
i

5G European Validation platform for Extensive trials

Deliverable D3.3

First implementation of the interworking

reference model

ii

Project Details

Call H2020-ICT-17-2018

Type of Action RIA

Project start date 01/07/2018

Duration 36 months

GA No 815074

Deliverable Details

Deliverable WP: WP3

Deliverable Task: Task T3.3

Deliverable Identifier: 5G_EVE_D3.3

Deliverable Title: First implementation of the interworking reference

model

Editor(s): Marc Mollà Roselló

Author(s):
Ramón Perez, Aitor Zabala (TELC); F.Lombardo,

S.Salsano, P.Lungaroni, M. Pergolesi, M. Femminella,

G. Reali (CNIT); Gopolasingham Aravinthan (NOK-FR);

Marc Mollà Roselló (ERI-ES); Jaime Garcia-Reinoso, Pablo

Serrano Yañez-Mingot (UC3M); Grzegorz Panek (ORA-PL)

Reviewer(s): Marius Iordache

Juan Rodriguez Martinez

Contractual Date of Delivery: 31/10/2019

Submission Date: 31/10/2019

Dissemination Level: PU

Status: Final

Version: 1.0

File Name: 5G_EVE_D3.3

Disclaimer

The information and views set out in this deliverable are those of the author(s) and do not

necessarily reflect the official opinion of the European Union. Neither the European Union

institutions and bodies nor any person acting on their behalf may be held responsible for

the use which may be made of the information contained therein.

iii

Deliverable History

Version Date Modification Modified by
V0.1 09/09/2019 First draft Marc Mollà Roselló

V0.2 25/09/2019 First contributions Marc Mollà Roselló

V0.3 07/10/2019 First internal release WP3 team

V0.4 11/10/2019 First draft for internal

review

WP3 team

V0.5 15/10/2019 First proposal for internal

review

WP3 team

V0.6 16/10/2019 Updated proposal for

internal review (French

site)

WP3 team

V0.7 25/10/2019 Updated with the internal

revision

WP3 team

V0.9 28/10/2019 Ready for delivery WP3 team

V1.0 30/10/2019 QA review Kostas Trichias

iv

Table of Contents

LIST OF ACRONYMS AND ABBREVIATIONS .. VI

LIST OF FIGURES .. VII

LIST OF TABLES .. VII

EXECUTIVE SUMMARY .. 8

1 INTRODUCTION ... 9

1.1 INITIAL CONTEXT .. 9
1.2 STRUCTURE OF THE DOCUMENT .. 9

2 INTERWORKING FRAMEWORK DESIGN ... 10

3 SOFTWARE ARTEFACTS ... 12

3.1 MULTI-SITE CATALOGUE .. 12
3.1.1 Software architecture .. 12
3.1.2 Open API description .. 13
3.1.3 Service description .. 14

3.2 MULTI-SITE INVENTORY ... 15
3.2.1 Open API description .. 15

3.3 MULTI-SITE NETWORK ORCHESTRATOR ... 15
3.3.1 Open API description .. 15
3.3.2 Service description .. 16

3.4 DATA COLLECTION MANAGER .. 17
3.4.1 Software architecture .. 18
3.4.2 Open API description .. 20
3.4.3 Service description .. 21

3.5 RUNTIME CONFIGURATOR ... 23
3.5.1 Software architecture .. 23
3.5.2 Open API description .. 24
3.5.3 Service description .. 25

3.6 ADAPTATION LAYER ... 25
3.6.1 Multi-Site Catalogue SBI .. 25
3.6.2 Multi-Site NSO to local Orchestrators interface (MSO-LO)... 26
3.6.3 Runtime Configurator SBI... 30
3.6.4 Data Collection Manager SBI ... 30

3.7 SITE ADAPTATIONS .. 31
3.7.1 French site .. 31
3.7.2 Greek site .. 32
3.7.3 Italian site ... 34
3.7.4 Spanish site ... 35

4 INTER-SITE CONNECTIVITY STATUS ... 36

4.1 UPDATED INTER-SITE CONNECTIVITY PROPOSAL ... 36

5 UPDATED ROADMAP .. 39

6 CONCLUSIONS .. 42

ACKNOWLEDGMENT .. 43

REFERENCES ... 44

ANNEX A – DATA COLLECTION MANAGER UPDATE FROM D3.2 .. 45

A.1 UPDATED ARCHITECTURE ... 45
A.2 UPDATED OPERATIONS AND INFORMATION MODEL .. 47
A.3 UPDATED SPECIFIC-PURPOSE WORKFLOWS ... 49

ANNEX B – RUNTIME CONFIGURATOR UPDATE FROM D3.2 .. 55

B.1 UPDATED ARCHITECTURE ... 55

v

B.2 UPDATED OPERATIONS AND INFORMATION MODEL ... 56
B.3 UPDATED SPECIFIC-PURPOSE WORKFLOWS ... 57

vi

List of Acronyms and Abbreviations

Acronym Meaning

3GPP Third Generation Partnership Project

5G Fifth Generation

ACID Atomicity, Consistency, Isolation and Durability

API Application Programming Interface

ETSI European Telecommunications Standards Institute

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IP Internet Protocol

LCM Lifecycle Management

MANO Management and Orchestration

MSNO 5G EVE Multi-Site Network Orchestrator

MSO-LO 5G EVE Multi-Site NSO to Local Orchestrator

NBI North-Bound Interface

NFV Network Function Virtualization

NFVO NFV Orchestrator

NS Network Service

NSD Network Service Descriptor

NSO Network Service Orchestrator

ONAP Open Network Automation Platform

OSM Open Source MANO

PNF Physical Network Function

PNFD PNF Descriptor

REST Representational State Transfer (software architectural style)

SBI South-Bound Interface

SQL Structured Query Language

SSH Secure Shell

TOSCA Topology and Orchestration Specification for Cloud Applications

UML Unified Modeling Language

VNF Virtual Network Function

VNFD VNF Descriptor

YAML YAML Ain’t Markup Language

vii

List of Figures

Figure 1: I/W Framework Architecture ... 11

Figure 2: Workflow of the creation of a Network Service ID ... 16

Figure 3: Workflow of NS instantiation .. 17

Figure 4: Apache Kafka's main APIs. ... 18

Figure 5: Main services and functionalities offered by Kafka. ... 19

Figure 6: Kafka Confluent components (from https://www.confluent.io) .. 19

Figure 7: UML class diagram with just one example method of the interface. ... 26

Figure 8: Message sequence chart to show modules and objects interactions. ... 27

Figure 9: Table diagram of the database for the local NFVO registry. ... 28

Figure 10: Architecture of the application ... 28

Figure 11: Architecture of the ONAP driver with ONAP NBI ... 32

Figure 12: Site facilities interconnection – first phase. ... 37

Figure 13: Site facilities interconnection – second phase .. 37

Figure 14: Task plan for WP3 for the 5G EVE second year ... 39

Figure 15: Improved version of the Data Collection Framework. ... 45

Figure 16: Enhanced Data Collection Manager architecture. .. 47

Figure 17: Subscription to the topics used for experiment monitoring and performance analysis purposes. ... 51

Figure 18: Delivery and management of monitoring information during the experiment execution. 52

Figure 19: Withdrawal of the topics used for experiment monitoring and performance analysis purposes 54

Figure 20: Improved version of the Experiment Configuration Framework. .. 55

Figure 21: Application of Day-2 configuration – experiment in configuring state. .. 58

Figure 22: Application of Day-2 configuration – experiment in running state. .. 59

List of Tables

Table 1: Services provided by Multi-Site Inventory ... 15

Table 2: Services provided by Multi-Site Orchestrator ... 15

Table 3: Example of Data Collection Manager operations from its Open API specification............................ 20

Table 4: Example of Runtime Configurator operations from its OpenAPI specification. 25

Table 5: Services provided by MSO-LO interface .. 29

Table 6: 5G EVE Interworking Framework Roadmap .. 40

Table 7: Data Collection Manager NBI ... 47

Table 8: Data Collection Manager SBI ... 48

Table 9: Runtime Configurator NBI. ... 56

Table 10: Data Collection Manager SBI. .. 57

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 8 / 59

Executive Summary

Deliverable D3.3 is the first deliverable dealing with the implementation of the Interworking Framework. As

defined in the proposal, this deliverable is basically a software deliverable that contains part of the services and

features of the I/W Framework. In addition to the software delivery, we have produced this document in order

to explain details about the internal architecture and to also provide updates of the previous deliverables.

The high-level design of the Interworking Framework, as well as its services, capabilities and features are

defined in previous deliverables of the WP3 (D3.1 and D3.2); and they are the foundations of the I/W

Framework development.

For each of the components defined in the I/W Framework architecture we include an open definition of the

implemented API, regardless of whether the API is public or for internal use. This information follows the

openness and modular principles that we follow in the design and development of the I/W Framework. The

APIs are defined using the OpenAPI specifications and they are available in a the 5G EVE public repository1.

This deliverable includes the first release of the Multi-Site Catalog and the Multi-Sire Network Orchestrator.

For both components, this document describes the supported services in this deliverable. We also include a

description of the internal component architecture, design and workflows of the services implemented by: Multi-

Site Catalog, Multi-Site Network Orchestrator and Adaptation Layer. In the case of Runtime Configurator and

Data Collection Manager, we update in this deliverable the design included in D3.2, with more detailed

workflows and descriptions.

This document also contains the roadmap of the I/W Framework for the next project year, mapping the service,

capabilities and features required for the I/W Framework with the status in each of the deliveries. According to

the proposal, the I/W Framework design has two deliverables: this one and the final delivery in M24. We foresee

the need of intermediates deliveries of the I/W Framework for supporting the MS8 (M18) and for supporting

the WP4 deliverables. For that reason, we include two additional deliveries: Drop 1 and Drop 2.

Finally, we include some updates about the status of the inter-site connectivity and the technical solution adopted

to provide this interconnection.

1 https://github.com/5GEVE/OpenAPI

https://github.com/5GEVE/OpenAPI

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 9 / 59

1 Introduction

Deliverable D3.3 “First implementation of the interworking reference model” is the first software deliverable

of the Interworking (I/W) Framework, developed in the scope of Task 3.3 “Interworking model implementation

and deployment”. The deliverable contains the public definitions of the Interworking Framework components’

interfaces, the low-level description of the components as well as the references to the public repository for the

software artefacts.

1.1 Initial context

This work is based on the analysis, architecture and interface definitions included in D3.1 ([1]) and D3.2 ([2]).

A summary of the design decisions contained in these documents is included in section 2.

1.2 Structure of the document

The main structure of this deliverable can be summarized as follows:

• Section 2 contains a summary of the Interworking Framework design that is included in the D3.1 and

D3.2

• Section 3 contains the description of the software included in this deliverable. The minimum content is

the public specification of the API provided for each component, with a reference of the public open

API definition. If the component implements a subset of the required features, a description is also

included

• Section 4 contains an update of the status of the inter-site connectivity

• Section 5 describes the Interworking Framework roadmap at the time of this delivery

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 10 / 59

2 Interworking Framework design

The I/W framework provides a set of key features to the 5G EVE experimentation platform as it abstracts the

specific logics and tools available in each site facility, aiming at exposing the entire multi-site infrastructure

through a unified and site-agnostic information model towards the 5G EVE portal. The heterogeneous

capabilities adopted in each site facility are properly abstracted by the I/W framework to enable the realization

of a common and unified end-to-end experimentation and validation facility, thus ensuring interoperability of

validation services offered by the various sites while achieving their end-to-end integration. In terms of main

features, on the one hand the I/W framework provides a common interworking model for the abstraction of the

heterogeneous capabilities and orchestration solutions implemented in each 5G EVE site facility, exposing

seamless services and APIs to the 5G EVE portal to facilitate the experimentation of vertical services. On the

other hand, the I/W framework enables the site facility interconnection at different levels (from orchestration to

control and data plane layers) to allow the execution of experiments (and thus instantiation of vertical services)

in different sites (and when and where possible and required, in multiple sites) in a transparent way.

Deliverables D3.1 [1] and D3.2 [2] provide a detailed specification of the I/W framework architecture, and set

the foundations for the software development of the I/W framework functional components reported in this

document. While D3.1 defined an initial architectural decomposition as a result of the analysis of a list of use

case driven technical requirements for the deployment, runtime operation and monitoring of the vertical

experiments, deliverable D3.2 augmented this early specification with the definition of the I/W framework APIs

(at both northbound and southbound) and a more detailed functional specification of each component including

I/W workflows and mechanisms.

