylthiocarbonylsulfa
nyl propionic acid 

LED strip , max = 460 nm, external, 0.73 
mW cm-2, irradiation time: 120 h 

> 200 nm [6] 

BuMA Water 
SDS 
(Hexadecane) 

4-cyano-
4[(dodecylsulfanylthiocarbonyl
)sulfanyl pentanoic acid)] as 
photoiniferter 

LED strip , max = 530 nm, external, 0.73 
mW cm-2, irradiation time: 20 h 

100 – 
200 nm 

[176] 

 

3.4 DISPERSION PHOTOPOLYMERIZATION 

3.4.1 General considerations 

Dispersion polymerization stands out by its capacity to produce polymer particles in the micrometer 

range (0.5 – 20 µm), a size domain difficult to access with other techniques. One salient feature of dispersion 

polymerization relates to the chemical nature of the continuous phase. The selected solvent must dissolve 

the monomer(s), initiator and stabilizer before reaction, while behaving as a non-solvent of the polymer to 

cause an enthalpy-driven precipitation that leads to particle formation. As a result, non-aqueous or partially 

aqueous reaction media are generally employed, making possible a broad range of polymerizations: radical 

polymerization but also more water-sensitive processes such as oxidative, metathesis or step-growth 

polymerizations [177]. When this technique was introduced 50 years ago, the main issue was to achieve 

acrylic dispersions in hydrocarbon solvents [178], because of net advantages compared to their aqueous 

analogues, including faster evaporation rates and lower freezing points. Today, the most attractive 

characteristic of dispersion polymerization is the rather excellent monodispersity of the resulting micron-size 

particles [179], a feature sought after in niche applications such as toners, instrument calibration methods, 

or column packing materials for chromatography [78]. 

In dispersion polymerization, polymers are the preferred stabilizers since electrostatic stabilization is 

not effective due to the low dielectric constant of the organic reaction medium [180]. The steric stabilizer is 

generally a physically adsorbed linear polymer (e.g. PVP) or amphiphilic block copolymer. In addition, 

macromonomers, mainly based on PEO, have been employed extensively, because they can generate 

amphiphilic graft copolymers in situ upon chain extension with suitable monomers. Stabilizer grafting 

through chain transfer reaction is also a common mechanism of stabilization. The most broadly accepted 

mechanism is depicted in Fig. 26 [78]: starting from a homogeneous solution (stage 0), the soluble linear 

oligomer chains grow in the continuous phase after initiation (stage I). When they attain a degree of 

polymerization exceeding the critical value for precipitation, polymer particles are formed. Nucleation stops 

(i.e. new particles are no longer generated) when a sufficient number of particles exist to capture all newly 

generated precipitated chain/precursor particles. Subsequent growth (stage II) takes place ─ by capture of 

oligomers, coagulation of unstable nuclei, and polymerization of the monomer swelling the particles ─ to 

ultimately yield sterically stabilized micron-size particles (stage III). The mechanism of a conventional 

dispersion polymerization, focusing on radical polymerization, is both complex and sensitive to numerous 

variables such as initiator/comonomer concentration, composition of the dispersing phase, etc. [181]. The 

major challenge in terms of understanding the mechanism of dispersion polymerization is the very early stage 
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in which particles are formed [182]. It is generally accepted that particles are formed through coagulation of 

single polymer chains and instable small particles. However, this stage I remains very short making a detailed 

mechanism investigation not readily accessible. Additionally, controlling the critical diameter of primary 

particles is challenging, while it has an important role on final particle size. 

The interest for a photoinduced version of this technique arises from the transparency of the reaction 

medium to UV-VIS radiation before polymerization and the better control of early stages of the reaction. 

Dispersion photopolymerization is usually carried out in alcohol or mixed solvents (ethanol/water), using 

mostly PVP as stabilizer. Controlled/living radical polymerization techniques occupy a central position in the 

development of dispersion photopolymerization. Foremost among them is the reversible addition – 

fragmentation chain transfer (RAFT) polymerization due to its mild reaction conditions, the absence of heavy 

metals and the tolerance to a broad range of monomers and solvents. The goal is to produce polymer 

microparticles combining controlled molecular weight, surface functionality and narrow particle size 

distribution. 

Dispersion photopolymerization has experienced since 2015 a renaissance when the process known 

as polymerization-induced self-assembly (PISA) has been extended to photopolymerization [183]. In general 

terms, PISA can be implemented as an emulsion or dispersion polymerization [184]. In photo-PISA, a 

solvophilic macromolecular chain transfer agent is subjected to photoinduced chain extension under 

exposure to radiation to form a second solvophobic segment. The obtained amphiphilic diblock copolymer 

may self-assemble to form nano-objects showing a rich morphology such as micelles, worms, vesicles and 

lamellae. Morphological transitions can take place during polymerization due to copolymer chain 

reorganization. Proceeding without external stabilizer and possibly at medium solids content (25 - 30 wt%), 

this mechanism of particle formation differs from a conventional dispersion polymerization. Nevertheless, 

the two mechanisms start both from a homogeneous solution because the added monomer that eventually 

forms the non-soluble block is soluble in the reaction medium. Therefore, dispersion PISA can be considered 

as a variant of the more general dispersion polymerization. Recent advances on photo-PISA have been 

reviewed by Boyer and coworkers [185]. Table 5 provides an overview of microspheres synthesized by 

dispersion photopolymerization. PISA can also be implemented as emulsion polymerization, but no 

photoinitiated version has been reported so far. 

