
i 

 

 
 

 

 
 

 

5G European Validation platform for Extensive trials 
 

 

 

 

 

Deliverable D3.6 

Interworking test suites 
 

 

 

 

 

  



ii 

 

 
Project Details 

Call H2020-ICT-17-2018 

Type of Action RIA 

Project start date 01/07/2018 

Duration 36 months 

GA No 815074 

 

 

 
Deliverable Details 

Deliverable WP: WP3 

Deliverable Task: Task T3.4 

Deliverable Identifier: 5GEVE_D3.6 

Deliverable Title: Interworking test suites 

Editor(s): Ramón Pérez (TELC) 

Author(s): Ramón Pérez (TELC); Matteo Pergolesi, Gianluca 

Reali (CNIT); Marc Molla (ERI-ES); Ignacio Benito 

(NOK-ES); Gopalasingham Aravinthan, Laurent 

Roullet (NOK-FR); Giacomo Bernini (NXW); 

Grzegorz Panek (ORA-PL); Juan Rodríguez, Lourdes 

Luque, Luis Miguel Contreras (TID), Evangelos 

Kosmatos, Christos Ntogkas (WINGS). 

Reviewer(s): Giancarlo Sacco, Mara Piccinino (ERI-IT); Andreas 

Tzoulis (NOK-GR), Kostas Trichias (WINGS) 

Contractual Date of Delivery: 31/10/2019 

Submission Date: 01/11/2019 

Dissemination Level: PU 

Status: Final 

Version: 1.0 

File Name: 5GEVE_D3.6_Final  

 

 

 

 

 

 

 

 

 
Disclaimer 

The information and views set out in this deliverable are those of the author(s) and do not 

necessarily reflect the official opinion of the European Union. Neither the European 

Union institutions and bodies nor any person acting on their behalf may be held 

responsible for the use which may be made of the information contained therein. 



iii 

 

 

Deliverable History 

Version Date Modification Modified by 
ToC_v0.1 11/07/2019 ToC proposal. Ramón Pérez 

ToC_v0.2 25/07/2019 Modifications to the first ToC proposal 

based on the feedback received from T3.4 

partners. 

Ramón Pérez 

ToC_v0.3 06/09/2019 Review of the ToC after Pisa F2F 

Meeting. Initial assignment of partners to 

some sections. 

Ramón Pérez 

ToC_v0.4 10/09/2019 Final ToC proposal. Ramón Pérez 

v0.1 16/09/2019 Preliminary contributions to the 

deliverable from TELC. 

Ramón Pérez, based on 

contributions by TELC. 

v0.2 20/09/2019 First integrated version of the document 

with the integration of preliminary 

contributions from CNIT, NOK-FR, 

WINGS and ORA-PL. 

Ramón Pérez, based on 

contributions by CNIT, 

NOK-FR, WINGS and 

ORA-PL. 

v0.21 24/09/2019 Integration of preliminary contributions 

from NXW. 

Ramón Pérez, based on 

contributions by NXW. 

v0.22 24/09/2019 Included feedback received during the 

D3.3-D3.6 synchronization telco done 

today. 

Ramón Pérez 

v0.23 08/10/2019 Integration of contributions from CNIT, 

NOK-ES, NOK-FR, NXW, TID and 

WINGS. 

Feedback provided for all partners for 

revision. 

Ramón Pérez, based on 

contributions by CNIT, 

NOK-ES, NOK-FR, NXW, 

TID and WINGS. 

v0.24 14/10/2019 Integration of contributions from ERI-ES, 

NOK-ES, NXW, ORA-PL, TID and 

WINGS. 

Feedback provided for all partners for 

revision. 

Ramón Pérez, based on 

contributions by ERI-ES, 

NOK-ES, NXW, ORA-PL, 

TID and WINGS. 

v0.9 16/10/2019 Integration of contributions from TELC, 

CNIT, NXW and WINGS. 

Feedback provided for all partners for 

revision. 

First stable version for internal review. 

Ramón Pérez, based on 

contributions by TELC, 

CNIT, NXW and WINGS. 

v0.91 22/10/2019 Updating pending action points for the 

final version of the deliverable. Included 

feedback from internal review (NOK-GR). 

Ramón Pérez, Andreas 

Tzoulis. 

v0.92 29/10/2019 Included feedback from internal review 

(ERI-IT). Integration of final 

contributions from all partners. Document 

ready for quality checking. 

Ramón Pérez (based on 

contributions by all 

partners), Giancarlo 

Sacco, Mara Piccinino.  

V1.0 31/10/2019 QA review and final editing Kostas Trichias 

 

 



iv 

 

Table of Contents 

LIST OF ACRONYMS AND ABBREVIATIONS ......................................................................................................... V 

LIST OF FIGURES ....................................................................................................................................................... VIII 

LIST OF TABLES ............................................................................................................................................................ IX 

EXECUTIVE SUMMARY .............................................................................................................................................. 10 

1 INTRODUCTION ......................................................................................................................................................... 11 

1.1 INITIAL CONTEXT AND TERMINOLOGY ....................................................................................................................... 11 
1.1.1 Interworking Framework overview ................................................................................................................... 11 
1.1.2 Test suites motivation and scope clarification .................................................................................................. 12 

1.2 DOCUMENT OBJECTIVES ............................................................................................................................................ 13 
1.3 DOCUMENT STRUCTURE ............................................................................................................................................ 13 

2 TEST SUITES GENERAL METHODOLOGY ......................................................................................................... 14 

2.1 TEST SUITES OVERVIEW ............................................................................................................................................. 14 
2.1.1 Challenges ......................................................................................................................................................... 15 
2.1.2 Principles and strategy to be followed .............................................................................................................. 15 

2.2 TESTING STANDARD SPECIFICATIONS ........................................................................................................................ 17 
2.3 TESTING METHODOLOGY ........................................................................................................................................... 18 

2.3.1 Component Tests ............................................................................................................................................... 19 
2.3.2 Integration Tests ............................................................................................................................................... 19 
2.3.3 System Tests ...................................................................................................................................................... 19 

3 INTERWORKING TESTING SUITES PROPOSAL ................................................................................................ 21 

3.1 IDENTIFIED TESTING POINTS ...................................................................................................................................... 21 
3.1.1 Components ....................................................................................................................................................... 21 
3.1.2 Site facilities’ interconnection ........................................................................................................................... 26 

3.2 TEST SUITES DEFINITION AND EXPECTED RESULTS .................................................................................................... 28 
3.2.1 Interworking Framework Component Tests ...................................................................................................... 28 
3.2.2 Integration Tests between Interworking Framework components .................................................................... 60 
3.2.3 Interworking Layer System Tests ...................................................................................................................... 61 

3.3 RISK PLAN ................................................................................................................................................................. 63 

4 INTERWORKING TESTING ROADMAP ................................................................................................................ 67 

5 INTERWORKING TESTING TOOLS ....................................................................................................................... 68 

5.1 HIGH-LEVEL ARCHITECTURE ..................................................................................................................................... 68 
5.2 PROPOSED TOOLS AND REQUIRED CAPABILITIES ........................................................................................................ 69 

5.2.1 Testing tools overview ....................................................................................................................................... 69 
5.2.2 API testing ......................................................................................................................................................... 70 
5.2.3 Data collection testing ...................................................................................................................................... 71 
5.2.4 Database testing ................................................................................................................................................ 72 

6 CONCLUSIONS ............................................................................................................................................................ 74 

ACKNOWLEDGMENT .................................................................................................................................................. 75 

REFERENCES ................................................................................................................................................................. 76 

  



v 

 

List of Acronyms and Abbreviations 

Acronym Meaning 

5G Fifth Generation 

API Application Programming Interface 

ATDD Acceptance-Test-Driven Development 

B Byte 

CD Continuous Development 

CI Continuous Integration 

CNF Cloud Native Network Function 

CSV Comma-Separated Values 

DB Database 

DevOps Development and Operations 

DoS Denegation of Service 

DSE Design-Space Exploration 

E2E End-to-end 

EG ETSI Guide 

ETSI European Telecommunications Standards Institute 

FTP File Transfer Protocol 

FUT Function Under Test 

GB Gigabyte 

Gbps Gigabits per second 

HTTP Hypertext Transfer Protocol 

I/W Interworking 

IBM International Business Machines 

ICMP Internet Control Message Protocol 

ICT Information and Communications Technology 

ID Identifier 

IP Internet Protocol 

JDBC Java Database Connectivity 

JMS Java Message Service 

JSON JavaScript Object Notation 

JVM Java Virtual Machine 

KPI Key Performance Indicator 

LCM Lifecycle Management 

LDAP Lightweight Directory Access Protocol 

LO Local Orchestrator 



vi 

 

LoI Level of Inventory 

MANO Management and Orchestration 

MEC Mobile Edge Computing 

MQTT Message Queue Telemetry Transport 

ms Milliseconds 

MSC Multi-Site Catalogue 

MSI Multi-Site Inventory 

MSNO Multi-Site Network Orchestrator 

MSO Multi-Site Orchestrator 

MSO-LO 5G EVE Multi-Site NSO to Local Orchestrator 

MTBF Mean Time Between Failures 

MTBE Mean Time Between Events 

MTS Methods for Testing and Specification 

NBI Northbound Interface 

NFV Network Function Virtualization 

NFVO NFV Orchestrator 

NS Network Service 

NSD Network Service Descriptor 

NSO Network Service Orchestrator 

OLAP On-Line Analytical Processing 

OLTP On-Line Transaction Processing 

ONAP Open Network Automation Platform 

OS Operating System 

OSM Open Source MANO 

PNF Physical Network Function 

PNFD Physical Network Function Descriptor 

PNFI Physical Network Function Instance 

RAN Radio Access Network 

REST Representational State Transfer 

RFC Request for Comments 

RTT Round Trip Time 

SBI Southbound Interface 

SDN Software Defined Network 

SOAP Simple Object Access Protocol 

SQL Structured Query Language 

SSH Secure Shell 

SUT System Under Test 



vii 

 

TCP Transmission Control Protocol 

TOSCA Topology and Orchestration Specification for Cloud Applications 

TPC Transaction Processing Council 

TST Testing 

UDP User Data Protocol 

UPF User Plane Function 

VM Virtual Machine 

VNF Virtual Network Function 

VNFI Virtual Network Function Instance 

VPN Virtual Private Network 

WAN Wide Area Network 

WebDAV Web Distributed Authoring and Versioning 

WG Working Group 

WP Work Package 

XML Extensible Markup Language 

XMPP Extensible Messaging and Presence Protocol 

YAML YAML (Yet Another Markup Language) Ain't Markup Language 

YCSB Yahoo! Cloud Serving Benchmark 

 

  



viii 

 

List of Figures 

Figure 1: Interworking Framework architecture ............................................................................................... 11 

Figure 2: Different testing levels ....................................................................................................................... 14 

Figure 3: Multi-Site Inventory interactions ....................................................................................................... 22 

Figure 4: Multi-Site Catalogue test configurations ........................................................................................... 29 

Figure 5: Multi-Site Inventory test configurations ............................................................................................ 43 

Figure 6: Multi-Site Network Orchestrator test configurations ......................................................................... 49 

Figure 7: Data Collection Manager test configurations ..................................................................................... 51 

Figure 8: Runtime Configurator test configurations .......................................................................................... 56 

Figure 9: MSO-LO test configurations .............................................................................................................. 58 

Figure 10: Site facilities’ interconnection test configurations ........................................................................... 61 

Figure 11: Interworking Framework overview ................................................................................................. 68 

Figure 12: Testing tool high-level architecture ................................................................................................. 69 

Figure 13: Test Execution Manager overview .................................................................................................. 70 

 

  



ix 

 

List of Tables 

Table 1: Positioning Interworking Framework testing methodology according to software testing methodologies

 ........................................................................................................................................................................... 16 

Table 2: Multi-Site Catalogue – NSD Management test suites ......................................................................... 29 

Table 3: Multi-Site Catalogue – VNF Management test suites ......................................................................... 37 

Table 4: Multi-Site Catalogue – PNFD Management test suites ....................................................................... 40 

Table 5: Multi-Site Inventory – Write Operation test suites ............................................................................. 43 

Table 6: Multi-Site Inventory – Query Operation test suites ............................................................................ 46 

Table 7: Multi-Site Network Orchestrator test suites ........................................................................................ 49 

Table 8: Data Collection Manager – Kafka test suites ...................................................................................... 52 

Table 9: Data Collection Manager – NBI test suites ......................................................................................... 54 

Table 10: Data Collection Manager – SBI test suites ........................................................................................ 55 

Table 11: Runtime Configurator test suites ....................................................................................................... 56 

Table 12: Multi-Site NSO to local Orchestrators interface test suites ............................................................... 58 

Table 13: Site facilities’ interconnection test suites .......................................................................................... 61 

Table 14: Risks identified in single-site scenarios ............................................................................................ 64 

Table 15: Risks identified in multi-site scenarios ............................................................................................. 65 

Table 16: Mitigation plan example (MPLAN1a_001) ...................................................................................... 66 

Table 17: Interworking testing roadmap ........................................................................................................... 67 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 10 / 76 

 

Executive Summary 

Deliverable D3.6 is the first deliverable related to the Interworking Framework testing and it describes the test 

cases that are executed for the validation and performance assessment of the Interworking Layer 

implementation. This deliverable is intended to be aligned with D3.3 [1], which contains the first 

implementation of the Interworking Framework, as all the components and capabilities exposed by the I/W 

Framework must be tested in order to verify their correct operation before deploying them in a real production 

environment. 

For achieving this, firstly the testing methodology that will be applied for the definition of the Interworking test 

suites is presented. In this case, the principles of software project testing are proposed, as there are a lot of 

similarities between this kind of developments and the I/W Framework itself; i.e. both can be decomposed into 

small test units that can be tested separately, verifying their correct operation in an isolated way. After that, the 

different components of the architecture can be integrated in a more complex solution which can be also tested 

in order to validate these new interactions. This process is repeated until reaching to the complete system itself, 

integrating all the components of the architecture and testing the overall system. 

After describing the key aspects of the testing methodology to be applied, the components and capabilities to 

be tested in the Interworking Layer are presented, defining the testing points that must be considered for 

specifying the different test suites. Note that this deliverable only covers the formal definition of the test, in a 

tabular format, while the provision of the necessary scripts to execute the tests, the execution of these scripts 

and the results evaluation are tasks which are covered by D3.7, which is the second and last deliverable related 

to I/W testing purposes. 

Furthermore, the testing plan is also aligned with the 5G EVE project roadmap planned for the final delivery 

regarding the Interworking Layer, which is presented in D3.3 – section 5 [1]. As a reminder, this updated 

roadmap defines two extra, intermediate deliveries that were not part of the original proposal, but it is foreseen 

they could be important to this project: Drop 1 at the end of 2019, for providing support of the execution of 

selected use cases, and Drop 2 for aligning the WP4 deliveries with an I/W Framework delivery that allows to 

test the end-to-end services provided by the Portal. 

Finally, it is also defined a set of testing tools that may be useful for building the different test cases defined in 

the deliverable. These tools are partially inherited from all the work already done in WP5 regarding the testing 

and validation methodologies to be applied during the execution of tests. However, the selection of the tools 

and the environment to be used for testing the different test suites will be also defined in D3.7, as it is closer to 

the implementation part instead of the formal definition of tests.  



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 11 / 76 

 

1 Introduction 

Deliverable D3.6 – Interworking test suites – represents the first deliverable of Task 3.4 – Functional testing of 

interworking capabilities –, whose objective is the introduction of the testing plan to be followed within Task 

3.4 for testing the I/W Framework components and capabilities, defining all the possible tests to be executed, 

which will be based on a specific testing methodology, strategy and tools that are also described in the 

deliverable. 

1.1 Initial context and terminology 

First of all, the context in which this deliverable is involved will be presented. Mainly, deliverable D3.6 is 

related to the testing process of the Interworking Framework as a system, the components that compose the 

Interworking Framework and possible integrations between these components that may be useful to be tested. 

Regarding the terminology used in this deliverable, most of the terms used in this document are explained in 

their corresponding section for an appropriate understanding of all the described concepts. Furthermore, it has 

also been included the necessary references to other deliverables or useful documents in order to clarify different 

aspects that may not be clear directly; e.g. concepts which have already been defined in previous deliverables 

and that are included again in this deliverable. 

Regarding some nomenclature issues, it is worth mentioning that terms Interworking (I/W) Framework and 

Interworking (I/W) Layer have been used equally throughout the document. The same is true for Multi-Site 

Network Orchestrator, Multi-Site Network Service Orchestrator, Multi-Site NSO or Multi-Site 

Orchestrator. 

1.1.1 Interworking Framework overview 

The 5G EVE Interworking Framework, currently described in deliverables D3.1 [2], D3.2 [3] and D3.3 [1] from 

different points of view (reference model in the first two cases, and first implementation drop in the last one), 

is a unique selling point of the 5G EVE end-to-end facility, which aims at providing a unified and integrated 

experimentation platform spanning heterogeneous sites where diverse 5G capabilities and tools are deployed. 

Therefore, it is a combination of coordination features for the seamless orchestration and execution of vertical 

use case experiments over heterogeneous infrastructures. The Interworking Framework sits between the 

Experiment Portal, that is the frontend of the 5G EVE platform, and the site facilities where the vertical use case 

experiments must be deployed for testing and validation of 5G and service specific KPIs. In this line, Figure 1 

shows the current Interworking Framework architecture and a high-level functional split. 

 

Figure 1: Interworking Framework architecture 

The two main reference points exposed and provided by the 5G EVE Interworking Framework are:  



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 12 / 76 

 

• The Interworking API exposed at the northbound towards the 5G EVE experiment portal, which 

enables the following functionalities: 

o Access to multi-site to retrieve Network Services and VNF Descriptors, on-board new Network 

Services and VNF Descriptors. 

o Access to multi-site inventory information to retrieve details of already provisioned Network 

Services in support of vertical use case experiments. 

o Provisioning and lifecycle management of end-to-end Network Services. 

o Configuration of 5G network and service performance metrics to be monitored and collected 

during the execution of vertical use case experiments. 

o Common and site independent access to the collected monitoring information for each vertical 

use case experiment. 

o Runtime configuration of Network Services and VNFs. 

• The adaptation and abstraction interface at the southbound provides a common, unified, abstracted 

access to individual site facilities services and APIs. Moreover, it is in charge of:  

o Exposing a set of common internal APIs and models for accessing transparently to per-site 

management, control, orchestration and monitoring services. 

o Translating them into the site-specific APIs and models via specific drivers. 

The I/W Framework architecture, presented in Figure 1, is decomposed into the following functional 

components:  

• The Multi-Site Catalogue decouples the Network Service Descriptors exposed to the 5G EVE 

experiment portal, which may span multiple sites and logically represent the actual network slice offers 

from the Network Service Descriptors collected from each of the site facilities, representing the actual 

capabilities of the sites. 

• The Multi-Site Inventory is the counterpart of the catalogue component for what concerns the 

information on provisioned and instantiated network slices in the 5G EVE end-to-end facility. It is fully 

managed, in terms of information stored, by the Multi-Site Network Service Orchestrator, and it 

maintains detailed information of the running. 

• The Multi-Site Network Orchestrator is the core component within the Interworking Framework and 

responsible for coordinating the provisioning and lifecycle of Network Services across the site facilities, 

as required to deploy end-to-end network slices for the execution of vertical use case experiments. It 

leverages on the per-site orchestration components and features, as they provide the fundamental logics 

and coordination within each 5G EVE site facility. 

• The Data Collection Manager is a key component within the Interworking Framework, and it 

coordinates the collection and persistence of all those network and vertical tailored service performance 

metrics that are required to be monitored during the execution of experiments for testing and validation 

of the targeted KPIs and results for a given experiment. 

• The Runtime Configurator allows to apply tailored, Day-2 runtime configurations to the provisioned 

end-to-end Network Services and VNFs in support of the vertical use case experiments.  

1.1.2 Test suites motivation and scope clarification 

The main motivation of test suites is to test and validate the Interworking Framework system, their components 

and its defined features. The value that these tests provide is the verification that the implementation process 

has been done successfully, accepting that the Interworking Framework is ready to be used in a production 

environment. This is crucial in order to support the deployment of several experiments in the 5G EVE platform, 

which implies several requirements in terms of load, latency and communications, among others.  

Note that the testing methodology described in this document does not consider the end-to-end test of the 5G 

EVE platform, as the focus is limited only to the I/W Framework.  