For the sake of completeness of this document, the 5G EVE I/W framework architecture is depicted in Figure

1. The five main components building the I/W framework are: The Multi-site Network Service Orchestrator,

the Multi-site Catalogue, the Multi-site Inventory, the Runtime Configurator and the Data Collection Manager.

All of them are specified in terms of main features in deliverable D3.2, including northbound and southbound

APIs. As a general principle, the 5G EVE I/W framework architecture re-uses (and enhance where required)

existing relevant standards and solutions provided by other European funded projects to not design and develop

from scratch such a complex architecture.

The interworking APIs depicted in Figure 1 are built by the collection of the APIs exposed by each of the core

I/W framework components. These APIs are detailed in deliverable D3.2 and are reported in the form of Open

API representations in section 3 of this deliverable. These OpenAPI representations have to be considered as

the REST implementation of the APIs defined in D3.2. Moreover, most of these interworking APIs highly

leverages on existing ETSI NFV SOL005 APIs for the lifecycle management of NFV Network Services

implementing the vertical experiments. As described in section 3 (under each per-component subsection) these

SOL005 APIs (and the related data models) are enhanced where needed to support the I/W reference model

defined in D3.2.

At the southbound, the I/W framework adaptation layer plays a key role as it implements the required abstraction

features on top of the site facilities, harmonizing under a common information model and set of APIs the

heterogeneous capabilities offered by each site in terms of orchestration, catalogues, monitoring and runtime

configuration. Where applicable, the common APIs exposed by the adaptation layer to the other I/W framework

services are based on existing standard specifications, like those offered to the Multi-site Network Service

Orchestrator and the Multi-site Catalogue which are based on ETSI NFV IFA specifications.

Deliverable D3.2 also provided two different options for the interaction and integration of each I/W framework

component with the adaptation layer for their access to the different sites’ services (from orchestration to

catalogues and monitoring). In the first option (named as “A”), each of the I/W framework components

independently interacts with the per-site services and tools (e.g. orchestrators, SDN controller, catalogues,

monitoring platforms, etc.) through the adaptation layer. In the second option (named as “B), the Multi-site

Network Service Orchestrator acts as a proxy for all the I/W framework interactions with the local per-site

services, thus relaxing the complexity of the abstraction layer. At the time of writing D3.2 none of the two

options was considered clearly preferable with respect to the other, and the decision was left open for the

software implementation stage to have each component to choose the best suited option. As a result, in this

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 11 / 59

document, the option A is followed by the Multi-site catalogue only, while option B is followed by all the other

components.

This means the Multi-site Catalogue provides on its own the whole set of I/W features for what concerns the

management of Network Service and VNF Descriptors, i.e. unified northbound APIs based on ETSI NFV

SOL005 [3] and adaptation (with data model and API logics translation) towards the heterogeneous per-site

orchestrators and catalogues.

Figure 1: I/W Framework Architecture

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 12 / 59

3 Software artefacts

This section contains the description of the software artefacts included in this delivery. For all Interworking

framework components, we include the description of the public interface provided by the component, in Open

API format. For the Multi-Site Catalogue, the Multi-Site Network Orchestrator and the Adaptation Layer we

include a description of the services and features included in this deliverable. Additionally, we also include a

low-level detail of the internal design of components

3.1 Multi-Site Catalogue

The 5G EVE Multi-site Catalogue stores all the information related to Networks Service Descriptors (NSDs)

and VNF Descriptors (VNFDs) that can be used by the 5G EVE portal for the provisioning of single-site and

multi-site vertical experiments. It is the central repository of the whole 5G EVE platform for what concerns the

capabilities offered by the site facilities which are exposed through a common model that follows the ETSI NFV

SOL specifications. The Multi-site Catalogue implements mechanisms for the synchronization between the

information available in the catalogues at the different sites and the centralized I/W catalogue, by maintaining

the association between the local NSDs and VNFDs and the corresponding descriptors at the sites’ catalogues.

Moreover, dedicated APIs are exposed to the 5G EVE Portal for the automated onboarding of NSD modelling

the vertical experiments into the catalogues at the target sites. These APIs leverage on logics for the automated

translation between the I/W information model and the site-specific languages and information models

implemented in each of the sites’ catalogues. Indeed, as stated above, the Multi-site Catalogue embeds part of

the I/W framework adaptation layer features.

With reference to the I/W workflows defined in deliverable D3.2, the Multi-site Catalogue implements those

related to Network Service and VNF on-boarding, in particular:

• Catalogues synchronization, to let the Multi-site Catalogue automatically retrieve and store available

NSDs and VNFDs from each site facility.

• VNF onboarding, to allow dynamic and automated retrieval and store of new VNFDs that are on-

boarded directly in the 5G EVE sites at runtime.

• VNF removal, to allow dynamic and automated removal of existing VNFDs in the Multi-site Catalogue

when the related VNFs are no longer available in the 5G EVE sites.

• Network Service Descriptor onboarding, to allow the 5G EVE portal to onboard in the I/W framework

new NSDs for single- and multi-site vertical experiments.

• Network Service Descriptor removal, to allow the 5G EVE portal to remove existing NSDs whenever

the related single- or multi-site vertical experiment is no longer available in the 5G EVE platform.

3.1.1 Software architecture

The Multi-site Catalogue software prototype is developed in WP3 (while its software design is reported in WP4)

as an extension of the Nextworks’ 5G Apps and Services Catalogue[4], already used in the context of the 5G-

MEDIA project [5]. The high-level software design of the Multi-site Catalogue is fully detailed in deliverable

D4.1 [6], while the enhancements applied on top of the original 5G Apps and Services Catalogue can be

summarized as follows:

• New Catalogue Service logics for the support of the Multi-site Catalogue onboarding workflows

defined in deliverable D3.2

• New Policy Management features to regulate and configure the interactions with the per-site

orchestrators and catalogues (e.g. what is onboarded where)

• Enhanced internal information model and ETSI NFV SOL005 REST APIs to:

o Support additional location constraints (i.e. specification of which site and orchestrator) when

new NSDs are onboarded from the 5G EVE portal

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 13 / 59

o Expose additional information related to location constraints of NSDs and VNFDs (i.e. where

descriptors are available for instantiation)

• Enhanced Graphical User Interface (GUI) features to expose full multi-site NSDs and VNFDs

information (mostly targeting admin access)

• Integration with authorization and authentication mechanisms, as defined in deliverable D4.1

In particular, the main relevant and impacting enhancements with respect to the existing software are those

related to the implementation of the multi-site onboarding workflows, which are specific for the 5G EVE

platform and are those that truly enable the integration of heterogeneous site facilities under the same catalogue,

hiding the complexity of the different per-site API logics and data models. As a consequence, in support of the

various per-site orchestrators and catalogues, the 5G Apps and Services Catalogue is planned to be enhanced

with additional NFVO drivers to fully support the 5G EVE multi-site onboarding and NSD/VNFD management

logics and workflows.

3.1.2 Open API description

The Multi-site Catalogue northbound interface is defined in the deliverable D3.2, and it is implemented in the

software prototype described in this document as a set of REST APIs. These REST APIs are based on the ETSI

NFV SOL005 v2.4.1 specification, with focus on NSD Management and VNF Package Management.

The OpenAPI representations for the Multi-site Catalogue northbound REST APIs are available in the 5G EVE

github repository, at: https://github.com/5GEVE/OpenAPI/tree/v0.2/MultiSiteCatalogue.

The APIs and related endpoints implemented and exposed by the Multi-site Catalogue are detailed in deliverable

D4.1 [6], as part of the software design documentation.

The Multi-site Catalogue OpenAPI representations are in turn based on the available standard ETSI NFV

SOL005 v2.4.1 OpenAPIs. However, in accordance with the deliverable D3.2, the following enhancements (and

differences) are applied:

• NSD Management API

o The PNFD related resources are not allowed to be created, updated or patched: POST, PUT,

PATCH operations are therefore not included for collective and individual resources. This is

aligned with the assumption defined in deliverable D3.2 for avoiding the direct and automatic

onboard of PNFs from the 5G EVE portal

o Extensions:

▪ Usage of “userDefinedData” key-value pairs attribute in CreateNsdInfoRequest for

specifying in which sites to onboard an NSD

• Example:
. . .
“userDefinedData”: {

 "ITALY_TURIN": "yes",

 "SPAIN_5TONIC": "yes"
}

. . .

▪ Usage of “userDefinedData” key-value pairs attribute in NsdInfo for identification (e.g.

in NSD GET operations from the 5G EVE portal) where an NSD is available (i.e. which

sites)

• Example:
. . .

“userDefinedData”: {
 "FRANCE_PARIS": "yes"

}

. . .

▪ Usage of “userDefinedData” key-value pairs attribute in PnfdInfo for identifying (e.g.

in PNFD GET operations from the 5G EVE portal) where a PNFD is available (i.e.

which sites)

• Example:
. . .

“userDefinedData”: {

 "GREECE_ATHENS": "yes"

https://github.com/5GEVE/OpenAPI/tree/v0.2/MultiSiteCatalogue

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 14 / 59

}
. . .

• VNF Package Management API

o VNF Package related resources are not allowed to be created, updated or patched: POST, PUT,

PATCH operations are therefore not included for VNF Package and VNFD collective and

individual resources. This is aligned with the assumption defined in deliverable D3.2 for

avoiding the direct and automated onboard of VNFs from the 5G EVE portal down to the sites

o Extensions:

▪ Usage of “userDefinedData” key-value pairs attribute in VnfPckgInfo for identification

(e.g. in VNF Package GET operations from the 5G EVE portal) where an VNFD is

available (i.e. which sites)

• Example:
. . .
“userDefinedData”: {

 "SPAIN_5TONIC": "yes"

 "GREECE_ATHENS": "yes"

}

. . .

3.1.3 Service description

With respect to the high-level Multi-site Catalogue software architecture described in D4.1 [6], this document

reports the first release of the software prototype, which covers part of the overall catalogue features. As said,

the Multi-site Catalogue software prototype is implemented on top of the Nextworks’ 5G Apps and Services

Catalogue, which is therefore the software reference baseline. In particular, this D3.3 software release is

providing a subset of the software extensions defined in section 3.1.1, mostly targeting the enhancements to the

Catalogue Service for supporting the multi-site onboarding workflows, and the enhancements to the northbound

REST APIs and ETSI NFV SOL005 data model2.

For what concerns the Catalogue Service, this D3.3 software release provides the implementation and support

of the following Multi-Site Catalogue onboarding workflows (as defined in D3.2):

• Catalogues synchronization: this version of the Multi-site Catalogue implements the collection of all

VNF Packages, VNFDs and NSDs from the different site orchestrators and catalogues, and maintain

them in the common enhanced ETSI NFV SOL005 and SOL001 formats. This synchronization is a

procedure that is triggered by the Catalogue Service at the start of the Multi-site Catalogue service (as

a kind of initial synchronization), and then is kept as a periodic process to ensure that the Multi-site

Catalogue is aligned with the per-site catalogues.

• NSD onboarding workflow: this version of the Multi-site Catalogue allows to onboard new NSDs from

the 5G EVE Portal, and specify the sites where the NSD should be onboarded to run the related

experiments (after the proper adaptation and translation to the specific site data model).

• NSD removal workflow: this version of the Multi-site Catalogue allows to remove NSDs previously

onboarded from the 5G EVE Portal, specifying the site where the NSD should be deleted.

Additional workflows will be developed for the next releases of the I/W framework prototype.

In terms of NFVO southbound drivers, this D3.3 software release of the Multi-Site Catalogue includes an OSM

driver (that is compatible with OSM R4, R5, and R6) that allows to integrate with the Italian and Spanish site

facilities (since both of them make use of OSM as site orchestrator). Additional NFVO southbound drivers (e.g.

for adapting and translating ONAP API logics and data model) will be developed for the next releases of the

I/W framework prototype. If required, specific drivers will be also implemented to integrate with commercial

orchestrators, e.g. from Ericsson and Nokia in the Italian and the Greek sites.

2 Multi-site Catalogue software prototype: https://github.com/nextworks-it/5g-catalogue/tree/v3.0

https://github.com/nextworks-it/5g-catalogue/tree/v3.0

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 15 / 59

3.2 Multi-Site Inventory

The Multi-Site Inventory is the component in charge of maintaining the status of the Network Services

instantiated in any of the 5G EVE sites. As described in D3.2 [2], the Multi-site Inventory is fully managed by

the Multi-site Network Service Orchestrator, who is in charge of notifying of all the changes that have to do

with service provisioning.