 
Fig. 26: Schematic mechanism of dispersion polymerization inspired from ref. [78]. In addition to stabilizer adsorption 
on the particle surface, depicted here, stabilization may also occur via stabilizer grafting or in situ generation of 
amphiphilic diblock copolymer. 
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3.4.2 Adaptation to photoinitiation 

In 2003, Shim et al. reported RAFT dispersion photopolymerization of styrene using a dithioester 

control agent. This study was carried out at 50-70°C in ethanol, thereby implying that AIBN (P1, Table 1) acted 

both as a photo- and thermal initiator [186]. In addition, the analysis of the polymer particles revealed a lack 

of molecular weight control and a broad particle size distribution. Using the same experimental conditions, 

Ki et al. employed a PVP macro-RAFT agent as steric stabilizer, without significant improvement [187]. 

The first study reporting a photoinduced dispersion polymerization was published in 2008 [188]. Chen 

et al. photopolymerized MMA in ethanol/water employing PVP as steric stabilizer and Darocur 1173 as 

photoinitiator. 95 % conversion was achieved within 30 min of UV irradiation at room temperature, and the 

relatively monodisperse spheres (molecular-weight dispersity, Đ = 1.04) had an average diameter of 1 µm, 

matching the size generally obtained by dispersion polymerization. This study set out the effects of reaction 

conditions, such as stabilizer concentration, monomer concentration, and solvent composition on particle 

yield and size distribution. An analogous study was reported two years later by Huang et al. for the 

preparation of poly-[(MMA)-co-(MA)] COOH-functionalized microparticles [189]. Irradiation with what was 

most probably a “black light” tube required a long UV exposure (24 h) to achieve complete conversion. More 

recently, poly(styrene-co-maleic anhydride) microspheres were prepared under very similar conditions [190]. 

It is also worthwhile mentioning two studies standing out by their originality. Ushakova et al. investigated 

the effect of a magnetic field on the conversion of styrene during dispersion photopolymerization (500 W,  

> 313 nm) [191]. The concept of conducting radical polymerization under the influence of a magnetic field is 

discussed in detail in section 3.1. (emulsion photopolymerization). Secondly, The second publication deals 

with the dispersion photopolymerization of trimethylolpropane triacrylate in liquid CO2 where poly(ethylene 

oxide) macromonomers were used [192]. 

The study by Tan et al. in 2012 is clearly the second milestone in the development of dispersion 

photopolymerization [193]. Highly monodisperse particles were obtained for the first time by RAFT 

dispersion polymerization of MMA stabilized by PVP using LEDs for irradiation and non-absorbing control 

agents. Control/livingness of the polymerization was demonstrated by adding a new batch of monomer at 

the end of the typical one-stage procedure. The process was continued by turning on the LED again (Fig. 27) 

to cause an increase of molecular weight in agreement with the amount of monomer added. In addition, 

linear growth of molecular weight during conversion was also found during the growth stage. 

 

Fig. 27: GPC traces for PMMA produced in a two-step process. The first step is the RAFT dispersion photopolymerization 
of MMA. After 3h irradiation, a second shot of MMA was added and the reaction was continued during additional 3 h. 
Mcalcd refers to the theoretical molecular weight estimated from the initial monomer and RAFT agent concentrations. 
Reproduced from [193] with permission of the copyright owners. 
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Continuing the development of RAFT dispersion photopolymerization, Tan et al. turned their attention 

to macroRAFT agents (Fig. 28) to stabilize PMMA microspheres through in situ formation of block copolymers 

[194]. Variant strategies were designed by the same group involving poly(ethylene glycol) methacrylate 

macromonomer [195], a range of RAFT agents [196], encapsulation of lanthanide nanoparticles [197], 

formation of cross-linked particles [198], as well as glycidyl-functionalized particles for post-functionalization 

[199].  

 

Fig 28: Macro-RAFT agents used by Tan et al. to form monodisperse microspheres by photoinduced dispersion 

polymerization [194]. Chemical structures taken from [194] with permission of the copyright owners. 

PISA combined with photoinitiation is the latest landmark in the development of dispersion 

photopolymerization. While PISA by thermally induced RAFT dispersion polymerization had been known 

since 2011 [200], the first photo-PISA was introduced in 2015 by Cai and coworkers [201]. However, it should 

be noted that in 2010, Tan et al. used a stabilizing polyurethane macrophotoinitiator to polymerize MMA in 

dispersion conditions [80]. Despite the lack of control, monodisperse PMMA microspheres were obtained 

and this approach based on self-assembly of amphiphlic copolymers paved the way to photoPISA. In their 

pioneering study, Cai et al. photopolymerized diacetone acrylamide in water at room temperature using a 

well-defined poly(2-hydropropymethacrylamide) macromolecular macro-CTA to produce spherical micelles 

(λ > 400 nm). Shortly afterwards, Chen et al. described a similar methodology relying on the chain extension 

of a poly(4-vinylpyridine) macroCTA RAFT agent with styrene in methanol under UV radiation (λ = 365 nm) 

[202]. These two pioneering studies marked the beginning of a continuing series highlighting visible radiation-

mediated RAFT dispersion PISA. Cai and coworkers diversified their initial strategy using VIS light at low 

radiant power by exploring other stimuli to drive PISA: polyion complex templates [203] and hydrogen-

bonding [204].  