 

 

 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 13 / 76 

 

1.2 Document objectives 

The main objectives of this document, which are aligned with the expected objectives of Task 3.4, are the 

following: 

1. Presentation of the testing methodology to be followed in the definition of test suites. 

2. Definition of the Interworking testing plan, according to the testing methodology defined beforehand. 

It includes the definition of the test cases that are executed for validating the implementation of the 

Interworking capabilities across the different site facilities, as defined by the Interworking reference 

model. 

3. Definition, jointly with D3.3 – First implementation of the interworking reference model [1] and Task 

3.3 – Interworking model implementation and deployment, of the roadmap related to the implementation 

and testing of the Interworking Framework. 

4. Presentation of the set of tools to be considered during the Interworking testing process. 

This document is aligned with deliverable D3.3 [1], in which the first drop of the implementation of the 

Interworking reference model is presented, so that a first complete definition of the Interworking Framework is 

provided by describing both the implementation of the different components that belongs to the I/W Framework 

and the related test cases to each component and the system itself. 

The definition of test cases is done following standard principles, providing a unified format for all the test 

defined within the scope of this deliverable regardless of the component or capability under testing. 

Furthermore, note that this document just provides the test definition, leaving the execution and the evaluation 

of this set of tests for D3.7 – Report on the execution of the interworking test suites, which will complete the 

expected objectives to be achieved within Task 3.4. 

1.3 Document structure 

The Sections of this deliverable D3.6 following this Introduction are organized as follows: 

• In Section 2, it is included the test suites general methodology which is followed for defining the test 

suites. This methodology is associated to the main testing methodologies that are present for the design 

and execution of test cases for software projects. Standard specifications related to the definition of test 

suites are also included in this section. 

• Section 3 provides the definition of test cases related to the Interworking Framework, mapping the 

general methodology presented in the previous section with the final Interworking testing plan 

proposed. For achieving that, the identified testing points (the I/W Framework components and aspects 

mainly related to site facilities’ interconnection) are presented firstly, defining the test cases for these 

identified points afterwards. Finally, it is proposed a risk plan for covering all the possible problems 

and risk that may appear during the test execution. 

• Section 4 presents the roadmap which contains the different drops for the definition and execution of 

test cases, aligned with the implementation of the Interworking Framework (under the scope of Task 

3.3). 

• In Section 5, it is presented the set of proposed tools which can be used during the testing process, being 

aligned with the work already done within WP5. For that purpose, a high-level architecture which can 

be reproduced for the testing of all the identified testing points is also depicted. 

• Section 6 summarises the conclusions extracted from all the information included in this deliverable, 

regarding the definition of test cases. 

  



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 14 / 76 

 

2 Test suites general methodology 

In this Section, it is included the test suites general methodology which will be used for defining the 

Interworking test suites, following the main testing principles that are present in the design and execution of 

test cases for software projects. Standard specifications related to the definition of test suites are also described 

in this Section. 

2.1 Test suites overview 

Expressed in a general way, a test suite is a collection of information (test type, priority, related tests, execution 

time, expected results in terms of KPIs such as latency, load, throughput and reliability…) usually presented in 

the form of a blueprint that is used for deploying, operating and evaluating certain scenarios.  

At 5G EVE highest level, these blueprints are used by various verticals. But in the specific case of I/W 

Framework and of this document, test suites are defined for deploying, operating and evaluating I/W Framework 

system and its components itself. 

Test suites can use other level; for instance, a 5G EVE Portal test suite may call one or more Interworking Layer 

test suites that may also call one or more per-site location test suites, depending on the case. As a result, the test 

suite blueprint format will differ in types depending on to which layer it belongs: 

1. Requirements of verticals at 5G EVE highest level will belong to KPI that are relevant for the vertical. 

2. Requirements related to general system performance, such as latency, load or throughput will pertain 

to 5G EVE sites levels. 

3. Requirements related to 5G EVE specific infrastructure will pertain to identified testing points, such as 

components and capabilities. 

 

Figure 2: Different testing levels 

This document focuses on the 3rd level, functional and performance aspect I/W framework components, features 

and interfaces. It includes required performance between IWL and other up and down layers. But it excludes 

end-to-end test of 5G EVE platform performed at upper layer as well as site location performance performed at 

lower layer. 

 

 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 15 / 76 

 

2.1.1 Challenges 

The scope of the testing methodology is limited to the functional and performance aspects of all the I/W 

Framework components, features and interfaces. As a result, it does not consider end-to-end test of the 5G EVE 

platform. 

The peculiarities of the Interworking Layer testing process are listed below: 

1. It is part of a system chain: Interworking Layer is part of a full system chain, between the Portal at 

northbound and Site facilities at southbound. 

2. Interworking Layer has versatile roles: being part of a chain, some of the roles carried out by the 

Interworking Framework consist in relaying the information (in both directions) and in interpreting the 

information (also in both directions), among others 

3. Interworking Layer requires new technology: as explained in D3.3 [1], no existing projects has covered 

such a similar need than the ones covered by the I/W Framework, therefore some new technology must 

be developed. It is not just a question of integration: new components must be delivered and inserted. 

In that line, there are specific challenges that must be addressed by the definition of test suites: 

• Since the assets (either existing or new) combination is needed, it is also needed to carefully design the 

test suites for validating the implementation of the components, integrations and system. 

• Since the Interworking Layer layer is part of a larger system, a methodology able to cope with the 

increasing complexity of such a system must be provided, growing from isolated parts to an end-to-end 

dimension. Proxies of the larger system need to be used to perform intermediate validation. 

• Finally, since there are several roles present in the Interworking Layer, the carefully design of all the 

variety of use cases is also needed. 

2.1.2 Principles and strategy to be followed 

In this scope, it is followed the general software testing principles and strategies present in most software 

development projects. 

In fact, software testing is a well-known discipline. Various methods, approaches and philosophies have been 

explored over the time, adapting them to the needs of the different projects to be developed, and it would go 

beyond this deliverable to describe all of them, so only the most relevant options are commented in the following 

list: 

• Design-space exploration/In vivo testing: 

o DSE is an exhaustive testing enabling formal verification. It can predict and guarantee 

performance but requires the definition on system model and is time consuming. 

o In vivo testing requires to create a testing environment usually called “staging environment” 

plus the deployment of in-situ probes to collect KPIs and validate pass. 

o There is a continuum between DSE, staging and in operations testing as one can consider testing 

is “never ending” with machine-learning applied on the field. 

• Modular vs system testing: 

o Depending on the nature of the component (black box or system of components), various testing 

levels can be envisaged. 

o The lowest “testable” layer is usually a monolith already compiled and considered as a “black 

box”. 

o All other levels can be assembled from other blocks. 

o The levels need to be clarified to keep clarity in the testing process as it is virtually impossible 

to test all combinatory options. 

• Types of tests: 

o Functional: proof that the development supports the desired function. 

o Performance: proof that the function operates with expected KPIs. 

o Stability: proof that function operate x% of the time, with MTBF/MTBE, with given 

recoverability… 

o Scalability: proof that function can scale along certain axis (adding parameters, usages…). 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 16 / 76 

 

o Security: follow Chaos engineering principles, automatic detection and recovery. 

• Automated vs manual testing: 

o Scalability (in number of components, providers, test cases…) is an issue. 

o As complexity increases, automation becomes mandatory to scale. 

o Scripting, operating the tests, collecting, storing and interpreting data are key challenges. 

o Component/system expert knowledge is required to be captured correctly to keep test 

representativity. 

o DevOps technologies are needed to keep up with new software versions. 

o Machine learning are used to interpret both off and on-line collected data. 

• Microservices vs Monoliths: 

o As a system grows, components start to have dependencies, hindering the system’s speed of 

evolution. 

o A software system is made of multiple components assembled in larger systems and provided 

by various sources such as open source, previous research projects, etc. 

o Function decomposition can be refined over successive iterations.  

o Components should be “loosely coupled” to separate concerns. 

o Following 12 factors1 design principles is a good recommendation. 

• Waterfall vs. agile 

o Methodologies have ups and downs. 

o Waterfall assume a preliminary detailed specification and prefers exact implementation to the 

detriment of evolution. 

o Agile promotes quick and short iterations to obtain quickly “Minimum Viable Products” always 

aligned with customer demand. 

o Actually, there is no “1 size does not fit all” and methodologies should be mixed depending on 

the cases. 

• Open source vs. closed source 

o Open source has faced and solved most of above-listed challenges. 

o Open source is an excellent provider of technology optimised for these purposes (e.g. Jenkins, 

Git…). 

This analysis grid is used to position the current solution, based on a modular and system testing among others: 

firstly, the identification of modules to be tested is done. After it, the possible integrations between modules and 

the complete system follow with all the components and these integrations. The grid is provided in Table 1. 

Table 1: Positioning Interworking Framework testing methodology according to software testing methodologies 

Option Interworking Layer layer position 

Design-space exploration/In vivo testing No design space, only “in vivo” testing using stubs. 

Modular vs system testing Both are used at two levels: FUT an SUT. 

Types of tests Mainly functional tests. 

Automated vs manual testing 
Both, but automated tools will be introduced in the next 

D3.7. 

Microservices vs Monoliths Microservices. 

Waterfall vs. agile Both. 

Open source vs. closed source Open source. 

 

                                                      

 

1 https://12factor.net/ 

https://12factor.net/


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 17 / 76 

 

2.2 Testing standard specifications 

Testing is a key aspect of any product development process and it is the mean for validating functional features, 

as well as compliance to standards and multi-vendor interoperability. Being such an important step for 

delivering new products, nowadays its role is getting more and more relevance due to wide implementation of 

DevOps methodologies in the industry, where testing is central in the Continuous Integration (CI) and 

Continuous Development (CD) cycles.  

In this context, standardization is key to regulate how testing shall be implemented, with well-defined 

methodologies and processes to unify how products are tested and validated against standard protocols and 

specifications in general. Indeed, quite a lot of efforts have been spent in standardization bodies to define such 

methodologies and processes; one of the most active, and relevant with respect to 5G EVE (and its Interworking 

Framework), is ETSI. 

In particular, the ETSI Methods for Testing and Specification (MTS) group identifies and defines advanced 

specifications and testing methods, leveraging on innovative techniques to improve the efficiency of both the 

standard description and related conformance and interoperability testing processes. In practice, it develops 

studies, guidelines and test specifications for specific ICT technologies that are not already covered by existing 

ETSI groups or bodies. 

Two of the ETSI MTS specification documents can be considered as relevant to 5G EVE and the I/W 

Framework testing methodologies: ETSI EG 202 237 [4] and ETSI EG 202 568 [5]. These documents provide 

main guidelines for the use of common methods for developing test specifications in the context of standardized 

IP-related communications protocols, systems and products. In general, the proposed methodologies and 

processes are applicable to all those kinds of systems and protocols where IP-related communications happen. 

In terms of main relevant (with respect to the 5G EVE I/W Framework) testing aspects defined in ETSI EG 202 

237 [4] and ETSI EG 202 568 [5] are the identification of methodologies for the test development process (with 

split into conformance testing and interoperability testing), and for the development of test specifications (as 

the combination of test configurations, test suites and test descriptions). 

On top of these two specifications, the ETSI NFV TST Working Group (WG) has defined its own testing 

methodologies. Being ETSI NFV principles, architectures and interfaces at the base of the 5G EVE architecture 

and of the I/W Framework components and workflows in particular, it is worth to summarize how the TST WG 

has built and specified its testing methods. The ETSI NFV TST WG is responsible for the development of 

testing frameworks to validate interoperability and conformance of ETSI NFV specifications, thus driving how 

testing should be performed for NFV products. Moreover, it has the aim to facilitate and enable the 

implementation and validation of NFV related use cases. 

In particular, the ETSI NFV TST 002 – Report on NFV Interoperability Testing Methodology [6] defines the 

guidelines and methodologies for NFV products testing, differentiating between conformance and 

interoperability tests: conformance tests validate if NFV products correctly implement a particular standard, by 

defining whether or not the Function Under Test (FUT) meets the requirements specified by the standard (e.g., 

it tests protocol message contents and format as well as the correct sequences of messages), whereas the 

interoperability testing validates that NFV products can work with other NFV products, by checking that end-

to-end functionality between (at least) two FUTs is as defined by the relevant NFV standards. 

Based on this high-level categorization, the ETSI NFV TST 002 [6] standardizes the following testing aspects: 

• Definition of basic NFV testing concepts. 

• Instructions for the development of NFV test specifications, including test configurations and test 

descriptions. 

• Description of the NFV testing process. 

In summary, the main testing concepts and terminology introduced in ETSI NFV TST 002 [6], and relevant to 

the 5G EVE I/W Framework testing principles, are the following: 

• Function Under Test (FUT): combination of software and/or hardware components implementing the 

NFV functionality that is tested through one or more NFV reference points. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 18 / 76 

 

• System Under Test (SUT): it is the combination interacting FUTs coming from different vendors, that 

define the whole system tested for NFV interoperability purposes. 

• Test interfaces: it is the whole set of interfaces that FUTs and SUTs expose to enable the testing of the 

given NFV functionality. They are accessed by the test system to trigger and verify the test behaviour 

and can be used for test monitoring and analysis as well. 

• Test environment: it is the combination of equipment, functions and procedures required to test the 

given NFV functionality. Entities in the test environment access the FUTs through the test interfaces 

and ensure the interpretation and execution of the relevant test descriptions by coordinating the required 

actions on the test interfaces. 

• Test purpose: it is the full description of the objective of each test case. The collection of test purposes 

in a test suite should cover the entire relevant NFV specification(s). One or more test descriptions are 

derived from a given test purpose. 

• Test description: it is the detailed set of instructions that need to be implemented for performing a 

given test. It includes descriptions of requirements for the test be executed, as well as clear definition 

of test objectives. 

Consequently, ETSI NFV TST 002 [6] defines a list of minimum information that is required to describe a test 

description and that is used to execute the test itself. In particular, for each test purpose, one or multiple test 

descriptions can be specified. Each test description has the goal to describe all the steps required (i.e. how) to 

achieve a test purpose (i.e. what). In TST 002 [6], the following information is required to be part of any test 

description:  

• Identifier: a unique identifier of the test description. Well-defined naming conventions are 

recommended. 

• Test purpose: the description of the objective of the test description. 

• Configuration: reference to the applicable test configuration. 

• References: reference to the base standard specifications describing the feature under test. 

• Applicability: list of items and features that need to be supported by the FUT in order to execute the 

test. 

• Pre-test conditions: specific conditions that need to be met by the FUT prior to start executing the test. 

It can refer to initial state of the FUTs or specific test configurations. 

• Test Sequence: a detailed description of the steps to be followed for achieving the given test purpose. 

They need to be defined with the aim of having the test applicable to a range of different types of 

implementation. 

2.3 Testing methodology 

This section describes the testing methodology for the Interworking Framework. As described above, the scope 

of the I/W Framework testing is to test and validate the framework itself, as an independent system. For that 

reason, the 5G EVE platform end-to-end testing is out of the scope of this deliverable. 

Therefore, following the principles and strategy described in Section 2.1.2, it is proposed three kind of test 

categories for validating the I/W Framework, also aligned with the standards discussed in Section 2.2: 

• The Component Tests (also known as Unit Test), mandatory for all the I/W Framework components, 

are the main kind of tests defined in the Interworking test suites and are oriented to test each FUT (or 

testing points related to specific components) of the I/W Framework separately.  

• After these unit tests, it is also proposed to do Integration Tests for testing and validating the different 

connections between components of the I/W Framework in which a specific interaction may be 

required. 

• The System Tests are intended to validate the whole I/W Framework system (i.e. SUT), with all the 

components already deployed in the production environment.  

Tests defined for each kind of test category can be also divided in different types. Mainly, it will be executed 

functional tests, which are used to verify that the functions defined in the FUT or SUT operate in line with the 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 19 / 76 

 

functional requirements defined. However, other types of tests can be also defined (e.g. load tests or stress tests, 

for testing scalability features) in case it is needed for the specific FUT or SUT. 

As a result, the basic definition of a test suite for a given FUT or SUT shall include the functional test type and, 

depending on the FUT or SUT, may also include load and/or stress tests and/or other useful types of tests. 

In this deliverable, all tests are described using a common table in text format. Furthermore, it is planned to 

incorporate a more detailed description of the test suites using a specific language (script) for implementing the 

test (e.g. in Robot Framework format), and presenting the results obtained from the execution of the test. That 

description will be included in the next deliverable D3.7. 

2.3.1 Component Tests 

The goal of the Component Tests is to validate the behaviour of each I/W Framework component individually, 

which are the Functions Under Test. In this scope, all the testing process related to each component is considered 

internal testing (or design testing) and should follow the internal software testing methodology described by 

each partner, which are reflected in the tests defined in Section 3.2.  

The Component Tests are defined for the identified testing points related to the components from the I/W 

Framework (please, refer to Section 3.1.1), generally the northbound and southbound interfaces of these 

components. The Component Tests must include, among other fields: 

• A description of the purpose of the test. 

• The type of test. In general, functional tests will be used, but there could be specific components in 

which it can be defined other type of tests, such as load tests or stress tests (e.g. Data Collection 

Manager). 

• The configuration of the component to be used during the testing. 

• The pre-conditions in the FUT. 

• The steps for executing the test. 

• The expected result. 

Independently of the Component Test executed, it is required a testing environment that provides a client 

emulation, which generates API requests towards the component and analyse its responses, as well as server 

emulations for those cases that requires an external communication. The test environment to be built in this 

scope can be defined with the set of tools proposed in Section 5, and each component will use the necessary set 

of tools for executing properly all the test suites defined. These test environments will be defined in D3.7. 

2.3.2 Integration Tests 

The Integration Tests are required for validating the integration of some I/W Framework components which 

may require to be connected in specific workflows. The following integration points are identified: 

• Multi-Site Network Orchestrator and Multi-Site Catalogue: integration using NSD management API. 

• Multi-Site Catalogue and Multi-Site Inventory. 

• Multi-Site Network Orchestrator, Multi-Site Catalogue, Data Collection Manager and Runtime 

Configurator with the Adaptation Layer. 

• Drivers of Adaptation Layer with their respective NFVO. 

The methodology used in the integration testing is the same used in the Component Tests, with the difference 

that instead of using mock servers for the test validation, the real components are used. 

2.3.3 System Tests 

The System Tests are required for validating the whole I/W Framework. The approach for this kind of testing 

process is the same that in Integration Tests, taking into account that the testing points are the public northbound 

and southbound interfaces and all I/W Framework components are integrated. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 20 / 76 

 

As a result, the test environment in this kind of tests would be the production environment itself, reproducing 

all the Component and Integration Tests in the final solution in order to test the correct behaviour of each 

component and the possible interconnections between them.  



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 21 / 76 

 

3 Interworking testing suites proposal 

The main objective of this section is the presentation of the Interworking testing suites, specifying all the general 

terms and concepts presented in Section 2 within the Interworking Framework scope. 

3.1 Identified testing points 

The I/W Framework testing points are the features to be tested with the execution of the different test suites 

defined. Depending on the target element that is the objective of the test, the testing points can be determined 

for both I/W Framework components and capabilities: 

• In the case of the different components placed in the I/W Framework, i.e. Multi-Site Catalogue, Multi-

Site Inventory, Multi-Site Network Orchestrator, Data Collection Manager, Runtime Configurator and 

Adaptation layer (with the interface from Multi-Site NSO to local Orchestrators), the testing points are 

identified within the specific FUT which is intended to be studied by Component Tests.  

• Regarding the I/W Framework capabilities, the testing points detected are focused mainly on validating 

the interconnection between different site facilities. In this case, the I/W Framework is considered a 

SUT in which these testing points will be tested with the different System Tests defined for that purpose. 

In the following Sections 3.1.1 and 3.1.2, it will be introduced the different testing points to be considered within 

the Interworking testing suites, according to the two main categories aforementioned. 

3.1.1 Components 

3.1.1.1 Multi-Site Catalogue 

The Multi-Site Catalogue stores the full set of Network Service Descriptors, PNF Descriptors and VNF 

Packages that can be used to compose a new end-to-end vertical experiment (from the 5G EVE Portal 

perspective), as well as to deploy and instantiate a vertical experiment in one or more sites (from the Multi-Site 

NSO perspective). 

The main testing points for the Multi-Site Catalogue are: 

• The northbound APIs (as specified in deliverable D3.2 [3]), for what concern onboarding and 

retrieval of catalogue content operations. 

• The southbound APIs (as specified in deliverable D3.2 [3]), for onboarding of Network Service 

Descriptors modelling vertical experiments into the per-site orchestrators (and catalogues), for both 

the single and multi-site cases. 