In this delivery we include the Multi-Site Inventory features integrated in the Multi-Site Network Orchestrator.

In future releases it is expected to delegate all the Inventory catalogue to the Multi-Site Inventory component.

3.2.1 Open API description

The API of the Multi-Site Inventory can be found at: https://github.com/5GEVE/OpenAPI/tree/v0.2/MSI

At the moment of the delivery, only the status of the Network Service (NS) deployed by the 5G EVE Portal are

available, including the status of each nested NS that are part of the NS definition. In Table 1 we show the

services provided by the Multi-Site Inventory.

Table 1: Services provided by Multi-Site Inventory

Service Path Method Input Output Description

Multi-

Site

Inventory

/nslcm/v1/ns_instances/{nsInstanceId} GET nsInstanceID NsInstance

Retrieve the

status of a

NS

3.3 Multi-Site Network Orchestrator

The Multi-Site Network Orchestrator (MSNO) provides the Network Services Lifecycle Management API to

the 5G EVE Portal. The MSNO orchestrates the Network Services through multiple site orchestrators.

3.3.1 Open API description

The API published by the Multi-Site Network Orchestrator is available at:

https://github.com/5GEVE/OpenAPI/v0.2//MSNO

It contains the full ETSI NFV SOL 005 Network Service LCM API, as defined in the standard. Table 2 states

the services supported in this delivery.

Table 2: Services provided by Multi-Site Orchestrator

Service Path Method Input Output Description

Multi-Site

Network

Orchestrator

/nslcm/v1/ns_instanc

es
POST CreateNSRequest NsInstance

Create a new

Network Service

in the MSNO.

Multi-Site

Network

Orchestrator

/nslcm/v1/ns_instanc

es
GET -

Array of

NsInstance

Returns the

information of all

NS available at

MSNO/MSI

Multi-Site

Network

Orchestrator

/nslcm/v1/ns_instanc

es/{nsInstanceId}/ins

tantiate

POST
InstantiateNsReque

st
Location

Instantiate a NS

in the local NFV-

O

https://github.com/5GEVE/OpenAPI/tree/v0.2/MSI
https://github.com/5GEVE/OpenAPI/v0.2/MSNO

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 16 / 59

3.3.2 Service description

In this delivery, the Multi-Site Network Orchestrator provides a subset of the Network Service Lifecycle

Management API described above. The goal is to support the minimum set of services that allows to deploy a

single-site scenario of a 5G EVE Use Case.

The following services are provided:

• List of Network Services: Provides the list of Network Services onboarded in the I/W Framework

• Information of a Network Service (via Multi-Site Inventory)

Figure 2: Workflow of the creation of a Network Service ID

• Creation of a Network Service Identification: It is the first step for deploying a Network Service and it

is detailed in Figure 2. The main features implemented are:

o Persistent storage (Local Storage) of the Network Service Information, shared between MSNO

and MSI

o Retrieval from the Multi-Site Catalogue of the NSD information

o (optionally) Consistency check with local NFV-O (through Adaptation Layer)

• Instantiate a Network Service: Detailed in Figure 3, it instantiates a Network Service in the 5G EVE

sites. The main features supported in this delivery are:

o Instantiation of each nested NS in the correspondent site NFV-O

o Transactional control of the operation

Multi-Site

Network

Orchestrator

Client
Multi-Site

Catalog

Get NSDInfo (NSD Info Id)

CreateNsRequest (NSD Info Id)

Retrieve NSDInfo (NsdInfo, nested NSD info ID)

Adaptation

Layer

NSInstance (UUID, Link)

Multi-Site

Inventory

Generate

UUID

Local

Storage

Store new NS

Update NS: nested NS

Retrieve NS (NFVO ID 1)

Retrieve NS (NFVO ID N)

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 17 / 59

Figure 3: Workflow of NS instantiation

The services implemented have the following limitations:

• Notifications are not supported. They will be implemented in Drop 1

• A transaction cannot be resumed in case of MSNO crash. A persistent transaction model is planned for

Drop 2

• Transaction rollback not implemented. Planned for Drop 2.

The deliverable of Multi-Site Network Orchestrator can be found at:

https://github.com/5GEVE/I-W_Framework/tree/v0.2/MSNO

3.4 Data Collection Manager

The Data Collection Manager component, as explained in D3.2 ([2]) – section 4.2.5, is responsible for the

collection and persistence of all the network and vertical performance metrics that are required to be gathered

during the execution of experiments, with two objectives: monitor the experiment and validate the targeted

KPIs.

As a result, one specific feature that is necessary to be provided is the delivery of the monitoring information

(being more precise: the metrics3 gathered from the monitored components – VNFs, PNFs and other components

– and the KPIs and results inferred from these metrics) to the components that are going to consume that data.

For that reason, the Data Collection Manager is a central component in the 5G EVE architecture, as it has to

obtain the necessary metrics from site facilities, and store and deliver them to the components on demand. These

components include: The Portal developed in WP4, and the KPI Analysis and Validation framework developed

in WP5.

Note that this component has had different updates regarding the proposed architecture, operations, information

model and workflows. These changes have been mentioned in Annex A.

3 This concept replaces the “data” term presented in D3.2 – section 4.2.5.1. Currently, “logs” term has the same meaning than explained

in that section, but now it will be used “metrics” instead of “data” for talking about the processed logs, after using a transformation

function (called “log-to-metric transformation”), which are delivered and used by upper layers. Data shipper components (presented

in D3.2 – section 4.2.5.2) will be responsible for implementing that log-to-metric transformation function.

Multi-Site

Network

Orchestrator

Client
Multi-Site

Catalog

InstantiateNsRequest

Adaptation

Layer

200 OK with Location

Multi-Site

Inventory

Local

Storage

Retrieve NSD Info

Instantiate nested NS 1

NSD Info

result

Instantiate nested NS N

result

Update NS status

https://github.com/5GEVE/I-W_Framework/tree/v0.2/MSNO

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 18 / 59

3.4.1 Software architecture

The Data Collection Manager software architecture will be based on Apache Kafka4, which is a well-known

publish-subscribe tool that acts as a bus, being able to manage data and send them to different applications

connected to it.

Figure 4: Apache Kafka's main APIs.

Moreover, Kafka is able to replicate data among different nodes, which can be useful for a cluster deployment.

In fact, there are different deployment modes for achieving that purpose:

• Cluster mode: data from different topics is replicated within a cluster.

• Mirroring mode: data from different topics is replicated to another Kafka cluster. This solution is

interesting in case it is necessary to have separate Kafka clusters (e.g. for managing different data in

each cluster).

Some interesting services offered by Kafka are the following:

• Kafka Streams: is a library for building streaming applications, specifically applications that transform

input Kafka topics into output Kafka topics (or calls to external services, or updates to databases, or

whatever).

• Kafka Store: Kafka also offers the possibility of persisting data with storage services.

• Kafka ACL: for controlling who access to a specific topic and when, ACLs can be defined as well.

These services are described in Figure 5.

4 https://kafka.apache.org/

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 19 / 59

Figure 5: Main services and functionalities offered by Kafka.

The access to the Kafka bus from upper layers is also transparent, hiding the presence of different site facilities

to these layers, which is the main objective to be achieved with the use of the Interworking Layer. This can be

achieved with an intermediate layer to provide seamless access to upper components, which can also provide

the capabilities of defining, maintaining and updating topics.

Currently, the implementation that has been already done regarding the Data Collection Manager is a dockerized

environment for testing the 5G EVE Monitoring & Data Collection tools from WP4, which includes a specific

Kafka container for performing the publish-subscribe queue functionality. That environment is available in the

5G EVE repository5.

Figure 6: Kafka Confluent components (from https://www.confluent.io)

However, the solution that is intended to be deployed is a clustered Apache Kafka environment, coordinated by

a dedicated tool such as Apache ZooKeeper6, and complemented with a management platform like Kafka

5 https://github.com/5GEVE/5geve-wp4-monitoring-dockerized-env

6 https://zookeeper.apache.org/

https://github.com/5GEVE/5geve-wp4-monitoring-dockerized-env
https://zookeeper.apache.org/

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 20 / 59

Confluent7, which provides, among other utilities, a REST API proxy for accessing to the Kafka cluster without

using the native Kafka protocol. This complete architecture is expected to be finalized for the next D3.4

deliverable. Moreover, this Kafka Confluent platform also provides several clients8for enabling different

functionalities that can be considered for the future. An example of an architecture which covers these software

requirements is presented in Figure 6, which belongs to the Kafka Confluent documentation. For Data Collection

Manager, it will be used the Community version (open source), and also combining Apache Kafka with Apache

ZooKeeper to enable a distributed coordination and consensus system in the cluster. The final specification,

including other main functionalities and capabilities such as security mechanisms, will be provided in the next

D3.4 deliverable.

This architecture can also be complemented with other technologies for offering cold storage or fast queuing as

improvements, related to the enhanced architecture already presented. This configuration is not currently

available and will be studied for future deliverables.

3.4.2 Open API description

As a first approach, the Data Collection Manager main API will be based on the native Kafka protocol9, as it is

a well-known protocol that is present in lots of production environments for managing the exchange of a huge

amount of data between lots of components. The API is based on the Kafka publish-subscribe implementation,

supporting the three main operations presented before (subscribe, unsubscribe and publish – which triggers the

deliver operation too). In fact, practically all the components which are connected to this Data Collection

Manager are able to use that protocol or can be adapted somehow in order to use it (e.g. by including an

application logic with programming languages which include Kafka libraries, such as Python).

However, in case of having specific components that are not capable of using the Kafka protocol, the Kafka

Confluent platform provides a REST Proxy10 component in order to deal with that issue. Note that it does not

cover all the functionalities that Kafka manages with its native protocol, but the main operations that will be

used by the Data Collection Manager are defined in the specification.

The Open API specification of the REST Proxy component (which has been obtained from the Kafka Confluent

documentation) has been included here:

https://github.com/5GEVE/OpenAPI/tree/v0.2/DataCollectionManager

An example of possible operations supported by this REST Proxy component related to the operations presented

in Annex A.2 (subscribe, unsubscribe and publish) are presented in Table 3 (the final operations to be used will

be defined in the next D3.4 deliverable).

Table 3: Example of Data Collection Manager operations from its Open API specification.

Service Path Method Input Output Description

Data

Collection

Manager

/consumers/{

group_name

}/instances/{i

nstance}/sub

scription

POST

group_name

(name of

consumer group)

instance (ID of

consumer

instance)

204 –success

404 –

consumer not

found

409 –

subscription

Subscribe to the given list

of topics or a topic pattern

to get dynamically assigned

partition. If a prior

subscription exists, it would

be replaced by the latest

7 https://www.confluent.io/

8 https://docs.confluent.io/current/clients/index.html and https://cwiki.apache.org/confluence/display/KAFKA/Clients

9 https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol

10 https://docs.confluent.io/current/kafka-rest/index.html

https://github.com/5GEVE/OpenAPI/tree/v0.2/DataCollectionManager
https://www.confluent.io/
https://docs.confluent.io/current/clients/index.html
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol
https://docs.confluent.io/current/kafka-rest/index.html

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 21 / 59

Body with either

topic subscription

or topic pattern

subscription

schema.

mutually

exclusive

subscription (subscribe

operation)

Data

Collection

Manager

/consumers/{

group_name

}/instances/{i

nstance}/sub

scription

DELET

E

group_name

(name of

consumer group)

instance (ID of

consumer

instance)

204 –success

404 –

consumer not

found

Unsubscribe from the

topics currently subscribed

(unsubscribe operation).

Data

Collection

Manager

/topics/{topic

Name}
POST

topicName

message(s) to

produce to the

given topic

200 –

message(s)

posted

404 – topic

not found

422 – invalid

request

Post messages to a given

topic (publish operation)

Nevertheless, to support the workflows presented in Annex A.3, it is necessary to chain several operations

present in both the Kafka protocol and the REST API in order to achieve the specific purpose of each operation.

Specifically, each operation must do the following actions:

• Subscribe: when the Data Collection Manager receives the list of topics to be subscribed:

o It will check if each topic has been previously created in the Kafka cluster. So, for each topic:

▪ In case it was created, it will do nothing.

▪ In case it was not created, it will create it and start consuming from that topic.