Focusing on innovative means of photoinitiation, poly(oligo(ethylene glycol) methyl ether 

methacrylate) was chain extended in ethanol by Boyer and coworkers with benzyl methacrylate using the 

ruthenium-based photoredox catalyst Ru(bpy)3Cl2 [6, 205]. Importantly, the typical PISA morphologies were 

obtained (spheres, worms and vesicles) in this study, but polymerization rates were rather low (73 % in 24 

h). More recently, the same group moved forward by reporting photo-PISA with a photochemically activable 

macro-RAFT agent obviating the need for external catalysts or initiators [206] or, alternatively, using zinc 

tetraphenylporphine (ZnTPP) as photoredox initiating system [207]. Another example of photo-PISA based 

on photoredox catalyst (10-phenylphenothiazine) was reported very recently by Hong et al [208].  

Also very active over the last 3 years was the group of Tan at Guangdong University (China) that 

reported dispersion photo-PISA in methanol/water mixtures (isobornyl acrylate [209, 210] and MMA [211] 

for chain extension) and in water (2-hydroxylpropyl methacrylate [212-215]) as depicted in Fig. 29). Some of 

these studies clearly show the advantages of photo-PISA compared to conventional thermally initiated PISA. 

The low temperature of photo-PISA facilitated the synthesis of polymer nanoparticles encapsulating sensitive 

proteins [212], possessing CO2- or thermo-responsive properties [213, 216], or containing epoxy functional 

groups [217]. Very recently, photo-PISA has enabled the development of novel techniques. For example, 
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lowering the reaction temperature to room temperature was critical to maintain good control of the 

polymerization using a Z-type macro-CTA, in which the RAFT reactive group is not located at the end of block 

copolymers, but at the center of the two blocks [218]. In addition, photo-PISA of 2-hydroxypropyl 

methacrylate in water was performed with an enzyme (GOx) reacting with dissolved oxygen but only active 

at ambient temperature. This enabled the process to be carried out in the presence of molecular oxygen in 

benchtop open vessels and 96-well plates without any degassing [219]. Whether as the fashion of the day or 

out of necessity, photo-PISA is getting a ubiquitous methodology which has become a main driver of 

photopolymerization in dispersed systems. The vitality of the photo-PISA methodology and an exhaustive 

lists of the systems investigated in this specific field are highlighted in the recent review published by Boyer 

and coworkers [185]. 

While most photoinitiated dispersion polymerization focuses on chain-growth radical polymerization, a 

noticeable example based on step-growth thiol−Michael Polymerization was presented by Bowman and 

coworkers in 2015 [220]. Handling photobase photogenerators (releasing amine or guanidine) they proved 

in a feasibility study the formation of cross-linked poly(thioether) microparticles by irradiating a 

tetrathiol/triacrylate mixture in methanol with PVP as stabilizer. 

 

Fig 29: Photoinitiated polymerization-induced self-assembly (photo-PISA) of 2-hydroxypropyl methacrylate conducted 
in water using poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA) based macro-RAFT agents. Figure was 
inspired from [215] and reproduced with permission of the copyright owners. 

Table 5: Most significant studies on dispersion photopolymerization 

Monomer 
Continuous 
phase 

Stabilizer 
Photoinitiato
r 

Polymerization time /Irradiation system 

Solid 
content (wt 
%) 

Particle 
diameter 

Ref. 

Styrene Ethanol PVP P1 
N2 purged, Hg arc (?), 1 kWglass, 
external, irradiation time: 16 h 

10 
0.7 – 1 µm [186] 

MMA 
Ethanol/ 
water 

PVP P2 

N2 purged, high-pressure Hg arc, 400 W, 

glass, irradiance: 1.0 mW cm-2for = 
320-400 nm, 30 min 

10 

 1 µm [188] 

MMA/MAA 
Ethanol/ 
water 

PVP P1 
Hg arc or “black light” tube (?), 8 W, 
quartz, external, irradiance: 0.05 mW cm-2 

≈ 12 
0.8 – 2 µm [189] 

Styrene Isopropanol PVP P3 

Ar, high-pressure Hg arc, DRSh-500, 500 

W, glass, external,  > 313 nm, irradiation 
time: 300 min 

≈ 17 

- [191] 

AA/trimethylol
propane 
triacrylate 

Ethanol / 
Liquid CO2 

PEO 
macromonomer 

P7 

CO2, (pressurized), LED, λ = 405-410 nm, 3 
W, quartz, external, irradiance: 0.8 mW 

cm-2, reaction temperature: 0C, 
irradiation time: 60 min 

5 
0.4 – 0.8 
µm 

[192] 

Spheres

Worms

Vesicles

Increased monomer conversion



51 
 

MMA Ethanol 
PVP / Macro-
RAFT 
CTA 

P2 
N2 purged, LED, 3 W, external,   = 365 
nm, irradiance: 0.8 mW cm-2, irradiation 
time: 45 min – 3 h 

5-15 
0.8 – 2 µm 

[193, 

194] 

MMA 
Ethanol/ 
water 

Polyurethane modified Irgacure 
2959 (P4) 

N2 purged, high-pressure (?) Hg arc, glass, 

external, irradiance ( = 320-400 nm): 1.0 
mW cm-2 (?), irradiation time: 1 h 

10 
0.9 – 1 µm [80] 

Diacetone 
acrylamide* 

Water 

Poly(2-
hydropropymet
hacrylamide) 
macro-CTA 

Phenyl-2,4,6-
trimethyl-
benzolphos-
phinate 

Ar purged, medium-pressure Hg arc, 400 
W, external, filter: JB 400 W, λ > 400 nm, 

irradiance ( = 420 nm): 0.20 mW cm-2, 

reaction temperature: 25C, irradiation 
time: 80 min 

≈ 15 

 100 nm [201] 