Therefore, the Multi-Site Catalogue tests described in this document mostly target the functional validation of 

the component when stimulated at its northbound APIs for onboarding related operations. In addition, specific 

tests will also validate the Multi-Site Catalogue features by stimulating it through its southbound APIs for what 

concern the VNF Packages and descriptors onboarding operations (in reference to the onboarding workflows 

specified in deliverable D3.2 [3]). 

With respect to the two main categories of testing points listed above, the following test categories apply: 

• Test of Network Service Descriptor onboarding in single site: 

o Testing point: NBI. 

o Verification point: NBI, SBI, internal DBs (if applicable). 

• Test of Network Service Descriptor onboarding in multiple sites: 

o Testing point: NBI. 

o Verification point: NBI, internal DBs (if applicable). 

• Test of retrieval of VNF Packages from sites: 

o Testing point: SBI. 

o Verification point: NBI, internal DBs (if applicable). 

• Test of retrieval of Network Service Descriptors from sites: 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 22 / 76 

 

o Testing point: NBI. 

o Verification point: NBI, internal DBs (if applicable). 

• Test of retrieval of PNF Descriptors from sites: 

o Testing point: NBI. 

o Verification point: NBI, internal DBs (if applicable). 

It is worth to highlight that the single and multiple site cases listed above refer to onboarding of descriptors that 

are built in the 5G EVE Portal during the vertical experiment preparation phase, and that can possibly be 

executed either in a single or in multiple sites (i.e. the same exact experiment). Indeed, in accordance with the 

D3.2 [3] catalogue related workflows, it is possible that the same exact Network Service Descriptors (e.g. 

modelling a single-site experiment) will be onboarded to more than one site orchestrator when the related VNFs 

(and VNF Descriptors) are the same (i.e. same identifiers). This is independent from the Network Service 

Descriptors being modelling either single or multi-site vertical experiments. 

3.1.1.2 Multi-Site Inventory 

Similarly to the Multi-Site Catalogue storing the full set of available VNF, PNF and NS Descriptors, the Multi-

Site Inventory (MSI) stores the information related to the active VNF, PNF and NS Instances. Two types of 

operations are envisioned for the MSI: 

• Write in the inventory. 

• Query the inventory. 

The only component with rights to write in the MSI is the Multi-Site Network Service Orchestrator. There is a 

single exception to this rule, which is the possibility to admit manual entries in the first stages of the I/W 

Framework implementation. Local Network Service Orchestrators, therefore, will not have direct access to the 

MSI, as depicted in Figure 3; in other words, there is no SBI for the Multi-Site Inventory. 

The main testing points for the writing operation are associated with the lifecycle management features of 

VNFs, PNFs and NSs: instantiation, scaling, update and termination. 

 

 

Figure 3: Multi-Site Inventory interactions 

 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 23 / 76 

 

On the other hand, the query operation can be executed by three components. The interface will be equivalent 

for all three, but the rights will be different: 

• The Experimentation Portal will be able to launch requests, on behalf of an experimenter, to request 

the status of its own experiment. 

• The Multi-Site NSO and an Administration Portal2 will be able to launch global requests, so that the 

former knows the availability of resources when new deployment requests arrive, and the latter can 

present the full status of the 5G EVE infrastructure to an operator (for example, for troubleshooting 

purposes). 

In summary, the main testing point for the query operation is the validation of the NBI for the Multi-Site 

Inventory. 

3.1.1.3 Multi-Site Network Orchestrator 

The Multi-Site Network Orchestrator is in charge of coordinating all the site orchestrators for deploying 

Network Services that compose an end-to-end vertical experiment. 

The main testing points for the Multi-Site Network Orchestrator are: 

• The northbound APIs (as specified in deliverable D3.2 [3]), for Network Services Lifecycle 

Management operations. 

• The southbound APIs (as specified in deliverable D3.2 [3]), for NS LCM operations, for both the 

single and multi-site cases. 

• The westbound API with Multi-Site Catalogue (as specified in deliverable D3.2 [3]) for retrieving 

NSD information, especially the NS and site NFVO IDs. 

The Multi-Site Network Orchestrator tests included in this document are functional tests of the component, 

simulating northbound API operations and having simulated servers of Multi-Site Catalogue and the Multi-Site 

NSO to LO components. 

The following test categories are expected: 

• Test of single-site NSD deployment. 

• Test of multi-site NSD deployment. 

• Test of Notification system. 

• Test of Multi-Site Inventory update. 

The main difference between the single and multi-site testing is related to the transactional service required for 

the multi-site environment, in order to guarantee the consistency of the NS deployments across multiple site 

facilities. 

3.1.1.4 Data Collection Manager 

The Data Collection Manager is the component responsible for the collection and persistence of all the network 

and vertical performance metrics that are required to be gathered during the execution of experiments, as well 

as the related KPIs and results calculated from these metrics, providing a publish-subscribe mechanism for the 

delivery of that data. 

The high-level testing points that have been identified for the Data Collection Manager are related to the 

specific technology which will implement this component (i.e. the Apache Kafka3 solution, as presented in D3.3 

[1]) and the NBI and SBI with the 5G EVE Portal and Site facilities respectively: 

                                                      

 
2 The Administration Portal, logically, is a separated entity from the Experimentation Portal, permitting the management and monitoring 

of the 5G EVE components by human operators. In this document, it is not covered how it is implemented (or even if it is implemented 

at all): it may be a hidden part (for experimenters) of the 5G EVE Portal, it may be a totally different entity, or it may not exist. The 

key idea is that the full status of the 5G EVE infrastructure will not be presented to experimenters, but the Multi-Site Inventory will 

support in its API this capability. 

3 https://kafka.apache.org/  

https://kafka.apache.org/


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 24 / 76 

 

• Northbound interface between the Data Collection Manager and collection-monitoring tools (from 

WP4) and Result Analysis and Validation tool (from WP5). The operations that are handled by the Data 

Collection Manager in this interface are mainly related to the data delivery towards the components 

subscribed to a given topic, and with the reception of data from a given topic (e.g. when the Results 

Analysis and Validation component publishes the KPIs and results to be presented afterwards). 

Moreover, the signalling topics are also present in this interface, as the Data Collection Manager needs 

to deal with the subscription process executed in the components from upper layers, which will conclude 

with the obtention, for each component that is using the publish-subscribe queue, of the topics to be 

subscribed. Note that topic subscription will trigger a process in the Data Collection Manager for start 

consuming from the specific topic. 

• Southbound interface between the Data Collection Manager and Data shippers (from site facilities). 

This interface only manages the publish operation from the Data shippers (with the Kafka Producer 

API), which provides the metrics gathered from a given test execution. Although the Data shippers need 

to be configured previously by providing them the Data Collection Manager IP address and topic in 

which it has to publish, this configuration is out of the scope of this component, as it is closer to the 

behaviour of the Runtime Configurator component. 

• Operation of the selected technology for the Data Collection Manager component (Apache Kafka). 

This testing point, even though it is not related to any specific external interface of the Data Collection 

Manager, is crucial for ensuring the correct behaviour of this component. Within this scope, there could 

be some tests related to the scalability of the component (e.g. deploy the component in a cluster mode 

and test what is the optimal number of nodes for building the cluster, check how many topics can be 

handled by the Data Collection Manager for a given deployment, etc.), which are more related to other 

kind of tests like load or stress tests. 

• Integration of other functionalities (e.g. cold storage, fast queuing…). In order to verify that these 

improvements can be integrated in the Data Collection Manager, they must be tested separately. As 

these functionalities are currently in work-of-progress status regarding the implementation of the Data 

Collection Manager, they will not be considered in this first drop of the test suites. 

Delving into the previous concepts, the final testing points to be considered for the Data Collection Manager 

are related to the publish, (un)subscribe and deliver operations presented in D3.3 [1], no matter the interface 

(NBI or SBI) that is used for executing these operations, as these operations are present in both. In that way, it 

may be more interesting to define a specific chain for the testing process (e.g. start with a subscribe operation, 

continue with a publish operation, and the delivery operation should be triggered automatically). Moreover, it 

should be also considered as testing points the different phases (subscription, monitoring and data collection 

and un-subscription) regarding the experiment monitoring and maintenance stage of an experiment, as presented 

in D4.1 [7]. These testing points are closer to functional tests; but, for scalability tests (load tests, stress tests…), 

it should also be considered the Data Collection Manager itself, with the different parameters and 

configurations that can be used for its deployment. 

3.1.1.5 Runtime Configurator 

The Runtime Configurator, as commented in D3.3 [1] with the update of this component, is intended to provide 

the necessary Day-2 configuration to the VNFs and PNFs that belongs to a given experiment. This Day-2 

configuration can be divided in two main types: provision of useful configuration for the experiment before 

starting with it (e.g. the configuration of Data shippers aforementioned) and the execution of different 

commands related to each stage of the test (e.g. execute a ping between two VNFs/PNFs). For that purpose, the 

selected tool will be Ansible4. 

The main testing points for this component are the following: 

                                                      

 
4  https://docs.ansible.com/ansible/latest/index.html 

 

https://docs.ansible.com/ansible/latest/index.html


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 25 / 76 

 

• Northbound interface between the Runtime Configurator and the Experiment Execution Manager 

(from WP5). This connection allows to make the necessary calls to the Runtime Configurator in order 

to apply all the configuration of an experiment defined in the templates consumed by the Experiment 

Execution Manager (which is based on Jenkins5 and Robot Framework6 tools). The key aspect to be 

tested in this connection is the interaction between Robot Framework and Ansible. As a result, having 

different test templates defined in Robot Framework languages, it must be tested that Robot Framework 

is able to establish a connection with Ansible and provide to it the necessary configuration parameters 

(e.g. IP addresses of the VNFs) that will be needed for the connection with the VNFs/PNFs. 

• Southbound interface between the Runtime Configurator and VNFs/PNFs to be configured. This 

testing point is achieved with the usage of Runtime Configurator templates (i.e. Ansible playbooks), in 

which it is included all the scripts and configurations to be applied to the different VNFs/PNFs through 

an SSH connection. Although it can be tested separately, it makes more sense to execute these tests just 

after testing the northbound interface. As a result, the complete sequence would be the following: 

Experiment Execution Manager would call the Runtime Configurator templates, and these templates 

would apply the configuration in the VNFs/PNFs afterwards. 

3.1.1.6 Adaptation Layer: Multi-Site NSO to local Orchestrators interface 

The Multi-Site NSO to local Orchestrator interface (MSO-LO) is the portion of the Adaptation Layer that 

enables the I/W Framework to access the orchestration features provided by the trial sites involved in the 5G 

EVE project. The test of this component is extremely important to ensure the correct integration of local NFV 

Orchestrators with the I/W Framework. 

The MSO-LO interface consists of a REST API exposed to the Interworking Layer and a series of drivers 

implemented to interact with local orchestrators of different technologies. The specification of features, 

requirements and a textual description of the API’s methods are provided in D3.2 [3], while implementation 

details are presented in D3.3 [1]. 

The methods and paths of the REST API are the set of Function Under Test (FUT). Unit tests for this component 

are aimed to check that, given a REST API request from the I/W Framework, the correct output (JSON/YAML) 

is returned. The structure of each unit test is based on the GIVEN-WHEN-THEN and generally proceeds as 

follows: 

• GIVEN (preparation): a REST API call with necessary input is prepared. 

• WHEN (execution): the method related to the previous API call is executed. 

• THEN (assertion): the execution output is checked against a predefined, expected output. 

As the MSO-LO interface is intended to interact with local NFVO, it is necessary to provide a test environment 

to enable the test executions. Instead of deploying real instances of NFVOs, the behaviour of their Northbound 

Interface (NBI) is mocked. For example, in the case of the OSM7 orchestrator, it is emulated its NBI by using 

the OpenAPI specification and Prism8, a software that can create a fake REST API server by taking a YAML 

file as input. Prism can generate all the necessary HTTP status codes, sample output, and even dynamic output 

with fake values that respect the output schema. It is used this or similar mocking techniques also for other 

NFVO technologies. This methodology for unit tests makes them a hybrid between unit and integration tests as 

the test execution is not completely contained in the source code (Python) but is depending on an external 

component (Prism). This design choice is justified with the advantage of keeping the test source code simple, 

without the need to hard-code and maintain a lot of fake input and output to emulate NFVO interactions. 

Furthermore, a change in any NFVO NBI definition would only result in the download and update of a new 

                                                      

 
5 https://jenkins.io/ 

6 https://robotframework.org/  

7 https://osm.etsi.org/  

8 https://stoplight.io/open-source/prism/  

https://jenkins.io/
https://robotframework.org/
https://osm.etsi.org/
https://stoplight.io/open-source/prism/


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 26 / 76 

 

OpenAPI specification and tests would be able to run. None or minor changes would be needed in test source 

code, while development effort can be directed to the actual application. 

Unit tests organization follows the OpenAPI and application source code: 

• A Python module containing tests for the functions managing NFVO information stored in the local 

database. 

• A Python module containing tests for the functions managing subscriptions information stored in 

the local database. 

• A Python module for each NFVO driver containing tests for the functions related to NS and NFV 

instance management. 

Three or more unit tests are provided for each function/method, depending on the HTTP status codes that are 

worth to be tested. As a base, it is always tested code 200 (OK) or its variations, 400 (Malformed), and 404 (Not 

Found). Other codes can be tested depending on the specific method. The single unit test asserts the correctness 

of status code, header, and payload returned as output by the MSO-LO interface. 

3.1.2 Site facilities’ interconnection  

In deliverable D3.2 [3], a proposal for inter-site connectivity was included, so that it could satisfy the 

requirements imposed by the Interworking Layer as well as the requirements that come from each experiment 

defined and deployed in site facilities. These requirements were considered by WP2 to deploy a connectivity 

solution for 5G EVE, but they were not the only ones. The inter-site connectivity also hosts other communication 

channels, like the interconnection with the 5G EVE Portal, the data and control planes for experiments, and 

several others. 

In that sense, this test plan is not designed to verify completely all the interconnection features, but just those 

which are meaningful for the Interworking Framework. 

3.1.2.1 Connectivity 

Being the topology of 5G EVE’s interconnection a star in the orchestration plane, with the I/W Framework 

deployed in the centre of the star, the connectivity testing on this plane will be focused on ensuring that the I/W 

Framework’s modules implementing a SBI can reach each of the sites via the VPN interconnections. For this, 

specific IP address ranges must be defined per site, which should be reachable via ping9 from the site at Turin. 

Also, and depending on where the 5G EVE Portal is finally deployed, it might be required to repeat this 

connectivity test against the Web Portal (if deployed outside the project sites, which is a possibility). 

The test plan is not designed to verify the availability of the connectivity. Since this is a long-term indicator, the 

best mechanism to measure it is via monitoring tools that continuously verify the status of the connections and 

extract the correct availability results. 

Testing the Orchestration Plane connectivity 

The objective of these tests is to verify the following communication: a) between the I/W Framework and the 

different components (e.g. VNF) located in different sites; b) between the I/W Framework and the 5G EVE 

portal located in a specific location. 

In the first set of tests, the successful communication between the I/W Framework and the components located 

in the different sites is tested with simple ICMP tests.  

In the second set of tests, it should be covered the communication between the I/W Framework and the 5G EVE 

Portal. The tests will be realised by utilising the Interworking API of the I/W Framework in order to 

communicate with the APIs defined in the 5G EVE Portal. 

                                                      

 

9 https://ping.com/en-us/  

https://ping.com/en-us/


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 27 / 76 

 

Testing the Data Plane connectivity 

In the data plane, however, and since the interworking requirements are also covered in WP3, testing of multi-

site interconnections will be executed by conducting two types of tests: a) site connection tests; b) end-to-end 

site interconnection tests. 

Site connection tests 

The use of these tests will verify the connectivity in the data plane between a selected site and the Interworking 

Layer by using the different management IP addresses of the sites. To do this, it can be used whatever module 

in the I/W Layer (e.g. Runtime Configurator, Multi-Site NSO, etc.), doing ping tests towards one node inside 

each remote management network, and also verifying that the Portal is reachable. 

End-to-end site interconnection tests 

The use of these tests will verify the connectivity in the data plane across an end-to-end path traversing two 

selected sites (e.g. server placed in France and server located in Italy). The connection under test is defined as 

the successful communication (in IP layer) between both local components. 

The test will be executed by using the ping tool on both components in order to test the connectivity between 

the two components. 

The aforementioned set of tests will be repeated in order to cover all the possible site-to-site combinations, 

resulting in the execution of 6 set of tests. 

3.1.2.2 Performance 

Since the connectivity in 5G EVE is relying on the Internet, a single measurement will not be able to ensure the 

bandwidth nor the delay among sites when it is needed during an experiment. 

Evaluating the performance of Orchestration Plane connectivity 

In order to evaluate the performance of the connectivity between the I/W Framework and the different 

components located in different sites a set of testing scripts will be generated. These scripts will realise the 

successful configuration of the component located in the sites using the SBI of the I/W Framework. The main 

KPIs are a) the latency between the time a configuration request is generated in the I/W Layer and the time the 

successful response is sent back to it. The latency includes the transmission latency between the I/W Framework 

and components in site facilities, the processing time in the component, the time required for the realisation of 

the configuration command (using a script) on the NFV side and the transmission latency back to the I/W 

Framework; b) the throughput required for the functionality described above. 

Note that the all the components placed in the I/W Framework with SBI towards Site facilities can be used for 

performing these tests, no matter what component is used. However, they all have different operations running 

over the same network, so in case of characterizing the operations for a specific component (e.g. Runtime 

Configurator), it should be done as well for all the other modules. 

Evaluating the performance of Data Plane connectivity 

As traffic will be traversing a best effort network, multiple measurements should be made to characterize the 

performance of the different connections. This is costly and still does not ensure the performance at key 

moments, but at least provides some information which may be meaningful. 

The performance of the interconnection can be more or less delimitated (remember that it is not possible to 

validate the connectivity across Internet since it changes over time) by using two main KPIs: a) latency and 

specifically RTT (Round-trip Time) latency; b) throughput. 

Latency 

The latency KPI will be measured and validated by using the ping tool. A set of ping tests will be executed 

throughout a day in order to retrieve the average and maximum RTT latency (in ms) between two selected sites. 

Throughput 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 28 / 76 

 

The throughput KPI will be measured and validated using the iperf10 tool. A set of iperf tests (including both 

TCP and UDP flows) will be executed throughout a day in order to retrieve the average and minimum 

throughput (in Gbps) and per flow type (TCP/UDP) between two selected sites. 

The aforementioned performance tests will be executed between the outer nodes of the two sites (the servers in 

which the UPFs are located and through the N6 interfaces like the connectivity tests)11. Note that, if a site 

implements a WAN, the connection towards other sites may cross this WAN. 

Similar to the connectivity tests, the performance tests will be repeated in order to cover all the possible site-to-

site combinations. 

As said, ping and a simple traffic generator like iperf should be enough to execute tests measuring delay and 

bandwidth, respectively. Therefore, it is recommended that performance tests are executed at least once a 

specific link between two sites is set up. Once the whole 5G EVE infrastructure is in production, it is then 

recommended to monitor these two parameters, similarly to the availability, by doing at least daily 

measurements. 

3.2 Test suites definition and expected results 

For defining the test suites for the identified testing points, it will be provided a table for each test case (identified 

with a unique ID), including the following fields: 

• Test purpose: same as defined in Section 2.2.  

• Test type: the type of test to which the test suite belongs. Mainly, the test defined will be functional 

tests, but other type of tests can be included if it is necessary. 

• Related test: ID of related tests which are prerequisites for the execution of a given test case, if exist. 

• Priority: a measure of the importance of the test, which can be used for specifying the order of test’s 

execution or for contemplating different tests in the risk plan. Its value can be Low, Medium or High.  

• Execution time: time spent for executing the test. 

• Configuration: same as defined in Section 2.2.  

• References: same as defined in Section 2.2.  

• Applicability: same as defined in Section 2.2.  

• Pre-test conditions: same as defined in Section 2.2.  

• Test Sequence: same as defined in Section 2.2.  

• Test results: what are the expected results after executing the test sequence. 

These tables will be used for the definition of Interworking Framework Component tests and Interworking 

Framework System tests regarding the capabilities described in Section 3.1.2 (i.e. site facilities’ 

interconnection). 

3.2.1 Interworking Framework Component Tests 

3.2.1.1 Multi-Site Catalogue 

The Multi-site Catalogue tests are classified in the following categories: 

• NSD onboarding tests: 

o Onboarding to single site – OSM. 

o Onboarding to single site – ONAP. 

• VNF onboarding tests: 

                                                      

 
10 https://iperf.fr/  

11 In this section (and also the previous one, for the site-to-site test), it must be decided whether tests are between the outer 

routers of the sites, or between the nodes implementing the UPF (wherever they may be located). 

https://iperf.fr/


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 29 / 76 

 

o Onboarding from per-site local orchestrator – OSM. 

o Onboarding from per-site local orchestrator – ONAP. 