• Unsubscribe: it is the opposite case. When the Data Collection Manager receives the list of topics to

be unsubscribed:

o It will check if each topic has been previously created in the Kafka cluster. So, for each topic:

▪ In case it was not created, it will do nothing.

▪ In case it was created, it will stop consuming from that topic and delete it afterwards.

• Publish: when the message is received in the Data Collection Manager through a specific topic, it will

be automatically delivered to the components subscribed to that topic, as long as Kafka is consuming

from that topic (the topic must exist). In other case, the operation would be rejected.

3.4.3 Service description

In this section, the architecture proposed in D3.2 – section 4.2.5.2 will be extended with the introduction of the

Topic framework definition and the extension of the basic workflow to be followed in the Data Collection

Manager operation (mentioned in D3.2 – section 4.2.5.2). Architecture’s update from D3.2 is described in

Annex A.1.

3.4.3.1 Topic framework proposal

The topic framework represents the information model that will be used to define the data that will be handled

by the Data Collection Manager in a concurrent way. In this way, each topic defined, which is identified by a

unique ID, will manage a specific set of data that will be different to the information consumed by the other

topics, allowing the isolation between datasets.

In this first proposal, two main types of topics which will be used by the Data Collection Manager have been

identified:

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 22 / 59

• Signalling topics: these topics are used to communicate specific topics which will be used to transport

the data related to the metrics obtained and provided by the Data shippers, or the results and KPIs

calculated by the Results Analysis and Validation component, in order to execute the corresponding

subscribe or unsubscribe operations, depending on the stage in which these signalling topics are

involved. In this current proposal, there have been identified three signalling topics, whose identifiers

are:

o signalling.metric: signalling topic for metric’s data.

o signalling.kpi: signalling topic for KPI’s data.

o signalling.result: signalling topic for result’s data.

The reason of having a different signalling topic for each kind of data managed by the Data Collection

Manager is due to the need of isolation between the information exchanged in the Publish-subscribe

queue. As a result, for example, the signalling.metric topic will only handle topics related to metrics,

and will assure that the components subscribed to that signalling topic will only receive information

regarding metrics, and not related to results or KPIs.

• Data topics: they transport the value for the metrics/KPIs/results that are identified in the topic ID,

followed by some extra information (depending on the data; e.g. the VNF/PNF ID) in case they were

needed for later processing. The generic format of this kind of topic is the following:

<exp>.<site>.[metric|kpi|result].<value>, where:

o <exp>: is the experiment ID, identifying the experiment (e.g. industry4.0, etc.).

o <site>: identifies the site facility where the data is extracted (e.g. Spain, Italy, etc.).

o [metric|kpi|result]: it is a key word that indicates the type of information to which belongs the

next parameter. For example, if the data which is being consumed in the topic is a metric, the

value of this field will be “metric”.

o <value>: set the name of the parameter to be monitored (e.g. latency), identifying the

metric/KPI/result.

In case there is a need to manage a new source of information by the Data Collection Manager (e.g. data from

the orchestrator), a new set of signalling and data topics are needed in order to achieve that, and also updating

the corresponding workflows for including that new exchange of information.

The specific structure of data that will be handled by each kind of topic is briefly presented in Annex A.2 with

the update of the Data Collection Manager’s NBI and SBI, but it is not the main objective of this deliverable,

so it will be further described in D3.4.

3.4.3.2 Updated basic workflow

In this section, it is updated the basic workflow defined in D3.2 – section 4.2.5.2, having this sequence of high-

level operations (which are described with more depth in Annex A.3):

i. Data shipper components will gather the logs from the components which belong to a given experiment

and that are liable to be monitored. They will then perform the log-to-metric transformation, in order to

transform the heterogeneous, raw logs obtained from components and collection tools into metrics with

a common, homogeneous format, previously agreed in the blueprint’s definition. These data shippers

can be placed within each component as a lightweight software or can be in a separated server, but in

both cases, they must be connected to the Data Collection Manager with a logical connection (or

“queue”). As mentioned in D4.1, the responsible for configuring correctly the data shippers is the

experiment developer, but dynamic information such as the configuration parameters for the connection

to the Data Collection Manager, in case of not being defined before the experiment, can be included as

Day-2 configuration by the Runtime Configuration component (as long as that configuration is defined

in the test case).

ii. When test cases are executed in site facilities, the different components used during the experiment

(both physical and virtual) generate logs (raw information) that are captured by the data shippers and

transformed into metrics. Leveraging the connection with the publish-subscribe queue (again, by

publishing into a topic), metrics can be delivered to the Data Collection Manager.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 23 / 59

iii. This new workflow avoids the necessity of compute resources (mainly storage) in each site facility in

order to save the metrics before sending them to the Interworking Publish-subscribe queue, as the

“publish” operation is performed automatically by Data shippers.

iv. All the metrics provided by Data shippers located in each site facility are gathered in a common queue

(i.e. the Interworking Publish-subscribe queue), which also provides persistence for all the data

published there. As different topics for a specific use case – site facility – metric combination are used,

the information that arrives to the Data Collection Manager through a topic is automatically isolated

from the other topics from a logical point of view, being also able to define control access policies for

implementing more restrictive security procedures.

v. The metrics are received by the Results Analysis and Validation component in order to obtain the related

KPIs and results from a specific metric, which are in turn published in the Data Collection Manager (in

both cases, using specific topics for that purpose, and performing the necessary subscriptions for

achieving that behaviour). Therefore, if other components (e.g. monitoring components in the Portal,

experiment tools or the orchestrator itself) want to receive data (metrics, KPIs and/or results) managed

in the Interworking queue, they only have to subscribe to the specific topic in which they can obtain the

desired data. This is represented in Figure 15 and Figure 16 with the block called “transparent and

seamless access to results, metrics & KPI values to other queues”.

3.5 Runtime Configurator

The Runtime Configurator component is intended to apply tailored runtime configurations to the provisioned

end-to-end VNFs and PNFs for supporting the Vertical use case experiments, acting as Day-2 configurator. It

was briefly described in D3.2 – section 4.2.4, and its definition will be expanded in this deliverable, mainly

regarding its interaction with the Experiment Execution Manager component and the subsequent connection to

the components to be configured by it.

Note that this component has had different updates regarding the proposed architecture, operations, information

model and workflows. These changes have been mentioned in Annex B.

3.5.1 Software architecture

The Runtime Configurator will be based on Red Hat Ansible Community Edition11 open-source project. The

main component of this platform is Ansible Core12, which is an IT automation tool that can configure systems,

deploy software and orchestrate more advanced IT tasks such as continuous deployments or zero downtime

rolling updates.

The configuration, deployment and orchestration language used by Ansible are represented by playbooks, which

are the implementation of the templates commented in previous sections. These playbooks describe the

instructions to be executed in order to manage configurations of and deployments to remote machines (i.e. the

VNFs and PNFs to be configured).

The access to the Ansible component can be made by accessing to the server which holds the Ansible

implementation (e.g. by using SSH protocol, for example) or by using the API provided by the AWX project13,

which is the open-source version of the commercial Red Hat Ansible Tower platform, and provides a web-based

user interface, a REST API and a task engine built on top of Ansible.

Furthermore, the access to the configured components is achieved with OpenSSH as the main alternative, but

also having other transports and pull modes as alternatives. For non-compatible components, another solution

11 https://www.ansible.com/community

12 https://docs.ansible.com/ansible/latest/index.html

13 https://github.com/ansible/awx

https://www.ansible.com/community
https://docs.ansible.com/ansible/latest/index.html
https://github.com/ansible/awx

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 24 / 59

to make them reachable to Ansible is to provide the Proxy Component presented in Annex B.1, which will have

an open connection with Ansible and will forward the configuration provided by Ansible to these non-

compatible VNFs and PNFs. Possible functionalities and examples to be covered by the Proxy Component could

be:

• A proprietary management system from a given vendor, which can be contacted by the Runtime

Configurator in order to interact with non-compatible VNFs-PNFs. The vendors must be the responsible

for deploying and managing these components.

• A solution to reachability problems (e.g. for cases where the VNFs/PNFs to be configured are isolated

in private networks and needs to be reachable by the Runtime Configurator. This functionality may be

also present for the last case (i.e. a management system isolated in a private network). These

connectivity issues must be developed within 5G EVE project.

For the deployment of the Runtime Configurator, it has been agreed the interface between the Experiment

Execution Manager and the Runtime Configurator and it has also been confirmed that OpenSSH protocol can

be used in order to configure the components deployed for a given experiment, having the alternative of the

Proxy Component in case of incompatibilities. However, the implementation of the specific platform (currently,

it has been only tested in a local environment), operations and information model presented in Annex B.2, and

workflows described in Annex B.3 and the deployment of the templates (playbook) to be used in the test are

still in progress and they will be further described in future deliverables.

Other issues that must be solved in the following drops of the Interworking Framework implementation are the

following:

• The configuration of VNFs and PNFs whose IP addressing is based on private networks which are not

reachable by the Interworking Layer. In that case, as there are other components in the Interworking

Layer that interacts with site facilities (e.g. the Network Service Orchestrator or the Data Collection

Manager), there must be an access point where the Runtime Configurator can access to site facilities

and can provide the configuration to the VNFs and PNFs; for example, the Proxy Component already

mentioned.

• The specification of the Proxy Component. In theory, site facilities define a multi-tenant infrastructure

which holds different experiments from different users. As a result, the definition of the virtual networks

to be used by each experiment could be different among them in order to assure the isolation between

use cases. Consequently, the Proxy Component must be configured for reaching all the virtual networks

where there can be non-compatible components with Ansible technology, which is an implementation

issue that can be achieved by many ways (e.g. deploying a Proxy Component for each virtual network,

using one single Proxy Component which is connected to all virtual networks, or deploying a Reverse

SSH Proxy as an alternative to direct SSH connection). The selection of the most appropriate way of

performing this and the definition of the actors responsible for the management and operation of this

Proxy Component will be also described in future deliverables.

3.5.2 Open API description

The main interface to be used between the Experiment Execution Manager and the Runtime Configurator will

be based on the OpenSSH protocol, because it is intended to define direct calls between them exchanged through

that protocol. However, as mentioned before, the AWX component provides a REST API in case of needing a

RESTful interface for the access to the Runtime Configurator functionality.

That Open API specification is defined in the Ansible official documentation, which can be found here:

https://docs.ansible.com/ansible-tower/latest/html/towerapi/api_ref.html. Furthermore, the correct reference to

the swagger file containing that OpenAPI specification in the 5G EVE repository is the following one:

https://github.com/5GEVE/OpenAPI/tree/master/RuntimeConfigurator

An example of possible operations supported by the AWX REST API related to the operations presented

previously (mainly, executing a specific template) are presented in Table 4 (the final operations to be used will

be defined in the next D3.4 deliverable).

https://docs.ansible.com/ansible-tower/latest/html/towerapi/api_ref.html
https://github.com/5GEVE/OpenAPI/tree/master/RuntimeConfigurator

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 25 / 59

Table 4: Example of Runtime Configurator operations from its OpenAPI specification.

Service Path Method Input Output Description

Runtime

Configurator

/job_templa

tes
POST

Among others:

• Name of the

job template.

• Playbook to

be executed.

• Extra

variables to

be used.

• Timeout.

201 – accepted,

with the job

template ID.

403 – permissions’

problem.

Create a job

template.

Runtime

Configurator

/jobs/{id}/c

reate_sched

ule

POST Job template ID. 201 – accepted.

Create a schedule

that launches

the job template that

launched this job

3.5.3 Service description

Currently, the Runtime Configurator service description is still under discussion in order to close the definition

of the necessary interactions and connections with the Experiment Execution Manager component. The current

status of this is presented in Annex B and will be updated in future drops of the Interworking Framework.

3.6 Adaptation Layer

The Adaptation Layer at the SBI provides a common access interface to trial site services and resources. The

implementation is organized in multiple software components depending on the specific feature to access (i.e.,

orchestration, configuration, monitoring).

A thorough presentation of requirements, features, and high-level design is reported in D3.2 [2].

The following subsections provide a description of the implementation process, software architecture and

technologies for each part of the Adaptation Layer.

3.6.1 Multi-Site Catalogue SBI

The Multi-Site Catalogue described in Section 3.1 includes SBI operations for the management of NSDs,

VNFDs and PNFDs in the local NFVOs. Furthermore, it features a synchronization mechanism to keep the

Interworking Layer aligned with the information available in the local NFVO catalogues. To achieve this, the

Multi-Site Catalogue is structured with a driver-based architecture. Each driver is in charge of the translation of

the NSD, VNFD, and PNFD from the standard ETSI NFV SOL 001 [7] model to the specific model of the

targeted NFVO type. Reverse translation is supported as well. The driver also implements the required

adaptations to interact with the NSD Management API of the specific NFVO.