Styrene* Methanol PVP macro-CTA P1 
UV radiation source, irradiance (λ : 365 
nm): 2.50 mW cm−2, irradiation time: < 10 
h 

≈ 50 
 30 nm [202] 

Benzyl 
methacrylate* 

Ethanol 

PEO methyl 
ether 
methacrylate 
macro-CTA 

Ru(bpy)3Cl2 

6H2O 
UV radiation source, pulsed (30 ms), 
external, 0.7 mW cm-2, microreactor 

10-20 Spherical or 
worm-like 
micelles, 
vesicles 

[212] 

Isobornyl 
acrylate* 

Ethanol/ 
water 

Monomethoxy 
PEO macro-CTA 

P7 
N2 purged, LED, λ: 405 nm, external, glass, 
irradiance: 0.5 mW cm-2, irradiation time: 
< 450 min 

15-30 Spheres, 
worms, 
vesicles 

[209] 

2-
hydroxylpropyl 
methacrylate* 

Water 
PEO-based 
macro CTA 

Phenyl-2,4,6-
trimethylbenz
olphosphinat
e 

N2 purged, LED, λ: 405 nm, external, glass, 
irradiance: 0.5 mW cm-2, irradiation time: 
30 min 

10-20 
Spheres, 
worms, 
vesicles 

[212] 

* Refers to radiation-mediated controlled/radical RAFT polymerization in PISA 

3.5 PRECIPITATION PHOTOPOLYMERIZATION 

3.5.1 General considerations 

Introduced for the first time by the group of Stöver, precipitation polymerization produces monodisperse 

micron-sized particles (0.5 – 15 µm) [221]. In this aspect, precipitation polymerization is barely different from 

dispersion polymerization. Other common points include an initial homogeneous mixture consisting of 

monomer, initiator and solvents, as well as the fact that particles and turbidity only arise during 

polymerization. However, major differences include: the absence of external stabilizer, the necessity of high 

amount of a cross-linker (> 95 %) and a near-θ solvent (i.e. an ideal solvent for interactions of the polymer) 

to avoid coagulation. All these distinctive features shed light on a very different polymerization mechanism 

(Fig. 30) [222]. 

In contrast to dispersion polymerization, the growing polymer chains do not phase separate from the 

continuous medium by enthalpy precipitation (unfavorable polymer-solvent interactions), but by entropic 

precipitation, because cross-linking prevents the polymer and solvent from freely mixing (de-solvation 

process). Continuous capture of oligomer species from solution contributes to particle growth from the 

surface, which is a significant difference to dispersion polymerization. Due to the "solvated θ" interface, such 

a transient polymer surface gel layer plays a key role in the colloidal stabilization of particles by a so-called 

“auto-steric” stabilization process. Additionally, a gentle stirring is usually recommended to avoid 

coagulation. In addition, high cross-linker concentration is necessary to produce “rigid” polymers able to form 

stable particles free of any added surfactant or stabilizer. One of the most important application areas of 

precipitation polymerization is the synthesis of molecularly imprinted polymers and materials for liquid 

chromatography. 
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Fig 30: Particles synthesis by precipitation photopolymerization 

In precipitation photopolymerization, most studies were performed at room temperature using 

divinylbenzene as cross-linker, and acetonitrile as θ–solvent. Fig. 31 gives a list of the main cross-linkers and 

monofunctional monomers used. Additionally, the characteristics of these studies on precipitation 

photopolymerization are summarized in Table 6. The justification for adopting this original technique is based 

on milder conditions, or the possibility to encapsulate temperature sensitive compounds. 

 

Fig 31: Main precursors used in precipitation photopolymerization 

3.5.2 Adaptation to photoinitiation 

In 2007, Barner et al. used AIBN (P1, Table 1), 2-methyl-4'-(methylthio)-2-morpholinopropiophenone 

(Irgacure 907, P6) and DMPA (P5) as radical photoinitiators for DVB precipitation polymerization in several 

organic solvents to obtain cross-linked microspheres [223]. Irradiation was provided by a fluorescent UV 

lamp. Only particle morphology was analysed and no results concerning reaction kinetics and polymer yield 

were reported. 
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Process kinetics and efficiency were addressed by Limé et al., who synthesized highly monodisperse 

cross-linked microparticles based on DVB and DVB/styrene in acetonitrile using AIBN as photoinitiator and a 

150 W Xe arc [224]. Fig. 32 shows a schematic drawing of the photoreactor setup. The non-optimized 

photopolymerization conditions account for sluggish polymerization rates and long polymerization times 

extending up to 1 week. In 2009, Limé et al. showed that the use of a cosolvent (THF or 1-decanol) may afford 

porous monodisperse microparticles [225]. Interestingly, the change of the continuous phase had a positive 

impact on the polymerization times that were reduced to 48 h, but this result was not explained. 2,3-

epoxymethacrylate was also used as co-monomer to design functional particles, and the resulting materials 

were used and tested as immobile phase in chromatography [226]. In 2013, other cross-linked microparticles 

were obtained by replacing DVB by multifunctional acrylate monomers: e.g. ethylene glycol dimethacrylate 

[227] or trimethylolpropane triacrylate [228]. 

 

Fig. 32: Schematic drawing of the photopolymerization setup where 4 polypropylene or Teflon flasks were mounted 
on a rotating bracket. The flasks were rotating at 5-15 turns/min under the focused radiation of a Xe arc. Figure was 
reproduced from [224] with permission of the copyright owners. 