• PNFD onboarding tests: 

o Onboarding from per-site local orchestrator – OSM. 

o Onboarding from per-site local orchestrator – ONAP. 

As listed above, according to the current and planned status of the 5G EVE site facilities, in terms of per-site 

orchestrators and catalogues, the two types of deployed orchestrator tools at the time of writing are OSM and 

ONAP. Whenever new per-site orchestrator or catalogue tools will be used or deployed in the site facilities, the 

list of tests will be updated accordingly.  

Moreover, the following test configurations are applicable for the Multi-site Catalogue, as depicted in Figure 4. 

• MULTISITE_CAT_TO_OSM. 

• MULTISTE_CAT_TO_ONAP. 

• MULTISITE_CAT_TO_OSM_ONAP. 

 

Figure 4: Multi-Site Catalogue test configurations 

 

Table 2: Multi-Site Catalogue – NSD Management test suites 

Multi-Site Catalogue – NSD Management 

Test 1 - NSD Onboarding to single site - OSM Nsd-onboard-single-site-to-osm 

Test purpose 

This test aims at verifying that an NSD modelling a vertical experiment (in TOSCA 

format) can be successfully onboarded in the Multi-Site Catalogue from its NBI and 

delivered to a specific per-site OSM orchestrator. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 30 / 76 

 

Applicability None. 

Pre-test conditions • An OSM instance is available and accessible to the Multi-Site Catalogue. 

Test sequence 

1. Trigger the onboarding of the NSD modelling vertical experiment in the Multi-

Site Catalogue through its NBI, specifying the site where to onboard it. 

2. Verify that a new NSD resource has been created in the Multi-Site Catalogue. 

3. Verify that the NSD content has been successfully uploaded in the Multi-Site 

Catalogue. 

4. Verify that a new NSD resource has been created in the OSM orchestrator. 

5. Verify that the NSD content has been successfully translated and uploaded in the 

OSM orchestrator. 

Expected results 
The NSD modelling the vertical experiment is available in the Multi-Site Catalogue and is 

successfully onboarded in the catalogue of the OSM orchestrator 

Test 2 - NSD Update to single site - OSM Nsd-update-single-site-to-osm 

Test purpose 

This test aims at verifying that an existing NSD modelling a vertical experiment can be 

modified in the Multi-Site Catalogue from its NBI and updated in a specific per-site OSM 

orchestrator. 

Test type Functional. 

Related tests Nsd-onboard-single-site-to-osm. 

Priority Medium. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance is available and accessible to the Multi-Site Catalogue. 

• A NSD modelling a vertical experiment is onboarded in the Multi-Site Catalogue 

and in the OSM orchestrator. 

Test sequence 

1. Trigger the update of an existing NSD in the Multi-Site Catalogue through its 

NBI. 

2. Verify that the NSD content has been successfully updated in the Multi-site 

Catalogue. 

3. Verify that the NSD content has been successfully translated and updated in the 

OSM orchestrator. 

Expected results 
The NSD modelling the vertical experiment is updated in the Multi-Site Catalogue and is 

successfully modified in the catalogue of the OSM orchestrator 

Test 3 - NSD Deletion to single site - OSM Nsd-delete-single-site-to-osm 

Test purpose 

This test aims at verifying that an existing NSD modelling a vertical experiment can be 

deleted in the Multi-Site Catalogue from its NBI and removed from a specific per-site 

OSM orchestrator. 

Test type Functional. 

Related tests Nsd-onboard-single-site-to-osm. 

Priority High. 

Execution time 250ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 31 / 76 

 

Pre-test conditions 

• An OSM instance is available and accessible to the Multi-Site Catalogue. 

• A NSD modelling a vertical experiment is onboarded in the Multi-Site Catalogue 

and in the OSM orchestrator. 

Test sequence 

1. Trigger the delete of an existing NSD in the Multi-Site Catalogue through its NBI. 

2. Verify that the NSD content has been successfully deleted in the Multi-Site 

Catalogue. 

3. Verify that the NSD content has been successfully deleted in the OSM 

orchestrator. 

Expected results 
The NSD modelling the vertical experiment is no more available in the Multi-Site 

Catalogue and is successfully deleted in the catalogue of the OSM orchestrator as well. 

Test 4 - NSD Onboarding from single site - OSM Nsd-onboard-single-site-from-osm 

Test purpose 

This test aims at verifying that an NSD modelling a single-site service can be successfully 

onboarded in the Multi-Site Catalogue through the SBI from a specific per-site OSM 

orchestrator. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance in a site facility is available and accessible to the Multi-Site 

Catalogue. 

• An NSD is available in the given site facility and is ready to be onboarded in the 

OSM catalogue. 

Test sequence 

1. Trigger the onboard of a new NSD in the local per-site facility OSM orchestrator. 

2. Verify that the Multi-site Catalogue detects the new onboarded NSD in the OSM 

orchestrator. 

3. Verify that a new NSD resource has been created in the Multi-Site Catalogue. 

4. Verify that the NSD content has been successfully translated in TOSCA and 

uploaded in the Multi-Site Catalogue. 

 

Expected results 
The NSD modelling the single-site service is available in the Multi-Site Catalogue in 

TOSCA format. 

Test 5 - NSD Update from single site - OSM Nsd-update-single-site-from-osm 

Test purpose 

This test aims at verifying that an existing NSD modelling a single site service (previously 

onboarded from a per-site OSM orchestrator) can be modified in the Multi-Site Catalogue 

from its SBI when it is updated in the original per-site OSM orchestrator. 

Test type Functional. 

Related tests Nsd-onboard-single-site-from-osm. 

Priority Medium. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 32 / 76 

 

Pre-test conditions 

• An OSM instance is available and accessible to the Multi-Site Catalogue. 

• A NSD modelling a single-site service is onboarded in the Multi-Site Catalogue 

and in the OSM orchestrator. 

Test sequence 

1. Trigger the update of an existing NSD in the local site facility OSM orchestrator. 

2. Verify that the Multi-Site Catalogue detects the update to the existing NSD in the 

OSM orchestrator. 

3. Verify that the updated NSD content has been successfully translated in TOSCA 

and uploaded in the Multi-Site Catalogue. 

Expected results 
The NSD modelling a single-site service is updated in the Multi-Site Catalogue in TOSCA 

format 

Test 6 - NSD Deletion from single site - OSM Nsd-delete-single-site-from-osm 

Description 

This test aims at verifying that an existing NSD modelling a per-site service (previously 

onboarded from a per-site OSM orchestrator) can be deleted in the Multi-Site Catalogue 

from its SBI when it is removed in the original per-site OSM orchestrator. 

Test type Functional. 

Related tests Nsd-onboard-single-site-from-osm. 

Priority High. 

Execution time 250ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance is available and accessible to the Multi-Site Catalogue. 

• A NSD modelling a per-site service is onboarded in the Multi-Site Catalogue and 

in the OSM orchestrator. 

Steps 

1. Trigger the delete of an existing NSD in the local site facility OSM orchestrator. 

2. Verify that the Multi-Site Catalogue detects the deletion of the existing NSD in 

the OSM orchestrator. 

3. Verify that the NSD content has been successfully removed in the Multi-Site 

Catalogue. 

4. Verify that the NSD resource has been successfully removed in the Multi-Site 

Catalogue. 

Expected results 
The NSD modelling the vertical experiment is no more available in the Multi-Site 

Catalogue. 

Test 7 - NSD Onboarding to single site - ONAP Nsd-onboard-single-site-to-onap 

Test purpose 

This test aims at verifying that an NSD modelling a vertical experiment (in TOSCA 

format) can be successfully onboarded in the Multi-Site Catalogue from its NBI and 

delivered to a specific per-site ONAP orchestrator. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions • An ONAP instance is available and accessible to the Multi-Site Catalogue. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 33 / 76 

 

Test sequence 

1. Trigger the onboarding of the NSD modelling vertical experiment in the Multi-

Site Catalogue through its NBI. 

2. Verify that a new NSD resource has been created in the Multi-Site Catalogue. 

3. Verify that the NSD content has been successfully uploaded in the Multi-Site 

Catalogue. 

4. Verify that a new NSD resource has been created in the ONAP orchestrator. 

5. Verify that the NSD content has been successfully translated and uploaded in the 

ONAP orchestrator. 

Expected results 
The NSD modelling the vertical experiment is available in the Multi-Site Catalogue and is 

successfully onboarded in the catalogue of the ONAP orchestrator. 

Test 8 - NSD Update from single site - ONAP Nsd-update-single-site-to-onap 

Test purpose 

This test aims at verifying that an existing NSD modelling a vertical experiment can be 

modified in the Multi-Site Catalogue from its NBI and updated in a specific per-site ONAP 

orchestrator. 

Test type Functional. 

Related tests Nsd-onboard-single-site-to-onap. 

Priority Medium. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance is available and accessible to the Multi-Site Catalogue. 

• A NSD modelling a vertical experiment is onboarded in the Multi-Site Catalogue 

and in the ONAP orchestrator. 

Test sequence 

1. Trigger the update of an existing NSD in the Multi-Site Catalogue through its 

NBI. 

2. Verify that the NSD content has been successfully updated in the Multi-Site 

Catalogue. 

3. Verify that the NSD content has been successfully translated and updated in the 

ONAP orchestrator. 

Expected results 
The NSD modelling the vertical experiment is updated in the Multi-Site Catalogue and is 

successfully modified in the catalogue of the ONAP orchestrator. 

Test 9 - NSD Deletion to single site - ONAP Nsd-delete-single-site-to-onap 

Test purpose 

This test aims at verifying that an existing NSD modelling a vertical experiment can be 

deleted in the Multi-Site Catalogue from its NBI and removed from a specific per-site 

ONAP orchestrator. 

Test type Functional. 

Related tests Nsd-onboard-single-site-to-onap. 

Priority High. 

Execution time 250ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance is available and accessible to the Multi-Site Catalogue. 

• A NSD modelling a vertical experiment is onboarded in the Multi-Site Catalogue 

and in the ONAP orchestrator. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 34 / 76 

 

Test sequence 

1. Trigger the delete of an existing NSD in the Multi-Site Catalogue through its NBI. 

2. Verify that the NSD content has been successfully deleted in the Multi-Site 

Catalogue. 

3. Verify that the NSD content has been successfully deleted in the ONAP 

orchestrator. 

Expected results 
The NSD modelling the vertical experiment is no more available in the Multi-Site 

Catalogue and is successfully deleted in the catalogue of the OSM orchestrator as well. 

Test 10 - NSD Onboarding from single site - ONAP Nsd-onboard-single-site-from-onap 

Test purpose 

This test aims at verifying that an NSD modelling a single-site service can be successfully 

onboarded in the Multi-Site Catalogue through the SBI from a specific per-site ONAP 

orchestrator. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance in a site facility is available and accessible to the Multi-Site 

Catalogue. 

• An NSD is available in the given site facility and is ready to be onboarded in the 

ONAP catalogue. 

Test sequence 

1. Trigger the onboard of a new NSD in the local per-site facility ONAP 

orchestrator. 

2. Verify that the Multi-Site Catalogue detects the new onboarded NSD in the ONAP 

orchestrator. 

3. Verify that a new NSD resource has been created in the Multi-Site Catalogue. 

4. Verify that the NSD content has been successfully translated in TOSCA and 

uploaded in the Multi-Site Catalogue. 

Expected results 
The NSD modelling the single-site service is available in the Multi-Site Catalogue in 

TOSCA format 

Test 11 - NSD Update from single site - ONAP Nsd-update-single-site-from-onap 

Test purpose 

This test aims at verifying that an existing NSD modelling a single site service (previously 

onboarded from a per-site ONAP orchestrator) can be modified in the Multi-Site Catalogue 

from its SBI when it is updated in the original per-site ONAP orchestrator. 

Test type Functional. 

Related tests Nsd-onboard-single-site-from-onap. 

Priority Medium. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance is available and accessible to the Multi-Site Catalogue. 

• A NSD modelling a single-site service is onboarded in the Multi-Site Catalogue 

and in the ONAP orchestrator. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 35 / 76 

 

Test sequence 

1. Trigger the update of an existing NSD in the local site facility ONAP orchestrator. 

2. Verify that the Multi-site Catalogue detects the update to the existing NSD in the 

ONAP orchestrator. 

3. Verify that the updated NSD content has been successfully translated in TOSCA 

and uploaded in the Multi-Site Catalogue. 

Expected results 
The NSD modelling a single-site service is updated in the Multi-Site Catalogue in TOSCA 

format. 

Test 12 - NSD Deletion from single site - ONAP Nsd-delete-single-site-from-onap 

Description 

This test aims at verifying that an existing NSD modelling a per-site service (previously 

onboarded from a per-site ONAP orchestrator) can be deleted in the Multi-Site Catalogue 

from its SBI when it is removed in the original per-site ONAP orchestrator. 

Test type Functional. 

Related tests Nsd-onboard-single-site-from-onap. 

Priority High. 

Execution time 250ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance is available and accessible to the Multi-Site Catalogue. 

• A NSD modelling a per-site service is onboarded in the Multi-Site Catalogue and 

in the ONAP orchestrator. 

Steps 

1. Trigger the delete of an existing NSD in the local site facility ONAP orchestrator. 

2. Verify that the Multi-site Catalogue detects the deletion of the existing NSD in the 

ONAP orchestrator. 

3. Verify that the NSD content has been successfully removed in the Multi-Site 

Catalogue. 

4. Verify that the NSD resource has been successfully removed in the Multi-Site 

Catalogue. 

Expected results 
The NSD modelling the vertical experiment is no more available in the Multi-Site 

Catalogue. 

Test 13 - NSD Onboarding to multiple sites – OSM and ONAP 
Nsd-onboard-multiple-site-to-osm-

onap 

Test purpose 

This test aims at verifying that an NSD modelling a vertical experiment (in TOSCA 

format) can be successfully onboarded in the Multi-Site Catalogue from its NBI and 

delivered simultaneously to specific per-site OSM and ONAP orchestrators. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 700ms. 

Configuration MULTISITE_CAT_TO_OSM_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 
An OSM instance and an ONAP instance are available and accessible to the Multi-Site 

Catalogue. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 36 / 76 

 

Test sequence 

1. Trigger the onboarding of the NSD modelling vertical experiment in the Multi-

Site Catalogue through its NBI, specifying the sites where to onboard it. 

2. Verify that a new NSD resource has been created in the Multi-Site Catalogue. 

3. Verify that the NSD content has been successfully uploaded in the Multi-Site 

Catalogue. 

4. Verify that a new NSD resource has been created in the OSM orchestrator. 

5. Verify that a new NSD resource has been created in the ONAP orchestrator. 

6. Verify that the NSD content has been successfully translated and uploaded in the 

OSM orchestrator. 

7. Verify that the NSD content has been successfully translated and uploaded in the 

ONAP orchestrator. 

Expected results 
The NSD modelling the vertical experiment is available in the Multi-Site Catalogue and is 

successfully onboarded in the catalogue of both the OSM and ONAP orchestrators. 

Test 14 - NSD Update to multiple sites – OSM and ONAP Nsd-update- multiple-site-to-osm-onap 

Test purpose 

This test aims at verifying that an existing NSD modelling a vertical experiment can be 

modified in the Multi-Site Catalogue from its NBI and updated simultaneously in the 

specific per-site OSM and ONAP orchestrators. 

Test type Functional. 

Related tests Nsd-onboard-single-site-to-osm-onap. 

Priority Medium. 

Execution time 700ms. 

Configuration MULTISITE_CAT_TO_OSM_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance and an ONAP instance are available and accessible to the 

Multi-Site Catalogue. 

• A NSD modelling a vertical experiment is onboarded in the Multi-Site Catalogue 

and in the OSM and ONAP orchestrators. 

Test sequence 

1. Trigger the update of an existing NSD in the Multi-Site Catalogue through its 

NBI. 

2. Verify that the NSD content has been successfully updated in the Multi-Site 

Catalogue. 

3. Verify that the NSD content has been successfully translated and updated in the 

OSM orchestrator. 

4. Verify that the NSD content has been successfully translated and updated in the 

ONAP orchestrator. 

Expected results 
The NSD modelling the vertical experiment is updated in the Multi-Site Catalogue and is 

successfully modified in the catalogue of both the OSM and ONAP orchestrators. 

Test 15 - NSD Deletion to multiple sites – OSM and ONAP Nsd-delete- multiple-site-to-osm-onap 

Test purpose 

This test aims at verifying that an existing NSD modelling a vertical experiment can be 

deleted in the Multi-Site Catalogue from its NBI and removed simultaneously from the 

specific per-site OSM and ONAP orchestrators. 

Test type Functional. 

Related tests Nsd-onboard-single-site-to-osm-onap. 

Priority High. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_OSM_ONAP. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 37 / 76 

 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance and an ONAP instance are available and accessible to the 

Multi-Site Catalogue. 

• A NSD modelling a vertical experiment is onboarded in the Multi-Site Catalogue 

and in the OSM and ONAP orchestrators. 

Test sequence 

1. Trigger the delete of an existing NSD in the Multi-Site Catalogue through its NBI. 

2. Verify that the NSD content has been successfully deleted in the Multi-Site 

Catalogue. 

3. Verify that the NSD content has been successfully deleted in the OSM 

orchestrator. 

4. Verify that the NSD content has been successfully deleted in the ONAP 

orchestrator. 

 

Expected results 
The NSD modelling the vertical experiment is no more available in the Multi-Site 

Catalogue and is successfully deleted in the catalogue of the OSM orchestrator as well. 

 

Table 3: Multi-Site Catalogue – VNF Management test suites 

Multi-Site Catalogue – VNF Management 

Test 1 - VNF Onboarding from site - OSM vnf-onboard-from-osm 

Test purpose 
This test aims at verifying that a VNF can be successfully onboarded in the Multi-Site 

Catalogue through the SBI from a specific per-site OSM orchestrator. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance in a site facility is available and accessible to the Multi-Site 

Catalogue. 

• An VNF Package is available in the given site facility and is ready to be 

onboarded in the OSM catalogue. 

Test sequence 

1. Trigger the onboard of a new VNF Package in the local site facility OSM 

orchestrator. 

2. Verify that the Multi-Site Catalogue detects the new onboarded VNF package in 

the OSM orchestrator. 

3. Verify that a new VNF package resource has been created in the Multi-Site 

Catalogue.  

4. Verify that the content of VNF package (i.e. the VNF Descriptor) has been 

successfully translated in TOSCA format and uploaded in the Multi-Site 

Catalogue. 

Expected results 
The VNF package is available in the Multi-Site Catalogue, with contents in TOSCA 

format. 

Test 2 - VNF Update from site - OSM vnf-update-from-osm 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 38 / 76 

 

Test purpose 
This test aims at verifying that an existing VNF can be modified in the Multi-Site 

Catalogue through the SBI from a specific per-site OSM orchestrator. 

Test type Functional. 

Related tests vnf-onboard-single-site-from-osm. 

Priority Medium. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance is available and accessible to the Multi-Site Catalogue. 

• A VNF Package of the given site is onboarded in both the Multi-Site Catalogue 

and the OSM orchestrator. 

Test sequence 

1. Trigger the update of an existing VNF Descriptor in the local site facility OSM 

orchestrator. 

2. Verify that the Multi-Site Catalogue detects the update to the VNF Descriptor in 

the OSM orchestrator. 

3. Verify that the updated VNF Descriptor has been successfully translated in 

TOSCA format and uploaded in the Multi-site Catalogue. 

Expected results 
The VNF Package is updated in the Multi-Site Catalogue and its content is available in 

TOSCA format. 

Test 3 - VNF Deletion from site - OSM vnf-delete-from-osm 

Test purpose 
This test aims at verifying that an existing VNF can be deleted in the Multi-Site Catalogue 

through its SBI from a specific per-site OSM orchestrator. 

Test type Functional. 

Related tests vnf-onboard-single-site-from-osm. 

Priority High. 

Execution time 250ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance is available and accessible to the Multi-Site Catalogue. 

• A VNF Package of the given site is onboarded in both the Multi-Site Catalogue 

and the OSM orchestrator. 

Test sequence 

1. Trigger the deletion of an existing VNF Package in the local site facility OSM 

orchestrator. 

2. Verify that the Multi-Site Catalogue detects the deletion to the VNF Package in 

the OSM orchestrator. 

3. Verify that the updated VNF Descriptor has been successfully removed in the 

Multi-Site Catalogue. 