This D3.3 software release of the Multi-Site Catalogue includes an OSM driver (that is compatible with OSM

R4, R5, and R6) that allows to integrate with the Italian and Spanish site facilities (i.e. both of them make use

of OSM as site orchestrator). Additional NFVO southbound drivers (e.g. for adapting and translating ONAP

API logics and data model) will be developed for the next releases of the I/W framework prototype. If required,

specific drivers will be also implemented to integrate with commercial orchestrators, e.g. from Ericsson and

Nokia in the Italian and the Greek sites. The alternative will be that all sites deploy at least one instance of OSM

or ONAP, independently of the presence of these commercial orchestrators.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 26 / 59

3.6.2 Multi-Site NSO to local Orchestrators interface (MSO-LO)

The Multi-Site NSO to local Orchestrator interface (MSO-LO) is the portion of the Adaptation Layer that

enables the Interworking Layer to access the orchestration features provided by the trial sites involved in the

5G EVE project. Trial sites can expose one or more local Network Function Virtualization Orchestrator

(NFVO), each one managing a different set of resources. The specification of features, requirements, and a

textual description of the API’s methods is provided in D3.2 [2].

This interface provides the following features:

• Operations to retrieve information about local NFVOs registered with the 5G EVE platform.

• Operations to retrieve, create, instantiate, scale, terminate, and delete NS instances.

• Operations to retrieve, create, and delete subscriptions to notifications about the status of one or more

NS instance.

3.6.2.1 Software architecture

The MSO-LO must provide a common interface to access the features of various NFVO types (e.g., OSM,

ONAP) without restrictions on open-source or proprietary licenses. The only constraint is for the NFVO

implementation to provide the complete specification of its North-Bound Interface (NBI), possibly in OpenAPI

format. To support the NFVO implementations declared at the moment in the 5G EVE project and to support

the inclusion of new NFVO technologies in the future, we designed the software with a driver-based structure

as depicted in Figure 16.

Figure 7: UML class diagram with just one example method of the interface.

Figure 7 shows a simplified version of the UML class diagram with just one method of the API, which is enough

to explain how the software works. As we use Python for the software implementation, not all the classes shown

in the diagram are Python classes. Some entities are just modules, as they do not need to store any status but are

a mere collection of static methods.

The app module contains the declaration of the REST API paths and related HTTP operations. Furthermore, it

includes the mapping between the previous entities and the relevant Python method. The method

implementation here is generic and agnostic from the specific type of local NFVO.

The other entities in the figure implement the factory method design pattern [8]. The pattern is very effective

for our use-case as it separates the creation of driver instances from the app module that actually use them.

Indeed, the app module depends (dashed arrow) from the manager module for the selection of the specific

NFVO implementation. The manager module implements the factory method plus some utility methods for the

interaction with the NFVO database.

The Driver abstract class realizes a contract for the driver implementation and is implemented by means of the

Abstract Base Class Python module (ABC, [9]). The addition of a specific NFVO driver simply consists in the

extension of Driver and in the implementation of all its declared methods.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 27 / 59

To better understand the interactions between the modules and class instances we use a message sequence chart.

Figure 8 shows the interactions needed to obtain the list of NSD from the catalogue of an OSM instance NFVO

named ‘osm_1’.

Figure 8: Message sequence chart to show modules and objects interactions.

At step 1, a GET request to the path “/nfvo/osm_1/ns_instances” is routed to the app module. The app module

executes the relevant method (step 2). At step 3, the app module requests the appropriate driver to the manager.

The manager determines the appropriate driver (step 4), creates an instance of the OSM driver (step 5), and

returns it to the app module (step 6). The app module actually receives an object of generic type Driver. In step

7, app calls the relevant method and in step 8 it receives the result.

At the moment, the manager creates a new driver instance for each request. This can of course be improved

with the association of a driver instance to each NFVO instance that is contacted. The feature needs to store and

track objects and it is planned for a future stage of the development.

3.6.2.2 Storage, database

In addition to supporting multiple types of local NFVOs, we also need to interact with multiple instances of

them. To support this requirement, we implement a registry to track registered NFVOs and related information,

as IP address and credentials. The registry is designed as a simple relational database. Figure 9 shows the table

diagram of the database.

In this first implementation the database is composed of four tables:

• NFVO: each record contains the general information about a local NFVO

• NFVO_CREDENTIALS: each record contains the credentials needed to interact with the NBI of the

local NFVO

• NS_SUBSCRIPTION: each record contains the subscription information to receive notifications about

the status of one or more NS instances.

• NS_INSTANCE: each record contains the association of a NS instance to the subscription for

notifications about its status.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 28 / 59

Figure 9: Table diagram of the database for the local NFVO registry.

The relationship between NFVO and NFVO_CREDENTIALS is 1-to-1 and all the information could be merged

in the same table. Anyway, since NFVO_CREDENTIALS stores sensible data we decided to keep it separate

to avoid accidental leaks due to programming errors.

Because the data model is extremely simple and the database is not going to be accessed by a large number of

users, we have discarded the selection of a client/server SQL database engine for the implementation. We have

decided to use SQLite [10], a database engine that “strives to provide local data storage for individual

applications and devices”. SQLite provides SQL features as well as ACID transactions. The database is

completely contained in a single disk file with support to sizes up to the terabyte. The API is simple to use and

it has great integration with python. We believe SQLite can widely support our use-case requirements, while

keeping the application architecture as simple as possible.

3.6.2.3 Application architecture

The MSO-LO is a web service that exposes to NBI based on the REST architectural style. To implement this

module, we have mainly used tools for the API description / documentation and tools for the webservice

implementation. Due to the used technology, a reverse proxy is used to bundle all communication between MSO

and the MSO-LO backend.

Figure 10: Architecture of the application

As shown in Figure 10 the architecture of the application is composed by the following components:

• Reverse proxy: we used the popular NGINX [11]

• WSGI server: we used uWSGI [12] typically used for running Python web applications

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 29 / 59

• Webservice: we used the lightweight micro-framework Flask [13] written in python, that is designed

for a quick and easy “getting started”, with the ability to scale up to complex applications

Then the execution flow is the following: a generic HTTP Client initiates a request by NGINX that forwards

the request to uWSGI using a unix socket. Then uWSGI forwards the request to Flask that handles the request

and generates the response. The response is passed back though the stack.

3.6.2.4 Open API description

The API has been described in D3.2. As a standard we reference the ETSI NFV-IFA 013 [14] and we extend it

in order to support the management of the information about local NFVOs (e.g., name, location, radio coverage,

capabilities, etc.) and to fully define the subscription and notification system (partially defined by the standards).

For the implementation we adopt and extend the proposed implementation described in ETSI NFV-SOL 005

[3]. We try to adhere to the proposed standard as much as possible with similar paths, request bodies, and

responses.

The API description / documentation has been realized with Swagger [15], an online tool to describe API

adhering to the OpenAPI Specification [16]. The API is available as a YAML file in the 5G EVE public

organization hosted on GitHub [17]. Table 5 summarizes the API methods offered by MSO-LO interface.

Table 5: Services provided by MSO-LO interface

Service Path Method Input Output Description

MSO-LO /nfvo GET -
Array of

NFVO info

Retrieve list of

local NFVO.

MSO-LO /nfvo/{nfvoId} GET - NFVO info

Read an

individual

NFVO.

MSO-LO
/nfvo/{nfvoId}/ns_in

stances
POST

nsdId,

nsName,

nsDescription

NS identifier

Creates and

returns a

Network Service

identifier (nsId)

in a Nfvo

MSO-LO
/nfvo/{nfvoId}/ns_in

stances
GET -

Array of NS

instances

Retrieve list of

NS instances.

MSO-LO

/nfvo/{nfvoId}/ns_in

stances/{nsInstanceI

d}

GET - NS instance

Read an

individual NS

instance resource.

MSO-LO

/nfvo/{nfvoId}/ns_in

stances/{nsInstanceI

d}

DELETE - -

Delete an

individual NS

instance resource.

MSO-LO

/nfvo/{nfvoId}/ns_in

stance/{nsInstanceId

}/instantiate

POST nsFlavourId -
Instantiate a NS

instance.

MSO-LO

/nfvo/{nfvoId}/ns_in

stances/{nsInstanceI

d}/scale

POST

scaleType,

scaleVnfData,

scaleNsData

-
Scale NS

instance.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 30 / 59

MSO-LO

/nfvo/{nfvoId}/ns_in

stance/{nsInstanceId

}/terminate

POST
terminationTi

me
-

Terminate a NS

instance.

MSO-LO
/nfvo/{nfvoId}/subsc

riptions
POST

filter,

callbackUri

subscription

identifier

Subscribe to NS

lifecycle change

notifications.

MSO-LO
/nfvo/{nfvoId}/subsc

riptions
GET -

Array of

subscription

information

Query multiple

subscriptions.

MSO-LO

/nfvo/{nfvoId}/subsc

riptions/{subscriptio

nId}

GET -
subscription

information

Read an

individual

subscription

resource.

MSO-LO

/nfvo/{nfvoId}/subsc

riptions/{subscriptio

nId}

DELETE - -
Terminate a

subscription.

3.6.3 Runtime Configurator SBI

As described in Section 3.5, the Runtime Configurator is in charge of applying Day-2 configurations on the

VNF instances deployed in the trial sites. To achieve this goal, the configuration management software Ansible

is used. As VNFs are usually Linux-based system, an SSH connection is needed to run commands and apply

configurations with Ansible.

The Runtime Configurator SBI is therefore realized by the SSH protocol. Given a deployed NS instance, SSH

connections or tunnels are dynamically established between the Interworking Layer and the VNF instances

deployed in the local trial sites to apply Day-2 configurations during the experiment execution.

This approach has the advantage of being simple and based on a well-known, highly maintained, and secure

protocol as SSH. At the same time some challenges arise (also presented in Section 3.5): e.g. not all VNF

instances can be reached directly from the Interworking Layer. In fact, probably no VNFs will have a public IP

address in the management plane, so the solution must go in line with using the VPN connections among sites

in order to provide access to local management networks to the Interworking Layer. Only in cases where there

is equipment in management networks not published in 5G EVE, other solutions must be proposed; e.g. the use

of a reverse proxy.

3.6.4 Data Collection Manager SBI

The Data Collection Manager has been presented in Section 3.4and its task is to collect data about the

experiment execution. It is based on Kafka, a well-known and widely used publish-subscribe broker providing

a lot of clients to interact with [20].

On the SBI, the Data Collection Manager must be able to receive data from the VNF instances realizing the NS

of the experiment. This is achieved by equipping all the required VNFs in 5G EVE with a data shipper including

a Kafka client, e.g. the Elastic Beat [21] component.

The solution is simple but effective. Anyway, if some VNF cannot include the data shipper for whatever reason,

Kafka can be extended with a REST API thanks to an external plugin: the Confluent REST Proxy [22]. It has

some limitations with respect to the native Kafka protocol, but it supports all the basic operations like topic

subscription, message publications, and message consumption.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 31 / 59

3.7 Site adaptations

All the commands executed by Adaptation Layer’s components need to be translated to a form understandable

by local orchestrators. Each of the Sites in the project requires a special driver that allows communication

between the MSO-LO interface end-points. As different Sites use different implementations of a Local

Orchestrator, different drivers are needed to be implemented (for instance: ONAP driver, OSM driver, etc.). A

thorough mapping of functionalities to OSM and ONAP operations is reported in D3.2 [2].

The following subsections provide a description of the implementation process, software architecture and

technologies for each Site of 5G EVE platform.

3.7.1 French site

The French Site facility is deployed in various French cities with a central Management and Orchestration

(MANO) tool (local orchestrator) based in Chatillon, Paris, in Orange’s headquarter. The commercial and pre-

commercial experiments have been deployed locally at companies’ premises at Paris, Lannion and Sophia

Antipolis.

The ONAP solution has been selected as a main tool of management and orchestration in French Site. It is the

major point of contact with I/W Framework. It creates a kind of a gateway and umbrella over all the experiments

developed by the French companies. ONAP is an open-source, complete solution that provides a comprehensive

platform for real-time, policy-driven service orchestration and automation. In the French Site we attach four

different VIMs to be orchestrated by ONAP (Openstack instances, Kubernetes, OpenShift). ONAP is also a

platform with full range of life-cycle management operations that can be steered by Runtime Configurator of

I/W Framework. To fully integrate ONAP and the I/W Framework, a special adapter needs to be implemented.