Table 6: Main studies describing precipitation photopolymerization. 

Monomers (Fig. 34) 
Continuous 
phase 

Photoinitiator Polymerization time/ Irradiation system 
Particle 
diameter 

Ref. 

DVB Acetonitrile P1/P5/P6 
N2 purged and degassed, “black light” tube (?) tube, 
UVP 3UV-38 “longwave”, external, glass, radiant 
exitance: 0.015 mW (?), irradiation time: 24 h 

1 – 3 µm [223] 

DVB/Styrene Acetonitrile P1 
N2 purged, Xe arc, 150 W, periodic (4 to 12 s), 
external, polypropylene, irradiation time: 6 – 40 h 

1.4 – 4 µm [224] 

DVB/Glycidyl 
methacrylate 

Acetonitrile/THF P1 
N2 purged, Xe arc, 150 W, periodic (4 to 12 s), 
external, polypropylene, irradiation time: 12 – 24 h 

0.8 – 5.1 
µm 

[225] 

Ethylene glycol 
dimethacrylate/4-
Vinylpyridine 

Ethanol 
Photoiniferter : 
benzyl 
dithiocarbamate 

Ar purged, medium-pressure Hg arc, 400 W, glass, 
external, , irradiation time: 10 h 

0.3 – 1.4 
µm 

[227] 

Trimethylolpropane 
triacrylate /Styrene 

Ethanol P1 
N2 purged, Xe arc, 150 W, external, quartz, 
irradiation time: 120 h  

0.7 – 2.9 
µm 

[228] 

 

3.6 SUSPENSION PHOTOPOLYMERIZATION 

3.6.1 General considerations 

Suspension polymerization is, in terms of tonnage, the most important industrial polymerization process in 

dispersed systems [10]. Firstly, monomer emulsification is performed by simple mechanical stirring (Fig. 33). 

The interplay between droplet coalescence and break-up determines the droplet size distribution that is 

usually broad, ranging between 50 µm and 1 mm. The initiator is dissolved in the dispersed phase, and can 

be hydrophobic in the case of an oil-in-water type suspension (O/W) (most common), or hydrophilic in the 

case of a water-in-oil system (W/O). A stabilizer is usually added - often a water-soluble polymer - to prevent 

macroscopic phase separation. After the polymerization process, the polymer microparticles, often referred 

to as beads or pearls due to their large size, are recovered by filtration and dried. They usually have a similar 
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size distribution as the drops from which they are formed [229]. In this sense, a suspension polymerization 

bears more resemblance to a miniemulsion polymerization than to an emulsion polymerization, as particles 

are formed directly from monomer droplets. However, it should be stressed that the kinetics is very different 

due to radical compartmentalization in the case of miniemulsion. Smaller particles (0.2 to 20 microns) can be 

produced by microsuspension polymerization by increasing the stabilizer content and the stirring rate.  

 

Fig. 33: Suspension polymerization process. 

3.6.2 Adaptation to photoinitiation 

There are relatively few examples of suspension photopolymerization; the main characteristics of 

these cases are summarized in Table 7. An inverse suspension photopolymerization was used by Pishko et al. 

in 2001 for the synthesis of cross-linked hydrogel beads able to release proteins [230]. The initial hydrophilic 

microdroplets contained pentaerythritol triacrylate (PETA), poly(ethylene glycol diacrylate) (PEG-DA) acting 

as a reactive costabilizer (Fig. 34) as well as a Type I photoinitiator, DMPA (P5). A mineral oil served as 

continuous phase. After UV exposure, cross-linked microspheres ranging in size from 500 to 900 µm were 

obtained. 

 

Fig. 34: Monomers used in suspension photopolymerization by Pishko et al. [230]. 

Crivello et al. synthesized epoxy-functional microspheres using cationic photopolymerization in 

aqueous and non-aqueous media. The waterborne suspensions based on dicyclohexyl epoxy monomers were 

stabilized by PVA, while the solvent-borne suspensions did not contain any stabilizer. A modified iodonium 

salt bearing a lipophilic chain was employed to ensure complete solubilization in the dispersed phase (Fig. 

35). Despite the tendency of water to act as transfer agent, cross-linking occurred in these aqueous 

suspensions when the droplet diameters were greater than 1 µm. This result clearly demonstrates the 

importance of minimizing the surface-to-volume ratio to favor propagation over secondary reactions in the 

case of cationic polymerization. The aqueous suspension resulted in particles within the size range of 1 to 40 

µm. Porogen agents were also introduced into the dispersed monomer phase to induce a macroporous 

structure of the particles. The porosity of the microspheres could be finely tailored by using different non-

volatile porogen agents that are soluble in the monomer droplets and insoluble in the polymer [85, 231]. 

Another example of photoinitiated cationic polymerization of vinyl ethers in a dispersed system close to 
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suspension polymerization was reported by Yagci and coworkers [232]. The aqueous phase contained 

diphenyliodonium iodide and the water-tolerant Lewis acid (ytterbium triflate), while the monomer was 

dissolved in an acetonitrile organic phase. A highly exothermic polymerization takes place leading to 

precipitation due to the absence of surfactant.  

 

Fig. 35: Photoinduced process for the synthesis of porous microspheres in suspension developed by Crivello and Falk 

[85]. Monomer structures and TEM images were taken from reference [85] and reproduced with permission of the 

copyright owners. The epoxy functionality at the particle surface can be modified to have access to other functionalities 

[231]. 