Expected results The VNF Package is no more available in the Multi-Site Catalogue. 

Test 4 - VNF Onboarding from site - ONAP vnf-onboard-from-onap 

Test purpose 
This test aims at verifying that a VNF can be successfully onboarded in the Multi-Site 

Catalogue through the SBI from a specific per-site ONAP orchestrator. 

Test type Functional. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 39 / 76 

 

Related tests None. 

Priority High. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance in a site facility is available and accessible to the Multi-Site 

Catalogue. 

• An VNF Package is available in the given site facility and is ready to be 

onboarded in the ONAP catalogue. 

Test sequence 

1. Trigger the onboard of a new VNF Package in the local site facility ONAP. 

2. Verify that the Multi-site Catalogue detects the new onboarded VNF Package in 

the ONAP orchestrator. 

3. Verify that a new VNF package resource has been created in the Multi-Site 

Catalogue. 

4. Verify that the content of VNF package (i.e. the VNF Descriptor) has been 

successfully translated in TOSCA format and uploaded in the Multi-Site 

Catalogue. 

Expected results 
The VNF Package is available in the Multi-Site Catalogue, with contents in TOSCA 

format. 

Test 5 - VNF Update from site - ONAP vnf-update-from-onap 

Test purpose 
This test aims at verifying that an existing VNF can be modified in the Multi-Site 

Catalogue through the SBI from a specific per-site ONAP orchestrator. 

Test type Functional. 

Related tests vnf-onboard-single-site-from-onap. 

Priority Medium. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance is available and accessible to the Multi-Site Catalogue. 

• A VNF Package of the given site is onboarded in both the Multi-Site Catalogue 

and the ONAP orchestrator. 

Test sequence 

1. Trigger the update of an existing VNF Descriptor in the local site facility ONAP 

orchestrator. 

2. Verify that the Multi-Site Catalogue detects the update to the VNF Descriptor in 

the ONAP orchestrator. 

3. Verify that the updated VNF Descriptor has been successfully translated in 

TOSCA format and uploaded in the Multi-Site Catalogue. 

Expected results 
The VNF Package is updated in the Multi-Site Catalogue and its content is available in 

TOSCA format. 

Test 6 - VNF Deletion from site - ONAP vnf-delete-from-onap 

Test purpose 
This test aims at verifying that an existing VNF can be deleted in the Multi-Site Catalogue 

through its SBI from a specific per-site ONAP orchestrator. 

Test type Functional. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 40 / 76 

 

Related tests vnf-onboard-single-site-from-onap. 

Priority High. 

Execution time 250ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance is available and accessible to the Multi-Site Catalogue. 

• A VNF Package of the given site is onboarded in both the Multi-Site Catalogue 

and the ONAP orchestrator. 

Test sequence 

1. Trigger the deletion of an existing VNF Package in the local site facility ONAP 

orchestrator. 

2. Verify that the Multi-Site Catalogue detects the deletion to the VNF Package in 

the ONAP orchestrator. 

3. Verify that the updated VNF Descriptor has been successfully removed in the 

Multi-Site Catalogue. 

Expected results The VNF Package is no more available in the Multi-Site Catalogue  

 

Table 4: Multi-Site Catalogue – PNFD Management test suites 

Multi-Site Catalogue – PNFD Management 

Test 1 - PNFD Onboarding from site - OSM pnfd-onboard-from-osm 

Test purpose 
This test aims at verifying that a PNFD can be successfully onboarded in the Multi-Site 

Catalogue through the SBI from a specific per-site OSM orchestrator. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance in a site facility is available and accessible to the Multi-Site 

Catalogue. 

• A PNFD is available in the given site facility and is ready to be onboarded in the 

OSM catalogue. 

Test sequence 

1. Trigger the onboard of a new PNFD in the local site facility OSM orchestrator. 

2. Verify that the Multi-Site Catalogue detects the new onboarded PNFD in the OSM 

orchestrator. 

3. Verify that a new VNF package resource has been created in the Multi-Site 

Catalogue.  

4. Verify that the content of the PNFD has been successfully translated in TOSCA 

format and uploaded in the Multi-Site Catalogue. 

Expected results The PNFD is available in the Multi-Site Catalogue, with contents in TOSCA format. 

Test 2 - PNFD Update from site - OSM pnfd-update-from-osm 

Test purpose 
This test aims at verifying that an existing PNFD can be modified in the Multi-Site 

Catalogue through the SBI from a specific per-site OSM orchestrator. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 41 / 76 

 

Test type Functional. 

Related tests pnfd-onboard-single-site-from-osm. 

Priority Medium. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance is available and accessible to the Multi-Site Catalogue. 

• A PNFD of the given site is onboarded in both the Multi-Site Catalogue and the 

OSM orchestrator. 

Test sequence 

1. Trigger the update of an existing PNFD in the local site facility OSM orchestrator. 

2. Verify that the Multi-Site Catalogue detects the update to the PNFD in the OSM 

orchestrator. 

3. Verify that the updated PNFD has been successfully translated in TOSCA format 

and uploaded in the Multi-Site Catalogue. 

Expected results 
The PNFD is updated in the Multi-Site Catalogue and its content is available in TOSCA 

format. 

Test 3 - PNFD Deletion from site - OSM pnfd-delete-from-osm 

Test purpose 
This test aims at verifying that an existing PNFD can be deleted in the Multi-Site 

Catalogue through its SBI from a specific per-site OSM orchestrator. 

Test type Functional. 

Related tests pnfd-onboard-single-site-from-osm. 

Priority High. 

Execution time 250ms. 

Configuration MULTISITE_CAT_TO_OSM. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An OSM instance is available and accessible to the Multi-Site Catalogue. 

• A PNFD of the given site is onboarded in both the Multi-Site Catalogue and the 

OSM orchestrator. 

Test sequence 

1. Trigger the deletion of an existing PNFD in the local site facility OSM 

orchestrator. 

2. Verify that the Multi-Site Catalogue detects the deletion to the PNFD in the OSM 

orchestrator. 

3. Verify that the updated PNFD has been successfully removed in the Multi-Site 

Catalogue. 

Expected results The PNFD is no more available in the Multi-Site Catalogue. 

Test 4 - PNFD Onboarding from site - ONAP pnfd-onboard-from-onap 

Test purpose 
This test aims at verifying that a PNFD can be successfully onboarded in the Multi-Site 

Catalogue through the SBI from a specific per-site ONAP orchestrator. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 500ms. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 42 / 76 

 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance in a site facility is available and accessible to the Multi-Site 

Catalogue. 

• A PNFD is available in the given site facility and is ready to be onboarded in the 

ONAP catalogue. 

Test sequence 

1. Trigger the onboard of a new PNFD in the local site facility ONAP. 

2. Verify that the Multi-Site Catalogue detects the new onboarded PNFD in the 

ONAP orchestrator 

3. Verify that a new PNFD resource has been created in the Multi-Site Catalogue. 

4. Verify that the content of the PNFD has been successfully translated in TOSCA 

format and uploaded in the Multi-Site Catalogue. 

Expected results The PNFD is available in the Multi-Site Catalogue, with contents in TOSCA format 

Test 5 - PNFD Update from site - ONAP pnfd-update-from-onap 

Test purpose 
This test aims at verifying that an existing PNFD can be modified in the Multi-Site 

Catalogue through the SBI from a specific per-site ONAP orchestrator. 

Test type Functional. 

Related tests pnfd-onboard-single-site-from-onap. 

Priority Medium. 

Execution time 500ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 

Applicability None. 

Pre-test conditions 

• An ONAP instance is available and accessible to the Multi-Site Catalogue. 

• A PNFD of the given site is onboarded in both the Multi-Site Catalogue and the 

ONAP orchestrator. 

Test sequence 

1. Trigger the update of an existing PNFD in the local site facility ONAP 

orchestrator. 

2. Verify that the Multi-Site Catalogue detects the update to the PNFD in the ONAP 

orchestrator. 

3. Verify that the updated PNFD has been successfully translated in TOSCA format 

and uploaded in the Multi-Site Catalogue . 

Expected results 
The PNFD is updated in the Multi-Site Catalogue and its content is available in TOSCA 

format. 

Test 6 - PNFD Deletion from site - ONAP pnfd-delete-from-onap 

Test purpose 
This test aims at verifying that an existing VNF can be deleted in the Multi-Site Catalogue 

through its SBI from a specific per-site ONAP orchestrator. 

Test type Functional. 

Related tests pnfd-onboard-single-site-from-onap. 

Priority High. 

Execution time 250ms. 

Configuration MULTISITE_CAT_TO_ONAP. 

References NSD onboarding APIs – D3.3 [1], D3.6. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 43 / 76 

 

Applicability None. 

Pre-test conditions 

• An ONAP instance is available and accessible to the Multi-Site Catalogue. 

• A PNFD of the given site is onboarded in both the Multi-Site Catalogue and the 

ONAP orchestrator. 

Test sequence 

1. Trigger the deletion of an existing PNFD in the local site facility ONAP 

orchestrator. 

2. Verify that the Multi-Site Catalogue detects the deletion to the PNFD in the 

ONAP orchestrator. 

3. Verify that the updated PNFD has been successfully removed in the Multi-Site 

Catalogue. 

Expected results The PNFD is no more available in the Multi-Site Catalogue. 

3.2.1.2 Multi-Site Inventory 

According to WP3 plans, the Multi-Site Network Orchestrator and the Multi-Site Inventory will initially handle 

just composite Network Services. Although this is the approach for the software delivered in deliverable D3.3 

[1], it is included here the testing of VNF and PNF lifecycle management for covering any update in the I/W 

Framework in the future. 

The following test configuration is applicable for the Multi-site Inventory, as depicted in Figure 5. 

• MSNO_MSI_CONF. 

 

Figure 5: Multi-Site Inventory test configurations 

 

Table 5: Multi-Site Inventory – Write Operation test suites 

Multi-Site Inventory – Write Operation 

Test 1 – VNF Instance Lifecycle write-vnfi-lifecycle 

Test purpose 

This test aims at validating the lifecycle management operations related to VNF Instances: 

instantiation, scaling, update, termination. Scaling and Update will depend on the necessity 

for these operations in 5G EVE. 

Test type Functional. 

Related tests None. 

Priority High. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 44 / 76 

 

Execution time As required for the full test execution. 

Configuration MSNO_MSI_CONF. 

References 

Operations over inventories/databases can follow multiple standards; specific references 

may be provided depending on the implementation decision. 

VNF lifecycle is governed by ETSI NFV SOL005. 

Applicability Multi-Site Inventory to Multi-Site NSO interface. 

Pre-test conditions 

• A Multi-Site NSO instance is available and with communication to the Multi-Site 

Inventory and at least to one local NFVO. 

• A testing VNF is on-boarded in the Multi-Site Catalogue and in the Multi-Site 

NSO. 

• There are local resources at the site to host the testing VNF. 

Test sequence 

1. The Multi-Site NSO instantiates a testing VNF in a local site; it must be checked 

that after this operation is successful, the Multi-Site NSO triggers the “VNF 

instantiation” procedure at the MSI API. 

2. The Multi-Site NSO scales the testing VNF; it must be checked that after this 

operation is successful, the Multi-Site NSO triggers the “VNF scaling” procedure at 

the MSI API. 

3. The Multi-Site NSO updates the testing VNF; it must be checked that after this 

operation is successful, the Multi-Site NSO triggers the “VNF update” procedure at 

the MSI API. 

4. The Multi-Site NSO terminates the testing VNF in the local site; it must be checked 

that after this operation is successful, the Multi-Site NSO triggers the “VNF 

termination” procedure at the MSI API. 

Expected results 

1. A new VNF entry appears in the MSI, including the fields in the VNFI LoI, plus the 

ID of the site. 

2. The VNF entry is modified with the information associated with the scaling 

procedure. 

3. The VNF entry is modified with the information associated with the update 

procedure. 

4. The VNF entry disappears from the MSI. 

Test 2 – PNF Instance Lifecycle write-pnfi-lifecycle 

Test purpose 

This test aims at validating the lifecycle management operations related to PNF Instances: 

instantiation, scaling, update, termination. Scaling and Update will depend on the necessity 

for these operations in 5G EVE, and also on the capabilities of the testing PNF. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_MSI_CONF. 

References 

Operations over inventories/databases can follow multiple standards; specific references 

may be provided depending on the implementation decision. 

PNF lifecycle is governed by ETSI NFV SOL005. 

Applicability Multi-Site Inventory to Multi-Site NSO interface. 

Pre-test conditions 

• A Multi-Site NSO instance is available and with communication to the Multi-Site 

Inventory and at least to one local NFVO. 

• A testing PNF is deployed at the site. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 45 / 76 

 

Test sequence 

1. The Multi-Site NSO instantiates the PNF in the local site; it must be checked that 

after this operation is successful, the Multi-Site NSO triggers the “PNF 

instantiation” procedure at the MSI API. 

2. The Multi-Site NSO scales the PNF; it must be checked that after this operation is 

successful, the Multi-Site NSO triggers the “PNF scaling” procedure at the MSI 

API. 

3. The Multi-Site NSO updates the PNF; it must be checked that after this operation is 

successful, the Multi-Site NSO triggers the “PNF update” procedure at the MSI 

API. 

5. The Multi-Site NSO terminates the PNF in the local site; it must be checked that 

after this operation is successful, the Multi-Site NSO triggers the “PNF 

termination” procedure at the MSI API. 

Expected results 

1. A new PNF entry appears in the MSI, including the fields in the PNFI LoI, plus the 

ID of the site. 

2. The PNF entry is modified with the information associated with the scaling 

procedure. 

3. The PNF entry is modified with the information associated with the update 

procedure. 

4. The PNF entry disappears from the MSI. 

Test 3 – NS Instance Lifecycle write-nsi-lifecycle 

Test purpose 
This test aims at validating the lifecycle management operations related to NS Instances: 

instantiation, scaling, update, termination. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_MSI_CONF. 

References 

Operations over inventories/databases can follow multiple standards; specific references 

may be provided depending on the implementation decision. 

NS lifecycle is governed by ETSI NFV SOL005. 

Applicability Multi-Site Inventory to Multi-Site NSO interface. 

Pre-test conditions 

• A Multi-Site NSO instance is available and with communication to the Multi-Site 

Inventory and at least to one local NFVO. 

• A testing NS is on-boarded in the Multi-Site Catalogue and in the Multi-Site NSO. 

• There are local resources at the site to host the testing NS. 

Test sequence 

1. The Multi-Site NSO instantiates the testing NS in a local site; it must be checked 

that after this operation is successful, the Multi-Site NSO triggers the “NS 

instantiation” procedure at the MSI API. 

2. The Multi-Site NSO scales the testing NS; it must be checked that after this 

operation is successful, the Multi-Site NSO triggers the “NS scaling” procedure at 

the MSI API. 

3. The Multi-Site NSO updates the testing NS; it must be checked that after this 

operation is successful, the Multi-Site NSO triggers the “NS update” procedure at 

the MSI API. 

4. The Multi-Site NSO terminates the testing NS in the local site; it must be checked 

that after this operation is successful, the Multi-Site NSO triggers the “NS 

termination” procedure at the MSI API. 

Expected results 

1. A new NS entry appears in the MSI, including the fields in the NSI LoI, plus the ID 

of the site. 

2. The NS entry is modified with the information associated with the scaling 

procedure. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 46 / 76 

 

3. The NS entry is modified with the information associated with the update 

procedure. 

4. The NS entry disappears from the MSI. 

Test 4 – Composite NS Instance Lifecycle write-comp-nsi-lifecycle 

Test purpose 
This test aims at validating the lifecycle management operations related to composite NS 

Instances: instantiation, scaling, update, termination. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_MSI_CONF. 

References 

Operations over inventories/databases can follow multiple standards; specific references 

may be provided depending on the implementation decision. 

NS lifecycle is governed by ETSI NFV SOL005. 

Applicability Multi-Site Inventory to Multi-Site NSO interface. 

Pre-test conditions 

• A Multi-Site NSO instance is available and with communication to the Multi-Site 

Inventory and at least to two local NFVOs. 

• A testing composite NS is on-boarded in the Multi-Site Catalogue and in the Multi-

Site NSO, using CreateNSRequest operation. 

• There are local resources at the sites to host the testing composite NS. 

Test sequence 

1. The Multi-Site NSO instantiates the testing composite NS in the two local sites; it 

must be checked that after this operation is successful, the Multi-Site NSO triggers 

the “composite NS instantiation” procedure at the MSI API. 

2. The Multi-Site NSO scales the testing composite NS; it must be checked that after 

this operation is successful, the Multi-Site NSO triggers the “composite NS 

scaling” procedure at the MSI API. 

3. The Multi-Site NSO updates the testing composite NS; it must be checked that after 

this operation is successful, the Multi-Site NSO triggers the “composite NS update” 

procedure at the MSI API. 

4. The Multi-Site NSO terminates the testing composite NS in the local site; it must be 

checked that after this operation is successful, the Multi-Site NSO triggers the 

“composite NS termination” procedure at the MSI API. 

Expected results 

1. A new composite NS entry appears in the MSI, including the fields in the NSI LoI, 

plus the IDs of the sites. 

2. The composite NS entry is modified with the information associated with the 

scaling procedure. 

3. The composite NS entry is modified with the information associated with the 

update procedure. 

4. The composite NS entry disappears from the MSI. 

 

Table 6: Multi-Site Inventory – Query Operation test suites 

Multi-Site Inventory – Query Operation 

Test 1 – VNF Instance Management query-vnfi-status 

Test purpose 
This test aims at validating the part of the MSI NBI that deals with the retrieval of specific 

VNF Instance(s) information. 

Test type Functional. 

Related tests None. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 47 / 76 

 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_MSI_CONF. 

References 

Operations over inventories/databases can follow multiple standards; specific references 

may be provided depending on the implementation decision. 

Attributes included in the VNF LoI are governed by ETSI NFV SOL005. 

Applicability Multi-Site Inventory NBI. 

Pre-test conditions 

• A 5G EVE Experimentation Portal instance is available and with communication to 

the MSI. 

• There are at least two VNFI entries in the MSI. 

Test sequence 

1. The 5G EVE Experimentation Portal requests information about a specific VNFI 

from the MSI, based on the VNFI ID. 

2. The 5G EVE Experimentation Portal requests information about two VNFIs from 

the MSI, based on the VNFI IDs. 

Expected results 

1. The MSI responses with the information included in the VNFI LoI for the requested 

VNFI ID. 

2. The MSI responses with the information included in the two VNFIs LoI for the 

requested VNFI IDs. 

Test 2 – PNF Instance Management query-pnfi-status 

Test purpose 
This test aims at validating the part of the MSI NBI that deals with the retrieval of specific 

PNF Instance(s) information. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_MSI_CONF. 

References 

Operations over inventories/databases can follow multiple standards; specific references 

may be provided depending on the implementation decision. 

Attributes included in the PNF LoI are governed by ETSI NFV SOL005. 

Applicability Multi-Site Inventory NBI. 

Pre-test conditions 

• A 5G EVE Experimentation Portal instance is available and with communication to 

the MSI. 

• There are at least two PNFI entries in the MSI. 

Test sequence 

1. The 5G EVE Experimentation Portal requests information about a specific PNFI 

from the MSI, based on the PNFI ID. 

2. The 5G EVE Experimentation Portal requests information about two PNFIs from 

the MSI, based on the PNFI IDs. 

Expected results 

1. The MSI responses with the information included in the PNFI LoI for the requested 

PNFI ID. 

2. The MSI responses with the information included in the two PNFIs LoI for the 

requested PNFI IDs. 

Test 3 – NS Instance Management query-nsi-status 

Test purpose 
This test aims at validating the part of the MSI NBI that deals with the retrieval of specific 

NS Instance(s) information. 

Test type Functional. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 48 / 76 

 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_MSI_CONF. 

References 

Operations over inventories/databases can follow multiple standards; specific references 

may be provided depending on the implementation decision. 

Attributes included in the NS LoI are governed by ETSI NFV SOL005. 

Applicability Multi-Site Inventory NBI 

Pre-test conditions 

• A 5G EVE Experimentation Portal instance is available and with communication to 

the MSI. 

• There are at least two NSI entries in the MSI. 

Test sequence 

1. The 5G EVE Experimentation Portal requests information about a specific NSI 

from the MSI, based on the NSI ID. 

2. The 5G EVE Experimentation Portal requests information about two NSIs from the 

MSI, based on the NSI IDs. 

Expected results 

1. The MSI responses with the information included in the NSI LoI for the requested 

NSI ID. 

2. The MSI responses with the information included in the two NSIs LoI for the 

requested NSI IDs. 