The adapter will translate requests made by I/W Framework components to the form understandable by ONAP

via using the ONAP external North Bound Interface.

In D3.3we will focus on some operations that basically allow to integrate ONAP with I/W Framework services

like Service Orchestration, Runtime Configurator or Multi-Site Catalogue. It allows to run first experiments

from the level of 5G EVE Portal. The first delivery of the MSO-LO interface (that provides operations for the

management of NS and VNF instances) will focus on VNF onboarding and initialization.

The very first prototype released in this D3.3 should provide the adaptation and translation features towards the

ONAP APIs like:

• Onboard NSD /nbi/api/serviceSpecification

• Retrieve NSD /nbi/api/serviceSpecification

• Onboard VNFD /nbi/api/serviceSpecification

• Retrieve VNFD /nbi/api/serviceSpecification

• Instantiate NSI /nbi/api/serviceOrder

• Retrieve list of NSI /nbi/api/serviceOrder

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 32 / 59

Figure 11: Architecture of the ONAP driver with ONAP NBI

3.7.2 Greek site

For Greece site, we are analysing the possibility of reusing the ONAP approach followed in French site. At the

moment of closing this deliverable, the decision is not confirmed and for that is not included here.

Following, we include the current interface exposed by the site

3.7.2.1 Nokia CloudBand Application Manager APIs

Interworking is based on NOKIA CloudBand Application Manager (CBAM) APIs and that performs the

required functionalities. The following main operations belong to VNF lifecycle management:

ONAP DRIVER

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 33 / 59

The Nokia CBAM is a VNF manager that automates VNF lifecycle management and cloud resource

management. CBAM has standards-based APIs to allow it to work with any vendor VNF, EMS, VIM, or NFV

Orchestrator (NFVO).

The NFM-P provides an interface with CBAM, which acts as the VNF manager in this solution. The NFM-P

uses the Ve-Vnfm-Em reference point to exchange notifications on VNF lifecycle changes and monitor virtual

resources with CBAM. The Network Supervision application allows you to configure a CBAM access point to

monitor managed VNFs and execute lifecycle management actions.

The NFM-P provides the following functions when interfacing with CBAM:

• element management for VNFs

• VNF assurance, alarm monitoring, and status tracking

• VNF KPI monitoring

• lifecycle management proxy actions

• policy-based lifecycle changes

CBAM access point

The NFM-P supports CBAM integration through a CBAM access point created in the Network Supervision

application. It is necessary to input CBAM and NFM-P login credentials in order to create the access point. It

is necessary to also specify an NFM-P discovery rule to enable VNF automatic discovery. This procedure

requires administrator or nfvMgmt access privileges.

Once the access point is successfully created, you can view a list of CBAM access points associated with the

NFM-P. From the list of CBAM access points, you can cross-launch to the CBAM GUI, rescan CBAM VNFs,

or open the Details tab for an access point. The Details tab allows you to view the associated discovery rule and

the connection status for the specified CBAM access point. The connection status is verified by the NFM-P

once every two minutes.

The following are prerequisites before creating a CBAM access point:

• Ensure the specified CBAM login credentials have access to the CBAM APIs via ReST. See

the Installing CloudBand Application Manager Guide for more information.

• Ensure the NFM-P SSL certificates are installed on CBAM. See the CloudBand Application Manager

Administrator Guide for more information.

VNF discovery

It is not possible to instantiate VNFs using a CBAM interface. We can only discover VNFs from CBAM using

an NFM-P discovery rule specified during access point creation. The NFM-P requires that the VNFD template

for discovered VNFs have post-instantiation scripts to enable SNMP and configure other protocols necessary

for automatic node discovery. When the NFM-P discovers VNFs from a CBAM access point, it adds them as a

rule element for the associated discovery rule.

The Unmanaged VNFs tab lists the VNFs managed by the CBAM instance that were not discovered by the

specified NFM-P discovery rule. The list is updated once every two minutes.

Lifecycle change notifications

Lifecycle change notifications (LCNs) are messages sent from CBAM to the NFM-P with details on VNF

lifecycle updates. When the CBAM access point is created, the NFM-P requests two different LCN subscriptions

for the CMG and CMM. LCNs are used to inform the NFM-P of changes related to VNF instantiation,

termination, scaling, healing, or variable modifications. When the NFM-P receives an LCN, it scans the VNF

information from the CBAM access point and updates its VNF database accordingly.

Regardless of LCNs, the NFM-P automatically polls the CBAM access point for VNF updates once every hour.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 34 / 59

VNF lifecycle management

Certain VNF lifecycle changes can be initiated from CBAM or the Network Supervision application. Whenever

a lifecycle change is triggered in CBAM, it informs the NFM-P via an LCN.

VNFs can be instantiated in CBAM and advertised to the NFM-P via an LCN. When the NFM-P receives

information on a newly instantiated VNF, it creates an associated VNF object and attaches a discovery rule to

that object automatically. When the NFM-P discovers a VNF, it retrieves information related to supported

operations, scaling and healing templates, extensions, and compute resources.

VNFs can be terminated in CBAM and advertised to the NFM-P via an LCN. When the NFM-P receives

information on a terminated VNF, it unmanages the VNF object and removes all associated VNFCs.

VNFs can be deleted in CBAM and advertised to the NFM-P via an LCN. When the NFM-P receives

information on a deleted VNF, it removes the VNF from its database and unmanages the associated network

element.

VNFs can be healed to trigger a reboot in CBAM or the Network Supervision application. Healing must be

enabled in the CBAM VNFD before this operation can be performed in the GUI. If the VNFD requires additional

parameters for VNF healing, the parameters are visible in the Network Supervision application.

VNFs can be scaled in or scaled out in CBAM or the Network Supervision application. Scaling must be enabled

in the CBAM VNFD before this operation can be performed in the GUI. When performing a scaling operation,

it is necessary to specify a scaling aspect and a new level. The scaling level cannot exceed the maximum scaling

level specified in the CBAM VNFD. If the VNFD requires additional parameters for VNF scaling, the

parameters are visible in the Network Supervision application

3.7.3 Italian site

The Italian site facility is deployed in the city of Turin, where a test lab environment is running in TIM

headquarters for the verification of components and functionalities of 5G NSA architecture. In parallel, 5G

technologies provided by Ericsson are being deployed in different sites in Turin for the experimentation of

Smart Transport and Smart City use cases.

For what concerns the NFV orchestration tools, two solutions are envisaged to coexist for the lifecycle

management of Network Services and VNFs in the Italian site facility: an open source OSM orchestrator, and

an Ericsson orchestrator. In particular, the OSM orchestrator is mostly dedicated to the coordination of the

vertical VNFs (i.e. those providing the specific Use Case applications) and related Network Services lifecycle.

For what concerns the coordination and lifecycle management of the 5G/4G network related VNFs and

functionalities (e.g. EPC, 5G Core, RAN), a dedicated orchestrator is planned to be provided by Ericsson, and

to be integrated with the I/W framework and the 5G EVE platform at a later stage.

Therefore, in this D3.3 delivery, for what concerns the multi-site Network Service lifecycle management,

including the management of Network Service and VNF descriptors, the Italian site adaptation features mostly

focus on the translation of the ETSI NFV SOL and IFA APIs, workflows and data models towards those of

OSM.

As said in previous sections, the Multi-site Catalogue embeds part of the I/W framework adaptation layer

features targeting the management of NSDs, VNFDs and PNFDs. In practice, the Multi-site Catalogue is

equipped with specific per-site orchestrator drivers that adapt the unified catalogue northbound APIs and

translate the common TOSCA based data models into those specific of each local per-site orchestrator. In

particular, the Multi-site Catalogue prototype released in this D3.3 delivery provides the adaptation and

translation features towards the OSM APIs and data model, as follows:

• Adaptation of NSD Management Multi-site Catalogue APIs into OSM NSD Management API

• Implementation of catalogue synchronization workflow (see D3.2) with OSM

• Translation of TOSCA NSD into OSM NSD, and viceversa

• Translation of TOSCA VNFD into OSM VNFD, and viceversa

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 35 / 59

On the other side, the MSO-LO interface provides operations for the management of NS and VNF instances

deployed in local orchestrators of different type. The API implementation is inspired by the ETSI NFV SOL

005 specification to ensure a common and standardized interface. Following a modular design, a driver

implements the adaptation and translation toward the specific orchestrator interface. In this release, a prototype

driver for OSM is included supporting the following features:

• Adaptation of NS instance management Multi-site Catalogue APIs into OSM NS instance management

API. Operations to retrieve, create, instantiate, scale, terminate, and delete NS instances are supported

• Preliminary implementation of a subscription and notification system. This feature is not available in

OSM and it is realized in the driver.

3.7.4 Spanish site

Spanish site has a similar approach to the Italian site for the orchestration. As agreed during the WP3

discussions, we are going to reuse the OSM site adaptation driver for the OSM deployment in Spanish site,

which is in charge of orchestrating the VNF deployed in the cloud services. In a future, we might include a

driver for the Ericsson technology to orchestrate the 5G Core network

For the connection to the Data Collection Manager component, it is only needed that the Data shippers are

configured correctly with the IP addressing and port used by the Data Collection Manager and also the topics

to be used for the publication of metrics. That configuration can be defined by the experiment developer in

advance or provided by the Runtime Configurator during the experiment execution. For achieving this, the Data

Collection Manager must be reachable from the site facility.

In the case of the Runtime Configurator, it must be confirmed that the technology proposed (based on Ansible

platform) is able to reach all the possible components that can be deployed for a given experiment and that are

intended to consume Day-2 configuration. After analysing the possible constraints in that communication, the

Proxy Component might be configured and deployed consequently.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 36 / 59

4 Inter-site connectivity status

This section is focused on updating the site facilities interconnection solution described in D3.2 with all the new

decisions that have been agreed since then. The key aspects covered in D3.2 related to the inter-site connectivity

status are the following:

• Identified requirements for sites interconnection, inherited from D3.1 with some specific corrections.

• Potential technologies that can be used to interconnect the site facilities among them and with the I/W

Framework, connecting the different interconnection planes.

• Basic topologies to be considered (star and mesh topologies, mainly), in which it should be

distinguished both control and data plane, whose scope and requirements are slightly different:

o Control plane: the main site hosting the portal and the I/W Framework (assuming they are

placed in one of the site facilities, but this is not a specific requirement) must be connected to

the remaining of the site facilities.

o Data plane: all sites should be able to reach the remaining sites preserving the constraints

enunciated in both D3.1 and D3.2.

• Example of a possible interconnection based on the French site facility.

• The interconnection proposal itself, which will be extended below.

• Additional requirements (covered in the section 6 of the D3.2). Some examples are:

o Vertical’s remote access to deployed VNFs.

o Internet access for deployed VNFs.

o Monitoring and Support platform.

In this scope, it is also proposed the usage of a centralized IdM for all the services provided by the site

facilities to end users, in order to manage the access to these different services from the users.

Furthermore, there are other aspects which can impact on the final solution proposed which are still under

discussion and evaluation by WP2, such as the addressing plan (including the orchestration, data and control

plane) to be used in each site facility for this inter-site connectivity and with the I/W Framework, or the

possibility of joining certain ICT-19 projects infrastructure to 5G EVE facilities, and which will be defined in

future deliverables (starting from a brief list of requirements which was already included in D3.2).

4.1 Updated Inter-site connectivity proposal

It will be updated the interconnection proposal provided in D3.2 with new considerations and requirements that

must be considered. The proposal is based on the following architecture:

• The topology selected for inter-site connectivity would be, initially, a star topology for both control and

data planes, having the main site located at Turin, due to its geographical centralized position. As

mentioned before, this central hub is intended to host I/W Framework.

• Connectivity will be based on S2S IPsec tunnels among sites, using a routable private plan (e.g. using

virtual routers).

This solution would be the first phase in the interconnection between site facilities, and it is depicted in Figure

12.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 37 / 59

Figure 12: Site facilities interconnection – first phase.

The main advantage of this solution is that it makes the inclusion of new nodes easier. However, there are some

risks related to the existence of new possible nodes that come from close to existing locations or the link capacity

and resilience in Turin site facility. Moreover, once this setup is up and running, there should be specific

monitoring tools to collect the interconnection metrics which will allow to check whether the setup copes with

the requirements identified in D3.1, which are completed in D3.2 – section 5.1.