Radical mediated thiol-ene step-growth photopolymerization was employed in 2012 by Shipp et al. to 

prepare cross-linked polysulfide microspheres from a waterborne monomer suspension containing polythiol 

and polyene monomers at equimolar ratios of ene/thiol functionality. This study marks the first use of thiol-

ene photopolymerization in a dispersed system [233]. Unconventional experimental conditions were 

reported with the use of ultrasonication, organic diluents (toluene) and a costabilizer. A second study 

reported in 2014 was more similar to the conventional conditions of suspension polymerization by 

emulsifying a thiol-ene monomer phase by mechanical agitation in order to create monomer droplets. The 

study focused on the influence of different stabilizers, including anionic, cationic, and nonionic surfactants, 

which are nevertheless not usual in suspension systems [234]. This process was recently optimized by the 

replacement of the surfactants mentioned with water-soluble gum suspending agents such as gum Arabic, 

guar gum, and xanthan gum, demonstrating their efficient stabilizing properties even at very low 

concentration (0.005-0.5 wt%) [235]. 

More recently, functionalized thiol microparticles were created by using a slightly nonstoichiometric 

mixture (1.1:1 thiol:ene mol. equiv.). Successful capping of microparticles was subsequently performed with 

C60 (fullerene) to create a recyclable supported sensitizer for singlet-oxygen reactions [236]. For the 

production of supported sensitizers and phoocatalysts which is largely inspired by the protocol established 

by Shipp et al., the synthesis of porous microparticles containing different amounts of linear polymer porogen 

(poly(methyl methacrylates), PMMA) in the monomer organic phase was reported [237].  
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Table 7: Main studies describing suspension photopolymerization. 

Monomer(s) 
Continuous 

phase 

Protective 

colloid 
Photoinitiator 

Polymerization time/ Irradiation 

system 

Particle 

diameter 
Ref. 

Poly(ethylene glycol) 
diacrylate/pentaeryth
ritol triacrylate 

Mineral oil - P5 
High-pressure Hg arc, 100 W, 
external, radiant exitance: 20 W cm-2, 
irradiation time: 3 s 

560 – 840 µm [230] 

Epoxysiloxane oil 
(Fig. 35) 

Water 
Mineral oil 

lPVA 

Various 
diaryliodonium 
and triaryl 
sulfonium salts 

Medium-pressure Hg arc, Hanovia, 
679A36, 200 W, external, quartz, 
irradiance: 0.9 mW cm-2, irradiation 
time: 5 to 15 min 

10 – 50 µm [85, 231] 

Thiol/ene/yne 
multifunctional 

Organic 
solvents 

SDS P5 
“black light” tube, 9 W,  = 320 - 400 
nm, external, glass, irradiance: 2.5 
mW cm-2, irradiation time: < 1h 

210 - 600 µm [233] 

Thiol/ene/yne 
multifunctional 

Water 
Various ionic 
and non-ionic 
surfactants  

P8 
UV radiation source, 365 nm, 
external, glass, irradiance: 11 mW cm-

2, irradiation time: 5 min 
50 – 500 µm [234] 

Thiol/ene 
multifunctional 

Water 
Gum arabic, 
Guar gum, 
Xanthan gum   

P8 
UV radiation source, 365 nm, 
external, glass, irradiance: 11 mW cm-

2, irradiation time: 5 min 
50 – 500 µm [235] 

Thiol/ene 
multifunctional 

Water 

Chitosan 
(Low 
molecular 
weight) 

Irgacure 651 
16 fluorescent tubes,  = 350 nm, 
external, glass, Rayonet Photoreactor, 
irradiation time: 1 - 3 h 

3 – 27 µm [236] 

Thiol/ene 
multifunctional 

Water SDS P8 
UV spotlight Lightningcure L8868 
(Hamamtsu), irradiance: 18 mW cm-2, 
external, glass, 30 s – 15 min 

100- 600 µm [237] 

 

3.7 AEROSOL PHOTOPOLYMERIZATION 

3.7.1 General considerations 

Aerosol processing refers to the polymerization of monomer droplets dispersed in a gas phase (e.g. 

nitrogen or helium). Compared to a wet chemical route which is the mainstream approach to generate 

polymer particles, aerosol polymerization offers significant advantages: continuous production without the 

need of additives (surfactants, solvent), droplet nucleation implying that the final particle size is 

predetermined by the initial droplet size, high production rates, and straightforward collection of particles. 

Originally, aerosol technology was developed for the large scale manufacture of a broad variety of high utility 

inorganic nanoparticles (powders), including carbon black, titanium dioxide, and fumed silica [238]. Today, 

conventional aerosol processing remains intimately linked to flame reactors and very high temperatures 

processing, which are obviously not compatible with the synthesis of organic (nano)particles [239]. For a 

successful transposition into the domain of polymer, heat-induced aerosol polymerization has proved to be 

inadequate due to the negligible heat capacity of gases limiting heat exchange between the phases, as well 

as to the low stability of the aerosol monomer droplets. By contrast, photochemically induced aerosol 

polymerization appears to be a much better platform because of two specific features: the high cross-linking 

rates even at ambient temperature and the UV-visible transparency of many carrier gases used for aerosol 

production. Whatever the process, aerosol polymerization is useful for the preparation of hard polymer 

particles. 