Test 4 – Infrastructure Management query-infrast-status 

Test purpose 
This test aims at validating the part of the MSI NBI that deals with the retrieval of the full 

5G EVE active infrastructure information. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_MSI_CONF. 

References 

Operations over inventories/databases can follow multiple standards; specific references 

may be provided depending on the implementation decision. 

Attributes included in the VNF, PNF and NS LoIs are governed by ETSI NFV SOL005. 

Applicability Multi-Site Inventory NBI. 

Pre-test conditions 

• A 5G EVE Administration Portal or a Multi-Site NSO instance is available and 

with communication to the MSI. 

• There are at least two VNFI, two PNFI and two NSI entries in the MSI. 

Test sequence 
1. The 5G EVE Administration Portal or the Multi-Site NSO requests the full 

information stored at the MSI. 

Expected results 
The MSI responses with the list of all stored Instances, providing for each Instance the 

information included in its LoI. 

 

3.2.1.3 Multi-Site Network Orchestrator 

The following configuration environment is applicable for the MSNO testing, described in Figure 6. 

• MSNO_BASIC_CONF. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 49 / 76 

 

 
Figure 6: Multi-Site Network Orchestrator test configurations 

 

Table 7: Multi-Site Network Orchestrator test suites 

Multi-Site Network Orchestrator 

Test 1 – Network Service ID creation ms-nso-id-creation 

Test purpose The purpose of this test is to validate the creation of a NS ID. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_BASIC_CONF. 

References NS LCM API. 

Applicability None. 

Pre-test 

conditions 

• NSD is onboarded in the Multi-Site Catalogue. 

• Nested NS are onboarded in each site NFVO. 

Test sequence 1. Send a CreateNSRequest to the MSNO. 

Expected results 

• MSNO returns a positive response for the NS creation. 

• A notification is sent when NS creations process finishes. 

• NS ID is stored in the DB with NOT_INSTANTIATED status and can be queried using 

external MSI API. 

Test 2 – Network Service instantiation ms-nso-ns-inst 

Test purpose The purpose of this test is to validate the instantiation of a NS. 

Test type Functional. 

Related tests ms-nso-id-creation. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_BASIC_CONF. 

References NS LCM API. 

Applicability None. 

Pre-test 

conditions 

• NSD is onboarded in the Multi-Site Catalogue. 

• Nested NS are onboarded in each site NFVO. 

• NS ID is created (see ms-nso-id-creation test). 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 50 / 76 

 

Test sequence 1. Send a instantiate request to the MSNO. 

Expected results 

1. MSNO returns a positive response for the instantiation. 

2. A notification is sent when NS creations process starts and finish. 

3. NS ID is stored in the DB with INSTANTIATED status and can be queried using external 

MS Inventory API. 

4. Each nested NS is instantiated in each site NFVO. 

Test 3 – Network Service Lifecycle Management ms-nso-ns-lcm 

Test purpose The purpose of this test is to validate the management of the NS Lifecycle. 

Test type Functional. 

Related tests ms-nso-id-creation, ms-nso-ns-inst. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_BASIC_CONF. 

References NS LCM API. 

Applicability None. 

Pre-test 

conditions 

• NSD is onboarded in the Multi-Site Catalogue. 

• Nested NS are onboarded in each site NFVO. 

• NS ID is created (see ms-nso-id-creation test). 

• NS is instantiated. 

Test sequence 

1. Send a scale request to the MSNO. 

2. Send an update request to the MSNO. 

3. Send a heal request to the MSNO. 

4. Send a terminate request to the MSNO. 

Expected results 
1. MSNO returns an Operation ID for each of the requests. 

2. The NS is scaled, updated, healed and terminated correctly. 

Test 4 – NS Lifecycle management operations ms-nso-ns-lcm-op 

Test purpose The purpose of this test is to validate the management of the NS Lifecycle operations. 

Test type Functional. 

Related tests ms-nso-id-creation, ms-nso-ns-inst, ms-nso-ns-lcm. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_BASIC_CONF. 

References NS LCM API. 

Applicability None. 

Pre-test 

conditions 

• NSD is onboarded in the Multi-Site Catalogue. 

• Nested NS are onboarded in each site NFVO. 

• NS ID is created (see ms-nso-id-creation test). 

• NS is instantiated. 

• NS has not enough resources for scaling. 

Test sequence 

1. Send a scale request to the MSNO. 

2. Send a continue operation when the previous one failed. 

3. Send a retry operation when the previous one failed. 

4. Send a fail operation when the previous one failed. 

5. Send a scale request to the MSNO. 

6. Send a rollback. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 51 / 76 

 

7. Send a cancel operation. 

Expected results 

1. MSNO returns an Operation ID for each of the requests. 

2. The scale request fails, as well as the continue and retry operations. 

3. The rollback operation is cancelled. 

Test 5 – Network Service Lifecycle Management notifications ms-nso-ns-lcm-not 

Test purpose The purpose of this test is to validate the MSNO notifications. 

Test type Functional. 

Related tests ms-nso-id-creation, ms-nso-ns-inst. 

Priority High. 

Execution time As required for the full test execution. 

Configuration MSNO_BASIC_CONF. 

References NS LCM API. 

Applicability None. 

Pre-test 

conditions 

• NSD is onboarded in the Multi-Site Catalogue. 

• Nested NS are onboarded in each site NFVO. 

• NS ID is created (see ms-nso-id-creation test). 

Test sequence 
1. Send a subscription request to the MSNO. 

2. Send an instantiate request to the MSNO. 

Expected results 
• MSNO sends a start notification. 

• MSNO sends result notification. 

 

3.2.1.4 Data Collection Manager 

There are four main test configurations that are used for the Data Collection Manager test suites, which are the 

following: 

• DCM_PUBLISH_SUBSCRBE. 

• DCM_LOAD_TESTS. 

• DCM_NBI_TESTS (mainly focused on the interaction between Kafka12 and ELK13). 

• DCM_SBI_TESTS (mainly focused on the interaction between Kafka and Filebeat14). 

 

Figure 7: Data Collection Manager test configurations 

                                                      

 

12 https://kafka.apache.org/  

13 https://www.elastic.co/es/what-is/elk-stack  

14 https://www.elastic.co/es/products/beats/filebeat  

https://kafka.apache.org/
https://www.elastic.co/es/what-is/elk-stack
https://www.elastic.co/es/products/beats/filebeat


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 52 / 76 

 

Table 8: Data Collection Manager – Kafka test suites 

Data Collection Manager – Kafka 

Test 1 – Kafka cluster setup dcm-cluster-setup 

Test purpose 
This test aims at validating the Kafka cluster availability, so that the rest of depending 

services and functionalities can make use of it. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 3 minutes. 

Configuration DCM_PUBLISH_SUBSCRIBE. 

References Data Collection Manager specification – D3.3 [1]. 

Applicability None. 

Pre-test conditions 

• Apache Kafka is installed in the nodes that belong to the cluster. 

• Apache ZooKeeper15 is installed for distributed process coordination within the 

cluster. 

• Kafka Confluent16 is installed for managing the cluster. 

Test sequence 1. Execute the necessary commands to setup the Kafka cluster. 

Expected results 

• The process is correctly started, according to the logs provided by Kafka. 

• ZooKeeper starts working with the cluster data coordination tasks. 

• Kafka Confluent is available, and from its interface, the cluster status can be also 

monitored. 

Test 2 – Subscribe operation dcm-subscribe 

Test purpose 

This test intends to emulate the subscribe operation defined in the Data Collection Manager, 

which involves the creation of a topic and the setup of a process in the Kafka cluster which 

starts listening to that topic. 

Test type Functional. 

Related tests dcm-cluster-setup. 

Priority High. 

Execution time 1 minute. 

Configuration DCM_PUBLISH_SUBSCRIBE. 

References Data Collection Manager specification – D3.3 [1]. 

Applicability None. 

Pre-test conditions 
• Kafka cluster is setup and running. 

• A topic name is chosen beforehand. 

Test sequence 
1. Send a subscribe operation to the Data Collection Manager, including the topic 

name as parameter. 

Expected results 
• The topic is created in the Data Collection Manager. 

• It has been created a process in the Kafka cluster that is consuming from that topic. 

                                                      

 
15 https://zookeeper.apache.org/  

16 https://www.confluent.io/  

https://zookeeper.apache.org/
https://www.confluent.io/


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 53 / 76 

 

Test 3 – Publish operation dcm-publish 

Test purpose 
The purpose of this test is to verify that the Data Collection Manager is able to deliver the 

data published in the Kafka bus to the components subscribed to a given topic.  

Test type Functional. 

Related tests dcm-cluster-setup, dcm-subscribe. 

Priority High. 

Execution time 2 minutes. 

Configuration DCM_PUBLISH_SUBSCRIBE. 

References Data Collection Manager specification – D3.3 [1]. 

Applicability 
A component subscribed to the topic used during this test must be present for receiving the 

data from the Kafka bus. 

Pre-test conditions 

• Kafka cluster is setup and running. 

• A topic name is chosen beforehand. 

• A subscription process to that topic is running in the Kafka cluster. 

Test sequence 
1. Send a publish operation to the Data Collection Manager, including the topic name 

and some data (a JSON string) as parameters. 

Expected results 
• Data is correctly published in the Kafka cluster. 

• Data is automatically delivered to the subscribed component. 

Test 4 – Unsubscribe operation dcm-unsubscribe 

Test purpose 
This test performs the unsubscribe operation defined in the Data Collection Manager, in 

order to test the successful withdrawal of a given topic. 

Test type Functional. 

Related tests dcm-cluster-setup, dcm-subscribe. 

Priority Medium. 

Execution time 1 minute. 

Configuration DCM_PUBLISH_SUBSCRIBE. 

References Data Collection Manager specification – D3.3 [1]. 

Applicability None. 

Pre-test conditions 

• Kafka cluster is setup and running. 

• A topic name is chosen beforehand. 

• A subscription process to that topic is running in the Kafka cluster. 

Test sequence 
1. Send an unsubscribe operation to the Data Collection Manager, including the topic 

name as parameter. 

Expected results 

• It has been deleted the process that was consuming from the selected topic in the 

Kafka cluster. 

• That topic is deleted in the Data Collection Manager. 

Test 5 – Stress test dcm-stress 

Test purpose 

As the Data Collection Manager is a central component in the 5G EVE architecture, it is 

needed to verify its correct performance in terms of scalability. For that reason, it is defined 

this test in order to execute a stress test for validating that the Kafka cluster is able to 

manage a huge amount of data and topics concurrently. 

Test type Load. 

Related tests dcm-cluster-setup, dcm-subscribe. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 54 / 76 

 

Priority Medium. 

Execution time 1 hour. 

Configuration DCM_LOAD_TESTS. 

References Data Collection Manager specification – D3.3 [1]. 

Applicability A load generator (e.g. Berserker17) is needed to send data to the Kafka cluster. 

Pre-test conditions 

• Kafka cluster is setup and running. 

• Subscription process has been executed for all the topics used in this test (120 in 

total). 

Test sequence 

For each topic used in this test: 

1. Every 30 seconds launch the load generator configured with wanted load rate and 

message size for start publishing in a different topic. 

2. Capture meaningful data using OS built-in tools in order to monitor the status of the 

server and the Kafka cluster. 

Expected results 

• Kafka cluster is able to manage all the data generated during the test. 

• Kafka cluster performance evolution during the test does not suffer important drops 

that may compromise the correct behaviour of the Data Collection Manager in a 

production environment. 

 

Table 9: Data Collection Manager – NBI test suites 

Data Collection Manager – Kafka-ELK interconnection – NBI 

Test 1 – Kafka-Elasticsearch configuration dcm-nbi-elk-config 

Test purpose This test intends to verify that Elasticsearch component from the ELK stack is configured for 

receiving data from Kafka. 

Test type Functional. 

Related tests dcm-cluster-setup. 

Priority Medium. 

Execution time 2 minutes. 

Configuration DCM_NBI_TESTS. 

References 
Data Collection Manager specification – D3.3 [1], Monitoring and Data Collection tools – 

D4.1 [7]. 

Applicability None. 

Pre-test conditions 

• Kafka is deployed. 

• Elasticsearch is deployed. 

• There is connectivity between Kafka and Elasticsearch. 

Test sequence 

1. Modify the Elasticsearch configuration file and include Kafka information. 

2. Run Kafka and start consuming from the topic defined in Elasticsearch 

configuration. 

3. Write something to that topic. 

4. Check in Kibana that Elasticsearch has received data. 

Expected results Elasticsearch is connected to Kafka and data has been received. 

 

                                                      

 
17 https://github.com/smartcat-labs/berserker 

https://github.com/smartcat-labs/berserker


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 55 / 76 

 

Table 10: Data Collection Manager – SBI test suites 

Data Collection Manager – Kafka-Filebeat interconnection - SBI 

Test 1 – Kafka-Beats service availability dcm-sbi-filebeat-status 

Test purpose This test is intended to verify that Filebeat service is connected to the Kafka cluster. 

Test type Functional. 

Related tests dcm-cluster-setup. 

Priority Medium. 

Execution time 2 minutes. 

Configuration DCM_SBI_TESTS. 

References 
Data Collection Manager specification – D3.3 [1], Monitoring and Data Collection tools – 

D4.1 [7]. 

Applicability None. 

Pre-test conditions 

• Kafka is deployed. 

• Filebeat service is reported to be up and configured to be persistent at startup. 

• There is connectivity between Filebeat and Kafka. 

Test sequence 

1. Modify the Filebeat configuration file and include Kafka information. 

2. Run Kafka and start consuming from the topic defined in Filebeat configuration. 

3. Start Filebeat process in order to send the information to the Kafka bus. 

4. Check in Kafka logs that data is being received in the selected topic. 

Expected results Data is successfully sent from Filebeat to Kafka by using the selected topic. 

Test 2 - File change event leads to Kafka message dcm-sbi-filebeat-event 

Test purpose The purpose of this test is to verify that that Filebeat is able to react to a file change event 

and inject a message into the Kafka bus. 

Test type Functional. 

Related tests dcm-cluster-setup, dcm-sbi-filebeat-status. 

Priority Medium. 

Execution time 2 minutes. 

Configuration DCM_SBI_TESTS. 

References 
Data Collection Manager specification – D3.3 [1], Monitoring and Data Collection tools – 

D4.1 [7]. 

Applicability None. 

Pre-test conditions 

• Kafka is deployed. 

• Filebeat up and running. 

• Filebeat service is reported to be up and configured to be persistent at startup. 

• There is connectivity between Filebeat and Kafka. 

Test sequence 
1. Make changes in the file that is being managed by Filebeat. 

2. Check that a message to the Kafka bus is automatically published. 

Expected results Data is successfully sent from Filebeat to Kafka by using the selected topic. 

 

3.2.1.5 Runtime Configurator 

There are two main test configurations that are used for the Data Collection Manager test suites, which are the 

following: 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 56 / 76 

 

• RC_NBI_CONF. 

• RC_SBI_CONF. 

• RC_COMPLETE_CONF. 

 

Figure 8: Runtime Configurator test configurations 

 

 

Table 11: Runtime Configurator test suites 

Runtime Configurator 

Test 1 – NBI Interface rc-nbi-if 

Test purpose 

The objective of this test is to verify that the Runtime Configurator is reachable by the 

Experiment Execution Manager (simulated with a fake-client based in Robot Framework), 

trying to execute a Robot Framework script related to the execution of an Ansible18 default 

playbook (print “Hello World”). 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration RC_NBI_CONF. 

References Runtime Configurator specification – D3.3 [1], based on SSH NBI interface. 

Applicability None. 

Pre-test conditions 

• An instance of the Runtime Configurator is deployed and available. 

• There exist Robot Framework testing scripts in order to interact with Ansible. 

• Ansible has a playbook which prints “Hello World” in the terminal. 

Test sequence 

1. Build the Robot Framework script in order to execute the “Hello World” playbook. 

2. Upload the playbook in Ansible. 

3. Execute the Robot Framework script. 

Expected results “Hello World” message must be printed. 

                                                      

 
18 https://docs.ansible.com/ansible/latest/index.html  

https://docs.ansible.com/ansible/latest/index.html


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 57 / 76 

 

Test 2 – SBI Interface rc-sbi-if 

Test purpose 
This test intends to test the SBI between the Runtime Configurator and the VNFs/PNFs to be 

configured with Day-2 configurations. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration RC_SBI_CONF. 

References Runtime Configurator specification – D3.3 [1], based on SSH SBI interface. 

Applicability None. 

Pre-test conditions 

• An instance of the Runtime Configurator is deployed and available. 

• There are some virtual machines that can emulate VNFs/PNFs. 

• These virtual machines are reachable from Runtime Configurator and have 

OpenSSH server installed and enabled. 

• Ansible has a playbook which execute several commands in the VNFs/PNFs. 

Test sequence 

1. Configure hosts and group_vars files with the variables and parameters needed to 

reach the virtual machines. 

2. Execute any Ansible playbook for testing commands in the virtual machines. 

Expected results 
• The Runtime Configurator is able to reach the machines to be configured. 

• The machines are configured with the commands provided in the playbook. 

Test 3 – Complete workflow rc-complete 

Test purpose 

This test composes the two previous tests. As a result, Experiment Execution Manager 

executes some templates of the Runtime Configurator, and the commands included there 

will configure several VNFs/PNFs. 

Test type Functional. 

Related tests rc-nbi-if, rc-sbi-if. 

Priority High. 

Execution time As required for the full test execution. 

Configuration RC_COMPLETE_CONF. 

References Runtime Configurator specification – D3.3 [1], based on SSH NBI and SBI interfaces. 

Applicability None. 

Pre-test conditions 

• An instance of the Runtime Configurator is deployed and available. 

• There are some virtual machines that can emulate VNFs/PNFs. 

• These virtual machines are reachable from Runtime Configurator and have 

OpenSSH server installed and enabled. 

• There exist Robot Framework testing scripts in order to interact with Ansible. 

• Ansible has a playbook which execute several commands in the VNFs/PNFs. 

Test sequence 

1. Build the Robot Framework script in order to execute the playbook. 

2. Upload the playbook in Ansible. 

3. Configure hosts and group_vars files with the variables and parameters needed to 

reach the virtual machines. 

4. Execute the Robot Framework script. 

Expected results 
• Experiment Execution Manager is able to reach the Runtime Configurator. 
• Runtime Configurator is able to reach the VNFs/PNFs. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 58 / 76 

 

• The configuration is applied in the VNFs/PNFs after starting the workflow from the 

Experiment Execution Manager. 

 

3.2.1.6 Adaptation Layer: Multi-Site NSO to local Orchestrators interface 

The MSO-LO interface tests are classified in the following categories: 

• NFVO information unit tests. 

• Subscription for notifications unit test. 

• Local NFVO driver unit test: 

o OSM driver unit test. 

o ONAP driver unit test. 

At the moment, tests for OSM and ONAP are provided, as they are the two main orchestration technologies 

used by the trial sites involved in 5G EVE. If new NFVOs are integrated in the future, the test set will be 

extended as a result. 

The following test configurations are applicable for the MSO-LO, as depicted in Figure 9. 

• MSO_LO_OSM_MOCK. 

• MSO_LO_ONAP_MOCK. 

• MSO_LO_SQLITE_MOCK. 

 

Figure 9: MSO-LO test configurations 

 

Table 12: Multi-Site NSO to local Orchestrators interface test suites 

Multi-Site NSO to local Orchestrators interface (MSO-LO) 

Test 1 – NFVO information unit test unit-Mso-Lo-nfvo 

Test purpose Assert the correct retrieval of NFVO information from local database. 

Test type Functional. 

Related tests None. 

Priority High. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 59 / 76 

 

Execution time 1-2 seconds. 

Configuration MSO_LO_SQLITE_MOCK 

References MSO-LO Interface OpenAPI – D3.3 [1]. 

Applicability None. 

Pre-test conditions • Creation and population with mock data of an SQLite database file. 

Test sequence 
1. Check status codes 200, 400, headers and payload for GET /nfvo. 

2. Check status codes 200, 400, 404, headers and payload for GET /nfvo/{nfvoId}. 

Expected results All assertions verified, no errors. 

Test 2 – Subscription for notifications unit test unit-Mso-Lo-subscriptions 

Test purpose 
Assert the correct retrieval and creation of subscriptions for notifications about the NS 

instance status. Local database stores the information. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 1-2 seconds. 

Configuration MSO_LO_SQLITE_MOCK 

References MSO-LO Interface OpenAPI – D3.3 [1]. 

Applicability None. 

Pre-test conditions • Creation and population with mock data of an SQLite database file. 