Taking into consideration the advantages and disadvantages of the first phase solution, and also considering

that, in case the performance requirements are not met with the above solution, an evolution of the last proposal

has been also proposed, identified as the second phase for site facilities interconnection, whose architecture is

depicted in Figure 13.

Figure 13: Site facilities interconnection – second phase

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 38 / 59

This type of interconnection has the following characteristics:

• The topology selected for inter-site connectivity would be a star topology for control plane and a full or

partial mesh for data plane (as the required paths are not optimized in a star, and the required

performance is higher than in the control plane). The main site would be also located at Turin, due to

its geographical centralized position, but it could be any other.

• Again, connectivity will be based on S2S IPsec tunnels among sites, probably using a routable private

plan too.

Leveraging in a different topology for the control and data plane has many advantages, which are: the avoidance

of potential bottlenecks and the reduction of the latency in the data plane, but having the risks of having

difficulties with scaling in the mesh topology or increasing the operations overhead.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 39 / 59

5 Updated roadmap

According to the proposal (Figure 14), the 5G EVE project has two official deliveries of the I/W framework:

the delivery described in this document and one in M24 with the full I/W framework.

Figure 14: Task plan for WP3 for the 5G EVE second year

In Table 6 we show the plan of supporting each of the features included in D3.2, based on WP3 plan and the

5G EVE project roadmap published in WP1.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30

Task 3.4

2020

Task 3.3

2019

Task 3.2

D3.1

D3.2

D3.3 D3.4

D3.6 D3.7

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 40 / 59

Table 6: 5G EVE Interworking Framework Roadmap

Key Features Category Brief Description D3.3 (M16)
Drop 1

(M18)

Drop 2

(M22)
D3.4 (M24)

Single-Site scenarios

Orchestration Plane

Interworking
Connectivity

Low Bandwidth performance but secure connectivity among

sites for orchestration traffic

Italian and

French sites

Full

provided

Full

provided

Full

provided

Single-site

Experiment

Monitoring Support

Monitoring

Capability of translating the monitoring requirements defined

by experimenters (based on selected KPIs) to the requested

site. Sites will typically have different local monitoring tools

and mechanisms.

-

Support

of basic

UC (one

per site)

Full

provided

Full

provided

Single-site

Applications

Deployment

Support

Operation

Capability to deploy the required VNFs, hosted in the 5G EVE

Catalogue, at the requested site. Sites will typically have

different local orchestrators.

-

Support

of basic

UC (one

per site)

Full

provided

Full

provided

Single-site Network

Automation

Support

Operation

Capability to deploy the required connectivity services (first

phase) and slices (second phase) to the requested site. Sites

will typically have available different local controllers and

network infrastructure.

-

Support

of basic

UC (one

per site)

Full

provided

Full

provided

Multi-Site scenarios

Control Plane

Interworking
Connectivity

Low Bandwidth performance but secure connectivity among

sites for control traffic
- -

Demons

trated

with one

selected

UC

Full

provided

Data Plane

Interworking
Connectivity

Secure connectivity among sites for user traffic. Low

bandwidth performance experiments will employ best effort

connectivity. High bandwidth performance experiments will

- - -

Depends on

final UC

requirements

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 41 / 59

employ a parallel high bandwidth low latency network, which

will be available at least between two sites.

Multi-Site

Experiment

Monitoring support

Monitoring

Capability of translating the monitoring requirements defined

by experimenters (based on selected KPIs) to the sites taking

part in the same experiment. Sites will typically have different

local monitoring tools and mechanisms.

- -

Selected

UC

working

in multi-

site

deploym

ent

Full

provided

Multi-Site E2E

Orchestration

Support

Operation

Capability to deploy the required slices, and VNFs hosted in

the 5G EVE Catalogue on top of them, to the sites taking part

in the same experiment. Sites will typically have different local

orchestrators, controllers and network infrastructure.

- -

Selected

UC

working

in multi-

site

deploym

ent

Full

provided

Multi-Site slicing

Vertical Slicing Slicing End-to-end slice that satisfies the requirement of the Vertical -
Selected

UC

Full

provided

Full

provided

Multi-Site Slicing Slicing Vertical Slice that spans across multiple sites - -
Selected

UC

Full

provided

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 42 / 59

6 Conclusions

This document describes the deliverable D3.3, which is the first software delivery of the Interworking

Framework. The main content of the software delivery are the APIs definitions, including both external and

internal interface definitions, which are available at the project repository14 following the standard de-facto of

OpenAPI. By making public all the interfaces we contribute to the openness and modularity of the 5G EVE

Framework, which is one of the main objectives of this project. As we explained, all interfaces try to follow as

much as possible the existing standard that in our case are: ETSI NFV SOL 001, SOL 003 and IFA 013. Where

the standard does not arrive, we extend it or we propose an implementation, as we do for the Adaptation Layer

northbound interface. The delivery also includes the Multi-Site Network Orchestrator and Multi-Site Catalog

components, with a subset of the target services, features and capabilities described in previous deliveries (D3.1

and D3.2). For those components not included in the delivery we describe the current design status, with all the

internal architecture and workflows.

In addition, in this document we updated the status of the inter-site connectivity, which is one of the pillars of

the Interworking Framework. We also include the roadmap of the Interworking Framework, where we define

two extra deliveries, called Drop 1 and Drop2, that we identify as necessary for supporting the milestones and

deliveries of this project.

14 https://github.com/5GEVE/OpenAPI/tree/v2.0

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 43 / 59

Acknowledgment

This project has received funding from the EU H2020 research and innovation programme under Grant

Agreement No. 815074.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 44 / 59

References

[1] 5G EVE D3.1: Interworking capability definition and gap analysis document, available at

https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-

analysis.pdf

[2] 5G EVE D3.2: Interworking reference model, available at https://www.5g-eve.eu/wp-

content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf

[3] “ETSI GS NFV-SOL 005 V2.6.1 (2019-04)” [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.06.01_60/gs_NFV-

SOL005v020601p.pdf

[4] 5G Catalogue, available at https://github.com/nextworks-it/5g-catalogue

[5] 5G Media, available at www.5gmedia.eu

[6] 5G EVE D4.1: 5G-MEDIA Catalogue APIs and Network Apps, available at

http://www.5gmedia.eu/cms/wp-content/uploads/2018/09/5G-MEDIA-D4.1-5G-MEDIA-Catalogue-

APIs-and-Network-Apps_v1.0.pdf

[7] ETSI GS NFV-SOL 001 NFV descriptors based on TOSCA specification, available at

https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/02.05.01_60/gs_NFV-

SOL001v020501p.pdf

[8] E. Gamma, "Design patterns: elements of reusable object-oriented software," Pearson Education

India, 1995.

[9] "abc - Abstract Base Classes," [Online]. Available: https://docs.python.org/3/library/abc.html.

[10] "SQLite Home Page," [Online]. Available: https://www.sqlite.org/index.html?.

[11] "nginx," [Online]. Available: http://nginx.org/.

[12] "uWSGI," [Online]. Available: https://uwsgi-docs.readthedocs.io/en/latest/.

[13] "Flask Web Framework," [Online]. Available: https://palletsprojects.com/p/flask/.

[14] “ETSI GS NFV-IFA 022 V3.1.1 (2018-04)” [Online]. Available:

https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/022/03.01.01_60/gr_NFV-

IFA022v030101p.pdf

[15] "Swagger," [Online]. Available: https://swagger.io/.

[16] "OpenAPI Initiative," [Online]. Available: https://www.openapis.org/.

[17] "AdaptationLayer OpenAPI," [Online]. Available:

https://github.com/5GEVE/OpenAPI/tree/v0.2/AdaptationLayer

[18] 5G EVE D4.1: Experimentation tools and VNF repository (https://www.5g-eve.eu/deliverables/)

[19] 5G-Ensure, "Deliverable D3.6 5G-PPP security enablers open specification," 2017.

[20] “Clients – Apache Kafka” [Online]. Available:

https://cwiki.apache.org/confluence/display/KAFKA/Clients

[21] “Beats: Data shippers for Elasticsearch” [Online]. Available: https://www.elastic.co/products/beats

[22] “Confluent REST Proxy” [Online]. Available: https://docs.confluent.io/current/kafka-rest/index.html

https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-analysis.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/01/5geve-d3.1-interworking-capability-gap-analysis.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf
https://www.5g-eve.eu/wp-content/uploads/2019/09/5geve_d3.2-interworking-reference-model.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.06.01_60/gs_NFV-SOL005v020601p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/005/02.06.01_60/gs_NFV-SOL005v020601p.pdf
https://github.com/nextworks-it/5g-catalogue
http://www.5gmedia.eu/
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/02.05.01_60/gs_NFV-SOL001v020501p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SOL/001_099/001/02.05.01_60/gs_NFV-SOL001v020501p.pdf
https://palletsprojects.com/p/flask/
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/022/03.01.01_60/gr_NFV-IFA022v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/022/03.01.01_60/gr_NFV-IFA022v030101p.pdf
https://www.openapis.org/
https://github.com/5GEVE/OpenAPI/tree/v0.2/AdaptationLayer
https://www.5g-eve.eu/deliverables/
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://docs.confluent.io/current/kafka-rest/index.html

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 45 / 59

Annex A – Data Collection Manager update from D3.2

In this section, the architecture proposed in D3.2 – section 4.2.5.2 will be extended with an updated version of

the requirements and capabilities that the Data Collection Manager must comply. Moreover, the operations and

information models described in D3.2 – sections 4.4.4.1 (NBI) and 4.5.5 (SBI) and the Data Collection Manager

workflows presented in D3.2 – section 4.3.3.6 will be updated, due to the change on the architecture and the

workflows of the Data Collection Manager.

A.1 Updated architecture

According to D3.2 – section 4.2.5.2, the technology envisioned to build the Data Collection Manager

architecture is the publish/subscribe messaging paradigm. However, this document describes some changes in

more detail. As a result, Figure 15 depicts the representation of the updated Data Collection Framework in which

the Data Collection Manager component is involved.

Figure 15: Improved version of the Data Collection Framework.

The changes, redefinitions and new concepts which have been included in this update are the following:

• All the publish-subscribe queues presented in the previous diagram are referred to the logical connection

which is established between specific components (e.g. Data shippers, Results Analysis and Validation,

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 46 / 59

etc.) and the Data Collection Manager. In order to achieve this connection, these components must be

configured properly in order to exchange information through the publish-subscribe mechanism

implemented by the Data Collection Manager.

• The logical connection aforementioned will be based on topics, which are the information unit in charge

of separating and isolating the information that is consumed by the Data Collection Manager. The

information model based on topics that will be used in this operation is defined in a separate subsection

(3.4.3.1). Note that the Data Collection Manager is able to handle the information managed by multiple

topics at the same time.

• The Experiment Definition block defined in D3.2 – Figure 18 has been replaced by the Results Analysis

and Validation block (from WP5) as described in Figure 15, whose main objective is to validate the test

execution according to the metrics received from the monitored components, also calculating the KPIs

and results in order to perform that validation. These KPIs and results can also be published into the

Data Collection Manager in case they were required by other components of the global architecture

(e.g. for monitoring purposes within WP4 scope). Therefore, the Data Collection Manager module

would not only handle processed metrics (as mentioned in D3.2), but also handle KPIs and result values

provided by the Results Analysis and Validation module.

• According to the specification provided in D4.1 ([18]), the Data Visualization block presented in D3.2

– Figure 18 has been replaced by the Experiment Monitoring and Maintenance & Results Collection,

whose objective is to collect all the information (metrics, KPIs and results) related to monitoring

purposes, apply filters and pre-processing functions to them, and finally represent them in an intuitive

GUI.

• Figure 15 presents a connection between the Orchestrator’s LCM and the Data Collection Manager,

which means that it is possible to connect other components to the publish-subscribe queue as long as

they are able to communicate by using the same protocol. Currently, this integration is not available,

but it could be easily integrated if required. Other components which could leverage from monitoring

purposes could be some components integrated in the site facilities, such as the local orchestrators or

the VIMs, in order to take intelligent decisions regarding the location of certain functions (VNFs) in

site facilities for a multi-site experiment, deploying these functions in the most suitable site facility

depending on the resource utilization in each site. In the previous examples, note that the Data

Collection Manager would only offer the capability of collecting and delivering information between

connected components, but other actions (like the application logic that make these “more intelligent

decisions”) must be implemented in other specific components.