3.7.2 Adaptation to photoinitiation 

The first results published in this field were obtained by Matijevic et al., and date back to the early 

1980s. A complex tubular photoreactor set-up including multiple chambers was used to synthesize various 

dry polymer particles. In a first step, a monodisperse monomer (styrene or divinylbenzene) aerosol was 

generated by condensing vapor on condensation nuclei flowing through a temperature-controlled tube. 

Subsequently, a laminar flow stream was generated and contacted with the vapor of 

trifluoromethanesulfonic acid to initiate a cationic polymerization [240]. Monodisperse particles in the range 
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of 10-20 microns were achieved. However, heating was required to increase the relatively low reaction rates, 

and the irradiation conditions were not thoroughly described. During the same period, two other studies 

were conducted to synthesize microparticles based on poly-p-tertiarybutylstyrene [76] and mixed 

polyurea/metal oxide microspheres [241]. To investigate the very high rates associated with monomer 

droplet photopolymerization, single particle studies were also performed. A single entity was created by 

levitation of a small droplet in an electrodynamic balance, and the kinetics were monitored by fluorescence 

[242] or Raman spectroscopy  [243]. 

In 1996, Esen et al. provided significant technical improvements: the use of a simpler tubular reactor 

fitted with external “black light” tubes, and a spray nozzle to generate monomer aerosol droplets [244]. 

Starting with a range of highly reactive multifunctional acrylate monomers dissolved in a highly volatile 

solvent (acetone, diethyl ether), monodisperse polymer particles with diameters of 5 to 50 µm were achieved 

by radical photopolymerization. Similar results were obtained by Gao and al. in 2007 using an analogous 

process [245]. 

 

Fig. 36: Aerosol photopolymerization setup by spraying taken from reference [246] and reproduced with permission of 

the copyright owners. Schematic outline of the setup (a) and cross sectional view of the photoreactor (b). 

The team of Wörner made intense research efforts from 2007 onwards to emphasize the new 

opportunities offered by aerosol processing with regard to particle morphology and composition [246]. Initial 

experiments were carried out using an annular photochemical reactor fitted with a cylindrical excimer 

radiation source (Fig. 36). While the radical homopolymerization of MMA aerosol droplets did not result in 

particles, two approaches relying on cross-linking (MMA/1,6-hexanediol diacrylate) and copolymerization 

(MMA/BA aerosol droplets) led to the successful formation of polymer particles. Interestingly, the process 

was extended to cationic photopolymerization [247] following the pioneering studies by Vorderbruggen et 

al. in 1996 [248]. The use of an inert gas carrier facilitated the implementation of this water-sensitive 

polymerization process. In this case, the aerosol droplets comprised multifunctional vinyl ether or epoxy 

monomers that were irradiated externally with a set of six “black light” fluorescent tubes. Recently, Wörner 

et al. fully exploited the technique when synthesizing a range of nanostructured particles, including mosaic 

nanoparticles caused by the phase separation of non-volatile porogen agent, or nanocapsules containing an 

active compound (caffeine) [249]. Organic-inorganic ZnO/polyacrylate nanoparticles were also produced by 

exploiting the photocatalytic properties of these inorganic semiconductor nanoparticles to trigger radical 

initiation [250]. Complex core-shell structure were finally obtained by merging two separate streams of 
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oppositely charged inorganic nanoparticle (core: silica, gold) and aerosol monomer droplets to generate the 

polymer shell [251]. The different works related to aerosol photopolymerization and their main 

characteristics are summarized in Table 8. 

Table 8: Main studies on aerosol photopolymerization. 

Monomer(s) 
Continuous  

Phase 
Photoinitiator Polymerization time/ Irradiation system 

Particle 

diameter 
Reference 

Styrene/DVB He 
TFSA 
photoactivated 

Xe arc, 75 W, irradiation time:  < 5 min, 5 - 30 µm [240] 

SOMOS 3100 
(photopolymerizable resin 
based on di and triacrylates) 

N2 
Type I, contained in 
SOMOS 3100 

N2, 8 “black light” tubes, 36 W, external 5 - 50 µm [244] 

SOMOS 10220 
(photopolymerizable resin 
based on di and triacrylates) 

N2 
Type I, contained in 
SOMOS 10220 

N2, 8 “black light” tubes, 40 W, external 5 -100 µm [245] 

MMA/BA/Hexanediol 
diacrylate 

N2 P6 

N2, XeCl excimer radiation source, HSQ 300 
quartz, immersed, λ: 308 nm, radiant 
exitance: 10 mW cm-2, irradiation time: 15 – 
60 s 

200 nm - 2 
µm 

[246] 

Tri(ethylene glycol)divinyl 
ether, cyclohexene oxide 

N2 Triarylsulfonium salt 
N2, 6 fluorescent tubes, λ: 270-360 nm, 
external, irradiance: 5 mW cm-2  

200 nm - 2 
µm 

[247] 

Diepoxysiloxane N2 
Diphenyliodonium 
salt 

Medium-pressure Hg arc, Hanovia, 400 W, 
external, salt plates, irradiation time: 1 s – 
10 min 

 31 µm [248] 

MMA/BA/Hexanediol 
diacrylate + Porogen agent 

N2 P6 

a) N2, XeCl excimer radiation source, HSQ 
300 quartz, immersed, λ: 308 nm, radiant 
exitance:  ≤ 10 mW cm-2, irradiation time: 1 
min  
b) N2, 6 fluorescent tubes, λ: 270-360 nm, 
external, irradiance: 5 mW cm-2  

1 -3 µm [249] 