Test sequence 

1. Check status codes 201, 303, 400, headers and payload for POST 

/nfvo/{nfvoId}/subscriptions. 
2. Check status codes 200, 400, headers and payload for GET /nfvo/{nfvoId}/subscriptions. 

3. Check status codes 200, 400, 404, headers and payload for GET 

/nfvo/{nfvoId}/subscriptions/{subscriptionId}. 
4. Check status codes 204, 400, 404, headers and payload for DELETE 

/nfvo/{nfvoId}/subscriptions/{subscriptionId}. 

Expected results All assertions verified, no errors. 

Test 3 – OSM driver unit test unit-Mso-Lo-osm 

Test purpose 

Assert that the request bodies sent to OSM NBI interface are correct. Assert that responses 

from OSM are handled correctly. Assert that responses returned by Mso-Lo API are correct. 

OSM server is mocked with Prism and the OpenAPI YAML specification of OSM NBI. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 5-10 seconds. 

Configuration MSO_LO_OSM_MOCK 

References MSO-LO Interface OpenAPI – D3.3 [1]. 

Applicability None. 

Pre-test conditions • Prism mock server running with OSM NBI OpenAPI specification. 

Test sequence 

1. Check status codes 201, 400, headers and payload for POST 

/nfvo/{nfvoId}/ns_instances. 
2. Check status codes 200, 400, headers and payload for GET /nfvo/{nfvoId}/ns_instances. 

3. Check status codes 200, 400, 404, headers and payload for GET 

/nfvo/{nfvoId}/ns_instances/{nsInstanceId}. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 60 / 76 

 

4. Check status codes 204, 400, 404, headers and payload for DELETE 

/nfvo/{nfvoId}/ns_instances/{nsInstanceId}. 
5. Check status codes 202, 400, 404, headers and payload for POST 

/nfvo/{nfvoId}/ns_instance/{nsInstanceId}/instantiate. 
6. Check status codes 202, 400, headers and payload for POST 

/nfvo/{nfvoId}/ns_instances/{nsInstanceId}/scale. 
7. Check status codes 202, 400, 404, headers and payload for POST 

/nfvo/{nfvoId}/ns_instance/{nsInstanceId}/terminate. 
8. Check status codes 200, 400, 404, headers and payload for GET /nfvo/{nfvoId}/vnf/{id}. 

9. Check status codes 200, 400, headers and payload for GET /nfvo/{nfvoId}/vnf. 

Expected results All assertions verified, no errors. 

Test 4 – ONAP driver unit test unit-Mso-Lo-onap 

Test purpose 

Assert that the request bodies sent to ONAP NBI interface are correct. Assert that responses 

from ONAP are handled correctly. Assert that responses returned by Mso-Lo API are 

correct. ONAP server is mocked with Prism and the OpenAPI specification of ONAP NBI. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time 5-10 seconds. 

Configuration MSO_LO_ONAP_MOCK 

References MSO-LO Interface OpenAPI – D3.3 [1]. 

Applicability None. 

Pre-test conditions • Prism mock server running with ONAP NBI OpenAPI specification. 

Test sequence 

1. Check status codes 201, 400, headers and payload for POST 

/nfvo/{nfvoId}/ns_instances. 
2. Check status codes 200, 400, headers and payload for GET /nfvo/{nfvoId}/ns_instances. 

3. Check status codes 200, 400, 404, headers and payload for GET 

/nfvo/{nfvoId}/ns_instances/{nsInstanceId}. 
4. Check status codes 204, 400, 404, headers and payload for DELETE 

/nfvo/{nfvoId}/ns_instances/{nsInstanceId}. 
5. Check status codes 202, 400, 404, headers and payload for POST 

/nfvo/{nfvoId}/ns_instance/{nsInstanceId}/instantiate. 
6. Check status codes 202, 400, headers and payload for POST 

/nfvo/{nfvoId}/ns_instances/{nsInstanceId}/scale. 
7. Check status codes 202, 400, 404, headers and payload for POST 

/nfvo/{nfvoId}/ns_instance/{nsInstanceId}/terminate. 
8. Check status codes 200, 400, 404, headers and payload for GET /nfvo/{nfvoId}/vnf/{id}. 

9. Check status codes 200, 400, headers and payload for GET /nfvo/{nfvoId}/vnf. 

Expected results All assertions verified, no errors. 

3.2.2 Integration Tests between Interworking Framework components 

The integration tests are required for some integration points in order to verify that the I/W Framework is 

working as expected. The following integration points are identified, as presented in section 2.3.2: 

• Multi-Site Network Orchestrator and Multi-Site Catalogue: integration using NSD management API. 

• Multi-Site Catalogue and Multi-Site Inventory. 

• Multi-Site Network Orchestrator, Multi-Site Catalogue, Data Collection Manager and Runtime 

Configurator with the Adaptation Layer. 

• Drivers of Adaptation Layer with their respective NFVO. 

For the integration testing, the same testing defined in the previous sections will be used, with different 

environment that incorporates real components. In case of needing to contemplate new possible integrations, 

they will be further described in the next D3.7 deliverable. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 61 / 76 

 

3.2.3 Interworking Layer System Tests 

Following the same approach described in the integration testing, for the system tests it is also proposed to reuse 

the same testing described in the functional test but having an environment with all I/W Framework components 

in place. 

Additionally, it is proposed in the following section a set of tests for validating the inter-site connectivity. 

3.2.3.1  Site facilities’ interconnection 

The following test configurations are applicable for the Site facilities interconnection, as depicted in Figure 10. 

• ORCH_PLANE_CONF. 

• ALL_PLANE_CONF. 

• PORTAL_CONF. 

 

Figure 10: Site facilities’ interconnection test configurations 

 

Table 13: Site facilities’ interconnection test suites 

Site facilities’ interconnection 

Test 1 – Connectivity between sites and I/W Framework facilities-connect-sites 

Test purpose 

This test aims at ensuring that all sites are reachable from the Turin site, where the I/W 

Framework is to be installed. If desired from any other site, the operation would be totally 

equivalent. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration ORCH_PLANE_CONF. 

References The tool must support RFC792 (Internet Control Message Protocol), plus its updates. 

Applicability 
Orchestration, Control or Data Planes Interworking (depending on the plane the devices are 

deployed). 

Pre-test conditions 

• One device at the Turin site capable of generating ICMP traffic, emulating I/W 

Framework modules. 

• At least one device at each of the other sites capable of responding to ICMP 

requests, emulating for example, the local NFVOs. 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 62 / 76 

 

Test sequence 

1. ICMP echo requests are sent from the device in Turin to the device in Athens. 

2. ICMP echo requests are sent from the device in Turin to the device in Madrid. 

3. ICMP echo requests are sent from the device in Turin to the device in Paris 

Châtillon.. 

Expected results 

1. ICMP echo responses are received from Athens, which means this connection is up. 

2. ICMP echo responses are received from Madrid, which means this connection is 

up. 

3. ICMP echo responses are received from Paris Châtillon, which means this 

connection is up. 

Test 2 – Connectivity towards the 5G EVE Portal facilities-connect-webportal 

Test purpose 
This test aims at ensuring that the 5G EVE Web Portal is reachable from the Turin site, 

where the I/W Framework is to be installed. 

Test type Functional. 

Related tests None. 

Priority High. 

Execution time As required for the full test execution. 

Configuration PORTAL_CONF. 

References The tool must support RFC792 (Internet Control Message Protocol), plus its updates. 

Applicability Orchestration Plane Interworking. 

Pre-test conditions 

• One device in the Turin site capable of generating ICMP traffic, emulating I/W 

Framework modules. 

• One server at the local site hosting the 5G EVE Web Portal. 

Test sequence 
1. ICMP echo requests are sent from the device in Turin to the device emulating the 

5G EVE Web Portal. 

Expected results 
1. ICMP echo responses are received from the device emulating the 5G EVE Web 

Portal, which means this connection is up. 

Test 3 – Delay measurement facilities-delay 

Test purpose This test aims at measuring the delay between Turin and another site at any precise moment. 

Test type Performance. 

Related tests None. 

Priority High. 

Execution time 
As required for the full test execution. If delay wants to be monitored during a long time 

period, multiple measurements should be executed per day (e.g. every hour). 

Configuration ALL_PLANE_CONF. 

References The tool must support RFC792 (Internet Control Message Protocol), plus its updates. 

Applicability 
Orchestration, Control or Data Planes Interworking (depending on the plane the devices are 

deployed). 

Pre-test conditions 

• One device in the Turin site capable of generating ICMP traffic. 

• At least one device at the site towards which the delay is being measured, capable 

of responding to ICMP requests. 

Test sequence 1. 30 ICMP requests are sent from the device in Turin to the device at the remote site. 

Expected results 
1. The average of the obtained RTT values can then be considered a reasonable delay 

measurement. 

Test 4 – Capacity measurement facilities-capacity 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 63 / 76 

 

Test purpose 
This test aims at measuring the capacity between Turin and another site at any precise 

moment. 

Test type Performance. 

Related tests None. 

Priority High. 

Execution time 

As required for the full test execution. If capacity wants to be monitored during a long time 

period, multiple measurements should be executed per day, but considering that bandwidth 

measurements may affect the running tests since they may create momentary congestion. 

Configuration ALL_PLANE_CONF. 

References None 

Applicability 
Orchestration, Control or Data Planes Interworking (depending on the plane the devices are 

deployed) 

Pre-test conditions 

• One device in the Turin site and another at the site towards which the capacity is 

being measured, capable of measuring bandwidth based on a client/server 

architecture (e.g. iperf). 

Test sequence 

1. The measurement tool is configured to exchange TCP traffic at maximum speed 

(e.g. by downloading via HTTP a 1GB file). 

2. The measurement tool is configured to exchange UDP traffic at maximum speed 

(e.g. plain UDP traffic with 1500B payload). 

Expected results 

1. The average of the obtained bandwidth values can then be considered a reasonable 

capacity measurement for TCP traffic. 

2. The average of the obtained bandwidth values can then be considered a reasonable 

capacity measurement for UDP traffic. 

3.3 Risk plan 

The risks can be analysed at three levels – Connectivity, Monitoring and Operation (see deliverable D3.2 – 

Sections 3.1.1 and 3.1.2 [3]), depending on whether it appears an issue in a single site execution or multi-site 

execution. The mitigation plan will be specific for every one of the six possible combinations.  

First of all, risk identification is needed. Then, it is needed the establishment of an evaluation of the priority of 

the risks. It can be assumed that risks will have two components: probability and impact, and a priority needs 

to be assigned to each of them.  The scale to be used is low-medium-high. 

Finally, it is needed to have both action and mitigation plans. The mitigation plan is used when it is known in 

advance the existence of the risk and want to lower the probability and the severity of the risk. The action plan 

is related to what should be done once the risk has become reality and is active. A more comprehensive 

description about the risk plan subject can be found in [8], and also ISO/IEC 27005 can be used as reference 

standard [9]. 

Note that security, penetration or similar threatening scenarios are not under the scope of this document, which 

are more related to other initiatives, such as [10]. 

As several risks can be mapped to DoS attacks, they have been studied comprehensively in several forums. At 

SDN level and orchestrated VNFs and CNFs we are most interested in the DoS attacks from SBI rather than 

NBI or man-in-the-middle attacks. 

Some additional thoughts regarding risks are: 

• The presence of a VNF Validator, different from the VNF Provider, assuming that VNF Operator is the 

same actor that VNF Validator. The risk is different depending on the choice. 

• Distinction (if needed) between Deployment and Activation in different scenarios (because they may 

be decoupled). 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 64 / 76 

 

• Synchronization between PNFs and VNFs managed by one and many MANO systems. 

Ideally, it is needed to manage some risk identifiers (e.g. RISK1a_001, meaning RISK for feature 

1(orchestration plane networking) a(single site) #001 ), in order to enhance the information on the risk on a 

separate table describing some headlines, probability, impact and maybe historical evolution. 

Coming back to the three levels described at the beginning of this section – Connectivity, Monitoring and 

Operation, Table 14 presents the risks identified in single-site scenarios. 

 

Table 14: Risks identified in single-site scenarios 

Key features 
Cate-

gory 
Brief Description Risk Priority Mitigation Action Probability 

Orchestration 

Plane 

Interworking 

Connec-

tivity 

Low bandwidth 

performance. 

RISK1a_

001 
High 

Mitigation 

Plan 

Action 

Plan 
Medium 

High latency. 

Messages not in 

order. 

RISK1a_

002 
Medium 

Mitigation 

Plan 

Action 

Plan 
Low 

Single-site 

Experiment 

Monitoring 

Support 

Moni-

toring 

Mismatch between 

monitoring tools 

(because of using 

different tools) 

RISK1b_

001 
Low 

Mitigation 

Plan 

Action 

Plan 
Medium 

Mismatch between 

monitoring tools 

(because of using 

different versions) 

RISK1b_

002 
Medium 

Mitigation 

Plan 

Action 

Plan 
Low 

Some monitoring 

tools need to be 

manually executed 

RISK1b_

003 
Medium 

Mitigation 

Plan 

Action 

Plan 
Medium 

Single-site 

Applications 

Deployment 

Support 

Opera-

tion 

Local orchestrator is 

different from one 

site to the other 

RISK1c_

001 
High 

Mitigation 

Plan 

Action 

Plan 
Medium 

Local orchestrator is 

not able to reach 

other orchestrators 

RISK1c_

002 
Medium 

Mitigation 

Plan 

Action 

Plan 
Medium 

Single-site 

Network 

Automation 

Support 

Opera-

tion 

Capability to deploy 

the required 

connectivity services 

(first phase). 

Different local 

controllers; different 

network 

infrastructure 

RISK1d_

001 
Low 

Mitigation 

Plan 

Action 

Plan 
Low 

Capability to deploy 

the required slices 

(second phase) to the 

requested site. 

Slicing support in 

the network but the 

specification for 

RISK1d_

002 
Low 

Mitigation 

Plan 

Action 

Plan 
Medium 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 65 / 76 

 

some slice is not 

possible. 

 

Table 15: Risks identified in multi-site scenarios 

Key features 
Cate-

gory 
Brief Description Risk Priority Mitigation Action Probability 

Control Plane 

Interworking 

Connec-

tivity 

Low bandwidth 

performance but 

secure connectivity 

among sites for 

control traffic. 

RISK2a_

001 
High 

Mitigation 

Plan 

Action 

Plan 
Medium 

RISK2a_

002 
Medium 

Mitigation 

Plan 

Action 

Plan 
Medium 

Data Plane 

Interworking 

Connec-

tivity 

Secure connectivity 

among sites for user 

traffic. Low 

bandwidth 

performance 

experiments will 

employ best effort 

connectivity. High 

bandwidth 

performance 

experiments will 

employ a parallel 

high bandwidth low 

latency network, 

which will be 

available at least 

between two sites. 

RISK2b_

001 
Low 

Mitigation 

Plan 

Action 

Plan 
High 

RISK2b_

002 
Medium 

Mitigation 

Plan 

Action 

Plan 
High 

Multi-site 

Experiment 

Monitoring 

Support 

Moni-

toring 

Capability of 

translating the 

monitoring 

requirements defined 

by experimenters 

(based on selected 

KPIs) to the sites 

taking part in the 

same experiment. 

Sites will typically 

have different local 

monitoring tools and 

mechanisms. 

RISK2c_

001 
High 

Mitigation 

Plan 

Action 

Plan 
Low 

RISK2c_

002 
Medium 

Mitigation 

Plan 

Action 

Plan 
Low 

Multi-site E2E 

Orchestration 

Support 

Opera-

tion 

Capability to deploy 

the required slices, 

and VNFs hosted in 

the 5G-EVE 

Catalogue on top of 

them, to the sites 

taking part in the 

same experiment. 

Sites will typically 

have different local 

RISK2d_

001 
Low 

Mitigation 

Plan 

Action 

Plan 
High 

RISK2d_

002 
Low 

Mitigation 

Plan: 

Action 

Plan 
High 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 66 / 76 

 

orchestrators, 

controllers and 

network 

infrastructure. 

At the point in time of writing this document it is too early to be precise in both mitigation and action plans, so 

they have not been extended in the previous table. Regarding mitigation, there is a wide variety of mitigation 

techniques, but following elements must be considered: 

• The value of the technique. 

• The initial cost of the technique. 

• The ongoing costs. 

Typical mitigation techniques used in Information Systems are: (1) Policies and Procedures (2) Documentation 

(3) Training (4) Separation of duties (5) Configuration management (6) Version Control (7) Patch management 

(8) Intrusion detection system (9) Incident response (10) Technical controls (11) Physical controls. 

Once evaluated and decided the mitigation technique(s) to be used, it is also needed the documentation of how 

implement them for the given use case. An example is provided in Table 16. 

 

Table 16: Mitigation plan example (MPLAN1a_001) 

Key features 
Catego

ry 

Brief 

Description 
Risk Priority Mitigation Action Probability 

Orchestration 

Plane 

Interworking 

Connect

ivity 

Low bandwidth 

performance. 

RISK1a_

001 
High 

MPLAN1a_

001 

ACTION_

PLAN1a00

1 

 

Medium 

High latency. 

Messages not in 

order. 

RISK1a_

002 
Medium 

MPLAN1a_

002 

Action 

Plan 
Low 

 

 (1) Policies and procedures: Review VM network configurations, review physical fibre connections and 

increase allocated bandwidth or provide additional connection if bandwidth is under 100Mbps. 

(10) Technical controls: increase frequency of bandwidth monitoring at orchestration plane from 1 minute 

to 10 seconds. 

(2) (3) (4) (5) (6) (7) (8) (9) (11): Not Applicable. 

 

The action plan captures next steps for the group. It identifies the action to be accomplished, the action agent, 

and the timeframe allotted for the action. This is an essential component to the meeting if progress is to be made. 

The action plan is usually given as a table showing the action item, the action agent, and the target date for 

completion. 

For the example above it could be like: 

ACTION_PLAN1a001 

 Action item description: Add extra 25Gbps physical interface to BareMetal server hosting VNFs. 

 Action agent: Orange-PL deployment personnel. 

 Target Date: 10 June 2020. 

 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 67 / 76 

 

4 Interworking testing roadmap 

According to deliverable D3.2 [3], there are planned four drops of the I/W Framework, until reach the official 

version in June 2020. For each drop is defined in D3.2 [3] the features, services and capabilities supported. 

The roadmap of the Interworking testing must be aligned with the roadmap of the delivery, included in D3.3 [1] 

deliverable, and it is presented in Table 17. 

Table 17: Interworking testing roadmap 

Test Type D3.3 Drop 1 Drop 2 D3.4 

Multi-Site 

Network 

Orchestrator 

Unit Test 

Unit test of the 

services 

included in 

D3.3 

Unit testing for all 

services and features 

required for the selected 

use cases 

Full tests Full tests 

Multi-Site 

Catalogue 
Unit Test 

Unit test of the 

services 

included in 

D3.3 

Unit testing for all 

services and features 

required for the selected 

use cases 

Full tests Full tests 

MSNO - MSC 
Integration 

Test 
- 

Basic integration for 

supported UC 

Full 

integration 

Full 

integration 

Multi-Site 

Inventory 
Unit Test - 

Unit testing for all 

services and features 

required for the selected 

use cases 

Full tests Full tests 

Adaptation Layer Unit Test - 

Unit testing for all 

services and features 

required for the selected 

use cases 

Full tests Full tests 

MSC - AL 
Integration 

Test 
- 

Basic integration for 

supported UC 

Full 

integration 

Full 

integration 

MSNO - AL 
Integration 

Test 
- 

Basic integration for 

supported UC 

Full 

integration 

Full 

integration 

Data Collection Unit Test - 
Testing oriented to 

support selected UC 

Single-site 

testing 
Full tests 

Runtime 

Configuration 
Unit Test - 

Testing oriented to 

support selected UC 

Single-site 

testing 
Full tests 

Interworking 

Framework 

System 

Test 
- 

Single-site testing, 

focused on selected UC 

Single-site 

testing 
Full tests 

  



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 68 / 76 

 

5 Interworking testing tools 

This section aims to provide an overview of the tools that will be used in order to test and validate the 

Interworking Framework implementation. The various components of the framework, shown in Figure 11, that 

will be the target of these tools are:  

• Multi-Site Catalogue. 

• Multi-Site Inventory. 

• Multi-Site Network Orchestrator. 

• Data Collection Manager. 

• Runtime Configurator. 

• Interworking API. 

• Adaptation Layer. 

 

Figure 11: Interworking Framework overview 

In the context of the WP5, a detailed state-of-the-art research has been done in D5.1 [11] on the various tools 

that can be used for testing software and network elements. Based on the results of that research and the fact 

that the implementation of the Interworking Framework consists only of software modules, the selection of 

testing tools becomes a lot more straightforward. In this section a set of tools will be proposed with the required 

capabilities to execute all the necessary testing for the validation of the Interworking Framework. 

All the individual components of the proposed framework rely on APIs for their operation. As such, the main 

focus of testing will be these APIs. All the APIs in question can be simulated by using mock servers so the test 

preparation and execution, in some cases, can proceed independently of their implementation progress. 

Moreover, some of the components utilize message buses for metric collection, like Kafka, or local databases 

for storing data. Those are separate testing points that will also be tested. The specific testing points of each 

component have been identified in the previous sections of this deliverable. 

The main tool that will be used for defining the proposed test suites, as mentioned in this section, will be Robot 

Framework, supported by other different tools for executing specific tests for the different components involved 

in the testing process. 

5.1 High-level architecture  

The Interworking Framework, depicted in Figure 11, is a multi-component implementation, and as such each 

component has to be tested and validated separately at first and then proceed to test the combined operation of 

multiple components. Finally, the complete Interworking Framework will be tested, as shown in Figure 12. 

Using the implementation architecture proposed by WP5, a high-level overview of the testing tool architecture, 

capable of testing both the individual components as well as the whole framework, can be seen in Figure 12. 

 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 69 / 76 

 

 

Figure 12: Testing tool high-level architecture 

The Test Execution manager is responsible for the testing process. Encapsulating the necessary functionalities 

while keeping them separate allows for a modular implementation, open to modifications and enhancements. In 

this way the testing tools are not limited neither by type nor by number.  

Very briefly the components of the Test Execution manager are: 

• The Automated Execution Manager is responsible for parsing the test request and triggering the 

corresponding tests with the requested configurations. 

• The Testing Framework executes the testing scripts and interfaces with the individual testing tools. 

• The Testing Tools test the functionalities and evaluate the performance of the target components. 

The main benefit of the proposed Test Execution manager is the implementation of a standalone module capable 

of handling the complete testing process of a component or system without external control and extensible 

enough so that the list of testing suites and testing tools can be increased without much effort.  

5.2 Proposed tools and required capabilities 

5.2.1 Testing tools overview 

All the tools proposed in this section have been chosen on the basis of completely automating the testing 

procedure. This is in line with the work from WP5, described in deliverable D5.1 [11] and doing so it will reduce 

integration efforts later on in the project. Based on that work, Robot Framework is proposed as the testing 

framework and Jenkins as the automated execution manager for the tests. 

Robot Framework is a Python-based and extensible keyword-driven test automation framework. It is widely 

used for end-to-end acceptance testing and acceptance-test-driven development (ATDD) and allows the 

definition of tests using a human-friendly format. This test definition involves the identification of all elements 

involved in the experiment, the actions that have to be taken and the expected results in each test. It is worth 

mentioning that it is an open source software initially developed at Nokia Networks, nowadays sponsored by 

Robot Framework Foundation. Jenkins is an open source automation server that helps to automate the non-

human part of the software development process, with continuous integration and facilitating technical aspects 



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 70 / 76 

 

of continuous delivery. It is a friendlier execution engine than Robot Framework and also supports interaction 

with it through the use of plugins.  

The combination of these two tools provide an automated execution manager capable of handling the execution 

and collection of results from the various tests. This execution manager, shown in Figure 13, will be acting as 

a wrapper around the individual tools tasked with the actual tests. It is lightweight and can be hosted on a central 

node or as a part of one or more VNFs. 

 

Figure 13: Test Execution Manager overview 

After examining all the components of the Interworking Framework that will be under test, their testing points 

fall under two categories, API endpoints and data collection points, either through message buses or with local 

databases. All of these testing points will be handled in the same way, first their functionalities will be tested 

and then their performance under load will be evaluated. These two series of tests will verify the intended 

functionality of each component, both individually and in combination with others, in the Interworking 

Framework and also reveal any bottlenecks or possible future scaling issues of a specific component or the 

framework as a whole.  

5.2.2 API testing 

Regarding API functionality tests there are multiple tools capable of providing the requirement capabilities. One 

such tool is Robot Framework itself, capable of testing API endpoints and validating the responses based on the 

expected outcome of the provided requests. Implementing these tests on Robot Framework leads to a smaller 

number of individual tools needed and less integration effort. From an architectural point of view, if the 

functionalities need to be kept separate and distinct, meaning that the Robot Framework only plays the role of 

the test execution engine, then another tool can be chosen. One other such tool is pyresttest19, a REST testing 

tool where the tests are defined in basic YAML or JSON format and there is no need for additional code. After 

validating the expected operation of the components, the performance under load will be evaluated. Such tools 

are locust20 and httperf21. In this category of tools there is a wide range of available choices. The proposed tools 

are based purely on prior use and are likely to change if it deemed necessary for integration purposes. 

• Locust is an easy-to-use, distributed, user load testing tool. It is commonly used for load-testing 

websites (or other systems) in order to figure out how many concurrent users a system can handle. The 

number of requests to the framework’s individual components is not expected to be significantly large 

at first. Scaling the EVE platform to support more use cases and possibly more sites and thus increasing 

the load to these components, though, could potentially lead to some performance issues. The goal of 

using tools like locust is to identify any and all such possible issues. 

                                                      

 
19 https://github.com/svanoort/pyresttest  

20 https://locust.io/  

21 https://github.com/httperf/httperf  

https://github.com/svanoort/pyresttest
https://locust.io/
https://github.com/httperf/httperf


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 71 / 76 

 

• Httperf is a tool for measuring web server performance. It provides a flexible facility for generating 

various HTTP workloads and for measuring server performance. The focus of httperf is not on 

implementing one particular benchmark but on providing a robust, high-performance tool that facilitates 

the construction of both micro- and macro-level benchmarks. 

Regarding API testing, there is another category of tools useful to our cause and that is mock servers. Mock 

servers are tools that allow the simulation of the behaviour of API endpoints so that request-response 

transactions can be tested even if the complete functionality is not implemented yet. This is beneficial for 

systems like the proposed Interworking Framework that are multi-component and require a lot of message 

exchanges between the individual components. One such tool is Prism, an open-source HTTP mock server that 

can also generate servers from OpenAPI documents, a functionality most useful since the use of OpenAPI has 

been adopted for the implementation of the Interworking Framework.  

5.2.3 Data collection testing 

Based on the architecture proposed in D3.2 [3], the Interworking Framework will use a publish-subscribe queue 

(implemented with Apache Kafka tool) as the data aggregation mechanism, also providing data storage and 

persistence. Thus, it is necessary to test the bus interactions to ensure their optimal operation even under stress. 

5.2.3.1 Kafka bus testing 

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging 

system. In the context of the Data Collection Manager it will be used to collect all the metrics generated from 

the various nodes deployed on the facilities during the use cases experiments. Since some of the current use 

cases and possible future ones need many nodes to run the corresponding experiments, a large amount of data 

will be generated which according to the implementation plan will be separated in individual topics per node 

and possibly per source of generation. Therefore, it is necessary to test both the number of available topics and 

partitions as well as the throughput, the maximum number of message transactions, that can be supported.  

Regarding the number of topics and partitions, the currently supported theoretical maximum is in the few 

hundreds thousands [12]. Even with multiple nodes and data sources of the use cases currently planned for the 

EVE platform, the requirements are unlikely to hit that limit soon. Moreover, newer versions of the Kafka 

software have often been increasing that limit so future larger scale experiments should not be an issue as well. 

The throughput is the metric that directly affects the performance of the Data Collection Manager and is one of 

the most import metrics for its operation. To that extent, scripts22 specifically for testing this metric have already 

been provided with the tool’s installation and can be used to fulfil that purpose.  

Moreover, there are other specific components that can be used for testing or monitoring Kafka, which are: 

• Kafkat23: it is a simplified command-line administration for Kafka brokers. It was created by AirBnB 

and it is quite simple to install and use so that it can be done queries for obtaining the status of the Kafka 

deployment by using command line tools. 

• Kafka Confluent24: provides a more complex way to monitor the system. 

• Kafka Monitor25: it is a framework to implement and execute long-running Kafka system tests in a 

real cluster. It complements Kafka’s existing system tests by capturing potential bugs or regressions 

that are only likely to occur after prolonged period of time or with low probability. 

                                                      

 
22 https://github.com/kafka-dev/kafka/tree/master/core/src/main/scala/kafka/tools  

23 https://github.com/airbnb/kafkat  

24 https://docs.confluent.io/current/kafka/monitoring.html 

25 https://github.com/linkedin/kafka-monitor  

 

https://github.com/kafka-dev/kafka/tree/master/core/src/main/scala/kafka/tools
https://github.com/airbnb/kafkat
https://docs.confluent.io/current/kafka/monitoring.html
https://github.com/linkedin/kafka-monitor


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 72 / 76 

 

In the case of load and stress tests, there are more tools which can be used, such as Avalanche26 or simple iperf 

or ping commands. 

5.2.4 Database testing 

Based on the proposed implementation of the Interworking Framework, local databases might be used in various 

components to store all required information for the components internal functionalities such as the 

metrics/KPIs/results collected from the Data Collection Manager. In the same manner the APIs were tested, the 

databases will also go through functional testing first and then evaluated under load. Since the volume of the 

data transferred between the components and the databases is expected to be high, especially for the database 

containing the KPIs data, stress testing the database is mandatory to prevent any data loss or corruption.  

Depending on the type of the databases that will be chosen for the implementation, SQL or NoSQL, the testing 

tools can also be separated in the same two categories. For SQL database testing, since SQL is the most widely 

used type of database, there is a plethora of tools available. The proposed tools favour the open-source status as 

well as the configurability and ease of integration with the rest of the selected tools. Namely, some popular 

database testing tools are dbstress27, Tsung28 and HammerDB29. 

• Dbstress is a software for stress testing and load testing the server parts of information systems and 

database applications, as well as databases and servers themselves. It is suitable for solution scalability 

and performance testing, comparison and tuning. The tool allows users to create and configure a 

continuous set of requests to the server of the OLAP (query execution) and OLTP (adding/loading, 

modifying and deleting data in the database) types. The user can specify several virtual users to be 

emulated, priority and type of requests for each task (virtual user type). 

• Tsung is an open-source multi-protocol distributed load testing tool. It can be used to stress HTTP, 

WebDAV, SOAP, PostgreSQL, MySQL, LDAP, MQTT and Jabber/XMPP servers. The purpose of 

Tsung is to simulate users in order to test the scalability and performance of IP based client/server 

applications. You can use it to do load and stress testing of your servers. Many protocols have been 

implemented and tested, and it can be easily extended. It can be distributed on several client machines 

and is able to simulate hundreds of thousands of virtual users concurrently (or even millions if you have 

enough hardware …). It is developed in Erlang, an open-source language made by Ericsson for building 

robust fault-tolerant distributed applications. 

• HammerDB is an open source database load testing and benchmarking tool for Oracle Database, 

Microsoft SQL Server, IBM DB2, TimesTen, MySQL, MariaDB, PostgreSQL, Postgres Plus Advanced 

Server, Greenplum, Redis, Amazon Aurora and Redshift and Trafodion SQL on Hadoop. It is the 

highest performing database benchmarking and load testing tool with built-in workloads based on the 

industry standard TPC-C and TPC-H specifications. 

Regarding the NoSQL type of databases, the list of testing tools is not as large. The suggested tools and also the 

most popular among them, are Yahoo! Cloud Serving Benchmark30 and JMeter31.  

• Yahoo! Cloud Serving Benchmark (YCSB) is an open-source specification and program suite for 

evaluating retrieval and maintenance capabilities of computer programs. It is often used to compare 

relative performance of NoSQL database management systems. YCSB was contrasted with the TPC-H 

benchmark from the Transaction Processing Performance Council, with YCSB being called a big data 

benchmark while TPC-H is a decision support system benchmark. It has been used for multiple-product 

                                                      

 
26 https://www.spirent.com/products/testing-security-app-aware-device-networks-avalanche  

27 https://github.com/semberal/dbstress  

28 http://tsung.erlang-projects.org/  

29 https://www.hammerdb.com/  

30 https://github.com/brianfrankcooper/YCSB  

31 https://jmeter.apache.org/  

https://www.spirent.com/products/testing-security-app-aware-device-networks-avalanche
https://github.com/semberal/dbstress
http://tsung.erlang-projects.org/
https://www.hammerdb.com/
https://github.com/brianfrankcooper/YCSB
https://jmeter.apache.org/


Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 73 / 76 

 

comparisons by industry observers such as Network World (comparing Cassandra, MongoDB, and 

Riak), Thumbtack Technologies (comparing Aerospike, Cassandra, Couchbase, and MongoDB), and 

the Polytechnic Institute and University of Coimbra (comparing Cassandra, HBase, Elasticsearch, 

MongoDB, Oracle NoSQL, OrientDB, Redis, Scalaris, Tarantool, and Voldemort). 

• JMeter is an Apache project that can be used as a load testing tool for analysing and measuring the 

performance of a variety of services, with a focus on web applications. It can be used as a unit-test tool 

for JDBC database connections, FTP, LDAP, Web services, JMS, HTTP, generic TCP connections and 

OS native processes. One can also configure JMeter as a monitor, although this is typically considered 

ad hoc rather than advanced monitoring. It can be used for some functional testing as well. It supports 

variable parameterization, assertions (response validation), per-thread cookies, configuration variables 

and a variety of reports. JMeter architecture is based on plugins. Most of its "out of the box" features 

are implemented with plugins. Probably it has a superset of features of httperf, but the problem when 

using JMeter is that it requires Java to work, so there might be issues if several JVMs are required to be 

instantiated at the same time. 

It is worth mentioning that only Yahoo! Cloud Serving Benchmark was made specifically for the purpose of 

testing NoSQL and cloud storage solutions. JMeter was made as a general-purpose load tester that progressively 

gets more support for additional storage solutions. 

  



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 74 / 76 

 

6 Conclusions 

This deliverable presents the first drop of the Interworking Framework testing specification, derived from the 

current implementation status described in deliverable D3.3 [1]. Based on the current requirements obtained 

after the study of the different components, services and capabilities that have been defined within the 

Interworking Framework, the specification of a testing methodology and the definition of the different test suites 

for all the possible testing points that are related to the Interworking Framework have been provided along this 

document. 

Regarding the testing methodology selected for this purpose, i.e. a methodology based on software development 

testing principles and on ETSI standard specifications, it has been detected that there are a lot of similarities 

between these methods and the desired testing process for the Interworking Framework; mainly, the division of 

the SUT in different FUT, i.e. the division of the test suites in different categories, from single component tests 

to the whole system, also including possible integration between components as an intermediate step. This kind 

of testing methodology really makes sense in the context that the Interworking Framework has being defined, 

as it is composed by several components whose operation is practically independent from the others, so this 

growing testing process contemplated in the I/W Framework testing methodology really fits well in this scope. 

One of the key aspects that has been achieved in this deliverable is the high-level definition of the test suites for 

the different FUT and SUT with a textual description, avoiding in this first drop any implementation issues 

related to the test suites, which will be described in the future D3.7 that is the second and final drop of the 

Interworking test suites specification. The idea again is to follow an iterative process in the definition of the 

different test suites, starting with the high-level description proposed in this deliverable and finishing with the 

implementation of these high-level tests using a set of testing tools (mainly based on the Robot Framework 

component) with two main objectives: (i) test the identified testing points from the Interworking Framework, 

and (ii) verify the assumptions made in the high-level description, correcting any possible misalignment 

(contemplated in the preliminary risk plan proposed in this deliverable) in that implementation stage. 

Finally, note the significance that this deliverable has for the rest of the project: it is the first deliverable only 

dedicated to define a testing process for a given system (in this case, the Interworking Framework), only 

contemplating the I/W Framework itself in an isolated way, without interacting with the 5G EVE Portal and 

Site facilities directly (but simulating these interactions in the tests for verifying the correct behaviour of the 

interfaces). This testing process definition may lay the basis for the definition of testing techniques and processes 

that can be implemented in other areas of the 5G EVE project if needed, replicating the methodology and the 

testing definition process already presented in this deliverable. 

 

 

 

  



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 75 / 76 

 

Acknowledgment 

This project has received funding from the EU H2020 research and innovation programme under Grant 

Agreement No. 815074. 

  



Deliverable D3.6 – Interworking test suites                                                                                                                                

5G EVE (H2020-ICT-17-2018) Page 76 / 76 

 

References 

[1] 5G EVE Deliverable D3.3: “First implementation of the interworking reference model” – ICT-17-2018 

5G EVE Project. – October 2019. To be published in: https://www.5g-eve.eu/deliverables/ 

[2] 5G EVE Deliverable D3.1: “Interworking Capability Definition and Gap Analysis Document” – ICT-17-

2018 5G EVE Project. – December 2018. [Online]. Available: https://www.5g-eve.eu/wp-

content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-analysis.pdf 

[3] 5G EVE Deliverable D3.2: “Interworking Reference Model” – ICT-17-2018 5G EVE Project. – June 

2019. [Online]. Available: https://www.5g-eve.eu/wp-content/uploads/2019/09/5geve_d3.2-

interworking-reference-model.pdf 

[4] ETSI EG 202 237 V1.2.1: “Methods for Testing and Specification (MTS); Internet Protocol Testing 

(IPT); Generic approach to interoperability testing”. August 2010. [Online]. Available: 

https://www.etsi.org/deliver/etsi_eg/202200_202299/202237/01.02.01_60/eg_202237v010201p.pdf  

[5] ETSI EG 202 568 V1.1.3: “Methods for Testing and Specification (MTS); Internet Protocol Testing 

(IPT); Testing: Methodology and Framework”. April 2007. [Online]. Available: 

https://www.etsi.org/deliver/etsi_eg/202500_202599/202568/01.01.03_60/eg_202568v010103p.pdf  

[6] ETSI GS NFV-TST 002 V1.1.1: “Network Functions Virtualisation (NFV); Testing Methodology; Report 

on NFV Interoperability Testing Methodology”. October 2016. [Online]. Available: 

https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/002/01.01.01_60/gs_NFV-

TST002v010101p.pdf  

[7] 5G EVE Deliverable D4.1: “Experimentation Tools and VNF Repository” – ICT-17-2018 5G EVE 

Project. – October 2019. To be published in: https://www.5g-eve.eu/deliverables/ 

[8]  “The Risk Planning Process” – October 2016. [Online]. Available: https://www.projectengineer.net/the-

risk-planning-process/ 

[9] “FAQ: information risk management”. [Online]. Available: 

https://www.iso27001security.com/html/risk_mgmt.html 

[10] 5G Ensure Deliverable D2.6: “Risk Assessment, Mitigation and Requirements (final)” – H2020-ICT-

2014-2 Project. – November 2017. [Online]. Available: http://5gensure.eu/sites/default/files/5G-

ENSURE_D2.6_Risk%20assessment%20mitigation%20and%20requirements%20%28final%29_0.pdf  

[11] 5G-EVE Deliverable D5.1 “Disjoint testing and validation tools” – ICT-17-2018 5G EVE Project – 

April 2019. [Online]. Available: https://www.5g-eve.eu/wp-content/uploads/2019/05/5geve-d5.1-

disjoint-testing-and-validation-tools.pdf  

[12] “Apache Kafka Supports 200K Partitions Per Cluster” – November 2018. [Online]. Available: 

https://blogs.apache.org/kafka/entry/apache-kafka-supports-more-partitions  

 

https://www.5g-eve.eu/deliverables/
https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-analysis.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-analysis.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf
https://www.etsi.org/deliver/etsi_eg/202200_202299/202237/01.02.01_60/eg_202237v010201p.pdf
https://www.etsi.org/deliver/etsi_eg/202500_202599/202568/01.01.03_60/eg_202568v010103p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/002/01.01.01_60/gs_NFV-TST002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/002/01.01.01_60/gs_NFV-TST002v010101p.pdf
https://www.5g-eve.eu/deliverables/
https://www.projectengineer.net/the-risk-planning-process/
https://www.projectengineer.net/the-risk-planning-process/
https://www.iso27001security.com/html/risk_mgmt.html
http://5gensure.eu/sites/default/files/5G-ENSURE_D2.6_Risk%20assessment%20mitigation%20and%20requirements%20%28final%29_0.pdf
http://5gensure.eu/sites/default/files/5G-ENSURE_D2.6_Risk%20assessment%20mitigation%20and%20requirements%20%28final%29_0.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/05/5geve-d5.1-disjoint-testing-and-validation-tools.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/05/5geve-d5.1-disjoint-testing-and-validation-tools.pdf
https://blogs.apache.org/kafka/entry/apache-kafka-supports-more-partitions