MMA/BA/Hexanediol 
diacrylate + ZnO 
nanoparticles 

N2 P6 

a) N2, XeCl excimer radiation source, HSQ 
300 quartz, immersed, λ: 308 nm, radiant 
exitance:  ≤ 10 mW cm-2, irradiation time: 1 
min  
b) N2, 6 fluorescent tubes, λ: 270-360 nm, 
external, irradiance: 5 mW cm-2 

200 nm- 2 
µm 

[250] 

MMA/BA/Hexanediol 
diacrylate + Silica 
nanoparticles 

N2 P6 
N2, 6 fluorescent tubes, λ: 270-360 nm, 
external, irradiance: 5 mW cm-2, irradiation 
time: 20 or 60 s 

 195 nm [251] 

4 CONCLUSION AND PROSPECTS 

Over the past three decades, more stringent environmental and health regulations have placed greater 

emphasis on polymerizations in dispersed systems. Although most dispersed polymer products are particles 

dispersed in water, there is a wide variety of materials in terms of the types of polymers produced 

(thermosets, thermoplastics), of the size of the particles prepared (ranging from nanometer to millimeter 

scale) as well as of the available structures (functionalized, cross-linked or porous spheres, core-shell or 

hybrid particles, adhesive or protective films, etc.). This impressive versatility is rendered possible as a direct 

result of the wide array of different polymerization processes in dispersed systems. Although further progress 

will be made in the next years, the advances will be limited by the boundaries imposed by the chemistry of 

chain-growth radical polymerization using thermal or redox initiators. 

As a “driver for change”, photochemical initiation has proved to be well suited for polymerizations in 

dispersed systems as evidenced by the number of studies (approx. 200) that have been published in this 

domain since the 1980s. The perhaps seemingly minor alteration to a process to make it a 

photopolymerization – in most cases simply changing the initiation system and using a radiation source – can 

in fact lead to considerable added value. At present, the main advantage exploited by the polymer scientists 

is a polymerization conducted at room temperature with the goals of lowering energy consumption. 

Additional attractive features include both spatial and temporal control, or more recently, the possibility to 

perform some polymerizations facilitated under radiation activation (for e.g. thiol-ene step-growth 
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polymerization) or mediated by radiation (for e.g. photo-catalyzed radical initiation). In some cases, energetic 

dosage of radiation has demonstrated its ability to control the molecular-weight dispersity and the 

distribution of particle sizes. These attractive features should fuel a broader utilization in 

photopolymerization, whose principal application today concerns film curing technology. Additionally, the 

large-scale development of UV and VIS LEDs is another driving force behind the growth of 

photopolymerization techniques in general. However, one of the main obstacles for the development of 

photoinitiated polymerization processes in dispersed systems is radiation attenuation. The main 

consequence is a non-uniform radiation distribution, and in the worst conditions, a minimal irradiated reactor 

volume fraction that may lead to plugging problems and low efficiency of the photochemical initiation. 

Limited radiation penetration can be a major problem, when the system involves a high concentration of 

strongly scattering dispersed entities (i.e. monomer droplets and/or polymer particles being greater than 

approximately 100 nm in diameter), which are routine conditions in emulsion polymerization for example. 

Therefore, research on photopolymerization in dispersed systems started about 35 years ago, but crucially 

never succeeded in getting established as a solid alternative to conventional emulsion polymerization. 

However, very few photopolymerizations in dispersed systems described in this review were carried with an 

effort for optimizing utilization of radiation. Consequently, there is a considerable room for improvement, 

and clearly, many specific features offered by photoinitiation have yet to be realized. 

With regard to prospects, a number of areas (many of them highlighted in this review) stand out. The 

issue of radiation attenuation is currently being addressed mainly by the design and use of new photoreactors 

suitable for highly absorbing media such as falling film or tubular reactors. To mitigate this problem, VIS light 

initiated polymerizations may another lever because in this spectral range, scattering is decreased compared 

to UV radiation. Some recent advances include three different approaches based on VIS photoinitiator, 

photoiniferter or photocatalysts. Furthermore, there is the question of the most suitable processes for a 

photopolymerization in dispersed system. Firstly, recent years have seen very few works on emulsion 

photopolymerization, which is however, one of the most established polymerization processes in dispersed 

systems. We foresee that the development of novel water-soluble photoinitiators may unlock its significant 

potential for innovation, with the additional benefit that radical recombination is minimized compared to 

organo-soluble photoinitiators that are predominantly micellized by surfactant species. Miniemulsion 

photopolymerization may be a second suitable process because it may feature, in the best cases, low-

scattering monomer nanodroplets (40-100 nm). However, such nanosize range is not systematically 

achieved, and generally requires an energy-intensive emulsification stage clashing with the energy-saving 

features of a photoinitiated polymerization. In this regard, dispersion PISA is attractive as particles are formed 

via a self-assembly process, and the initial polymerization mixture is homogeneous (non-scattering). Photo-

PISA is now being developed and explored within the context of RAFT polymerization. Of note is the fact that 

this polymerization technique falls in the category of controlled/living radical polymerization, and the role 

played by radiation is not simply to cause decomposition of a radical photoinitiator, but typically to regulate 

the activation/deactivation process (of propagating radicals) that is central to these systems. This specific 

area of research remains in its infancy, and it is envisaged that there is significant potential for development 

of photochemical systems that may greatly expand the scope of polymer particle synthesis. As a final 

comment, radiation is noninvasive (VIS light) for many biological systems – this is an important advantage in 

regards to the use of photochemical initiation for of polymer (nano)particles for pharmaceutical and medical 

applications such as drug delivery. 
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