• Potential capabilities that could be included in this general architecture (presented in D3.2 – section

4.2.5.2 and Figure 19), can be also integrated, maintaining all the assumptions done. However, the fast

data processing queue (using of the in-memory data storage in the Data Collection Manager server(s)

for processing the data that needs fast processing) does not need to have a new connection established

towards the Data Collection Manager. The usage of that in-memory data storage would depend, in fact,

on the topic framework proposed (e.g. having specific topics which will be used by the in-memory

storage). As a result, in Figure 16 these additional capabilities and changes to accommodate this fact

have been included.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 47 / 59

Figure 16: Enhanced Data Collection Manager architecture.

A.2 Updated operations and information model

As mentioned in D3.2, there will be three main operations regarding the Data Collection Manager: subscribe

to a topic, publish data into a topic (which will automatically trigger a delivery operation – deliver – of that

data to the components subscribed to that topic) and unsubscribe from a topic. As a result, the NBI and SBI

operations are depicted in Table 7 and

Table 8.

Table 7: Data Collection Manager NBI

Data Collection Manager NBI

Management of experimentation data

Description

Application-independent access to monitored experimentation data obtained during the

execution of use cases. Monitored data can be related to network conditions in general, or

Network/Service metrics, KPIs and results. The former will be valid to ensure that conditions

are adequate for the execution of the test. The later will also be used for validation purposes.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 48 / 59

Reference Standards

Interface based on Publish/Subscribe model.

Regarding network monitoring: RMON (RFC2819, extensions and updates), Syslog (RFC5424,

extensions and updates), SNMP (RFC1157, extensions and updates).

Regarding testing: NGMN Alliance “Definition of the testing framework for the NGMN 5G

pre-commercial networks trials”.

Operations Exposed Information Exchanged Information Model

Topic subscription

(subscribe)

• Topic(s) to be subscribed, classified in two main

categories:

o Signalling topics.

o Data topics, related to different metrics,

KPIs and/or results obtained from a specific

use case.

A list of topics to be

subscribed, formatted in a

JSON chain. The name to be

used for each topic is defined

in the Topic framework (which

is still under discussion).

Topic un-

subscription

(unsubscribe)

• Topic(s) to be unsubscribed, with the same two

categories aforementioned.

Same as topic subscription

operation but including the

topics to be unsubscribed.

Publish data

(publish)

• Topic in which you want to publish the data.

• Data to be delivered in the message. The data content

depends on the topic category:

o Signalling topics: transport the list of topics

to which the components subscribed to a

specific signalling topic will be eventually

(un)subscribed. In order to decide what

operation should be done, there is an action

field whose value can be either subscribe or

unsubscribe, depending on the operation

chosen.

o Data topics: transport the value for the

metrics/KPIs/results and some extra

information in case they were needed.

As a result of this operation, the Data Collection Manager

performs the delivery of the data (deliver) provided in the

publish operation through the defined topic to the components

subscribed to that topic.

The information model for the

data provided would depend on

the topic category. For

signalling topics, it will include

the list of topics to be

(un)subscribed and a action

field with the operation to be

executed afterwards (subscribe

or unsubscribe). For

metrics/KPIs/results topics, its

definition would depend on the

experiment developer, as it is

the actor responsible for the

definition of the mechanisms

and procedures for obtaining

data from the monitored

components deployed in a

experiment. That issue is

currently under discussion.

Table 8: Data Collection Manager SBI

Data Collection Manager SBI

Collection of metrics

Description
Data collection from the different components deployed in the site facilities for a given

experiment.

Reference Standards

Interface based on Publish/Subscribe model.

Regarding network monitoring: RMON (RFC2819, extensions and updates), Syslog (RFC5424,

extensions and updates), SNMP (RFC1157, extensions and updates).

Regarding testing: NGMN Alliance “Definition of the testing framework for the NGMN 5G

pre-commercial networks trials”.

Operations Exposed Information Exchanged Information Model

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 49 / 59

Publish data

(publish)

• Metric topic in which you want to publish the data.

• Data to be delivered in the message related to the

monitored metric.

As a result of this operation, the Data Collection Manager

performs the delivery of the data (deliver) provided in the

publish operation through the defined topic to the

components subscribed to that topic.

The information model would

depend on the experiment

developer, as it is the actor

responsible for the definition of

the mechanisms and

procedures for obtaining data

from the monitored

components deployed in a

experiment. That issue is

currently under discussion.

Note that the operations themselves have not changed, but the information exchanged and the information model

have been updated with all the considerations already commented.

A.3 Updated specific-purpose workflows

In D3.2 – section 4.3.3.6, it was defined a brief workflow presenting the main monitoring operations that involve

the Data Collection Manager (or Publish-Subscribe queue, as mentioned in that section): subscribe (to a topic),

publish (data in a topic) and deliver (data to the subscribed components to a specific topic in which data has

been published). Moreover, it was also presented a first distinction between topics, differentiating between

signalling topics and topics related to the monitored data. In fact, the variety of topics that can be used in the

Data Collection Manager operation has been increased with the introduction of the Topic framework proposal

already described.

That preliminary workflow has been updated in D4.1 – section 3.2.3.3, regarding the experiment monitoring

and performance analysis stage, which is the final phase for a given experiment. In this deliverable, it will be

only mentioned the key aspects that should be considered regarding the Data Collection Manager functionality

and that have not been covered at all in D4.1.

Having said that, in that experiment monitoring and performance analysis stage, three different phases15 were

detected:

• Subscription phase: carried out before and during the experiment instantiation. In this case, the

components that perform functions related to monitoring and performance analysis are subscribed to

the corresponding topics related to the experiment, depending on the specific experiment that is going

to be executed and the metrics/KPIs/results to be monitored. These topics are provided by the

Experiment Lifecycle Manager and distributed by the Data Collection Manager through specific

signalling topics. This workflow is depicted in Figure 17.

15 In the phases, it is presented the following components: Data Collection, Aggregation and Pre-processing, Data Indexing and Storage,

and Data Visualization. These three components belong to the Experiment monitoring and Maintenance & Results Collection

component presented in the Data Collection Manager architecture.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 50 / 59

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 51 / 59

Figure 17: Subscription to the topics used for experiment monitoring and performance analysis purposes.

• Monitoring and data collection phase: the metrics that have been published (each N seconds until the

end of the experiment) by the distributed Data shippers (with a previous log-to-metric transformation

done by these components) in the Data Collection Manager are delivered, during the experiment

execution, to the two components that are subscribed to the topics which correspond to each metric

(which are the Results Analysis and Validation component and the Data Collection, Aggregation and

Pre-processing tool that belongs to the Experiment monitoring and Maintenance & Results Collection

component). In the case of the Results Analysis and Validation component, there is another loop which

also involves the Data Collection Manager, because the metrics and KPIs calculated from these metrics

are published in other specific topics (according to the topic framework defined) and deliver afterwards

to the Data Collection, Aggregation and Pre-processing tool. Remember that Data shippers must know

in advance the topics in which they have to subscribe, information that can be provided by the

experiment developer in the corresponding configuration files (and always following the topic

framework proposed) or can be also included as Day-2 configuration by the Runtime Configuration

component (as long as that configuration is defined in the test case). This workflow is presented in

Figure 18.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 52 / 59

Figure 18: Delivery and management of monitoring information during the experiment execution.

• Withdrawal phase: performed as the opposite operation to the subscription phase, in order to trigger

the withdrawal to the topics used during the experiment, using again the signalling topics for that

purpose. Withdrawal to signalling topics is not done because they can be used during the execution of

other test cases, but the procedure of withdrawal would be similar. Figure 19 presents this workflow in

detail.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 53 / 59

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 54 / 59

Figure 19: Withdrawal of the topics used for experiment monitoring and performance analysis purposes

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 55 / 59

Annex B – Runtime Configurator update from D3.2

Firstly, it will be presented the updated architecture for this component, with all the new requirements and

functionalities that must be considered for its correct definition. Afterwards, it will be updated the operations

and information model included in D3.2 – sections 4.4.3.2 (for NBI) and 4.5.4 (for SBI), and the specific-

purpose workflows presented in D3.2 – section 4.3.3.7, being the last one aligned with the experiment execution

phase that is currently described in D4.1 – section 3.2.3.

B.1 Updated architecture

In Figure 20 the Experiment Configuration Framework is depicted, in which the Runtime Configurator is

involved It should be noted that it has suffered some small changes from its previous version that will be

commented in sub-sequent sections.

Figure 20: Improved version of the Experiment Configuration Framework.

The main components are the same than in its first version, all of them being involved in the experiment

execution phase, in which it can be distinguished two main workflows:

• The experiment instantiation workflow, which involves the Experiment Lifecycle Manager and the

Multi-site Network Service Orchestrator, is responsible for instantiating the network service, with its

corresponding VNFs and PNFs, providing the Day-0/1 configuration as depicted in the previous

diagram with the grey arrows. The Runtime Configurator does not participate in this configuration.

• The experiment execution management workflow, executed after the experiment instantiation

workflow, involves the Experiment Execution Manager and the Runtime Configurator. In this case, the

Experiment Execution Manager will define the test cases with the necessary steps to be followed in

order to execute and monitor the test (defined in the Test Case Blueprints, presented in D4.1 – section

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 56 / 59

5.2.7). These high-level instructions include specific calls to templates located in the Runtime

Configurator, which contain the related commands and specific configurations that must be provided to

the VNFs and PNFs involved in the experiment. As a result, the execution of that Day-2 configuration

is delegated on the Runtime Configurator, and the Experiment Execution Manager only needs to

indicate the template(s) that must be called during the experiment execution. These templates must be

saved in a catalogue managed by the Runtime Configurator, and the experiment developer must be the

responsible for establishing the necessary correspondences between the Test Case Blueprints and the

template(s) that must be used for the use case.

After triggering the templates to be executed by the Runtime Configurator, it is established a connection between

the Runtime Configurator and the VNFs/PNFs to be configured (black arrows in the previous diagram), and

then the Day-2 configuration is applied, returning the results to the Experiment Execution Manager for allowing

the monitoring of the experiment execution procedure. However, there could be special components that are not

reachable directly by the Runtime Configurator (e.g. proprietary, non-standard components). In that case, the

access could be achieved by using a Proxy Component reachable by the Runtime Configurator, implementing

in that Proxy Component the necessary adaptations in order to provide the Day-2 configuration to these non-

compatible VNFs/PNFs (blue arrows in the previous diagram).

B.2 Updated operations and information model

In D3.2, sections 4.4.3.2 (for NBI) and 4.5.4 (for SBI), it was included the first version of the operations and

information model for the Runtime Configurator, which have been updated as a result of the changes already

commented. Both updated NBI and SBI for the Runtime Configurator are presented in Table 9 and Table 10.

Table 9: Runtime Configurator NBI.

Runtime Configurator NBI

Execution of templates for a given step of a test case execution

Description
Invocation of the templates related to a given step of a test case execution, in order to

provide Day-2 configuration to the VNFs/PNFs referenced in the test case step.

Reference Standards OpenSSH protocol or REST API interface in case of incompatibilities.

Operations Exposed Information Exchanged Information Model

Execute a template for

providing pre-

configuration operations

(execute_config_templates

operation)

• A list with the templates ID.

• The experiment execution ID.

It will return the result of the execution of the commands

included in the used templates.

In case of using OpenSSH,

the input information will be

provided in a specific script

to be executed in the Runtime

Configurator server, which

will include the necessary

logic to process it, obtain the

IP addressing configuration

of the components to be

configured and apply the

templates to these

components. This behaviour

is still under development.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 57 / 59

Execute a template for

providing test-related

operations

(execute_exec_templates

operation)

• A list with the templates ID.

• The experiment execution ID.

It will return the result of the execution of the commands

included in the used templates.

In case of using OpenSSH,

the input information will be

provided in a specific script

to be executed in the Runtime

Configurator server, which

will include the necessary

logic to process it, obtain the

IP addressing configuration

of the components to be

configured and apply the

templates to these

components. This behaviour

is still under development.

Table 10: Data Collection Manager SBI.

Runtime Configurator SBI

Provision of the configuration defined in the templates for a given step of a test case execution

Description
Execution of the actions described in the templates for enabling the Day-2 configuration in the

VNFs/PNFs which are intended to be configured.

Reference Standards Openconfig/IETF Yang models, Netconf, Ansible (OpenSSH protocol, mainly)

Operations Exposed Information Exchanged Information Model

Apply pre-

configuration

(apply_configuration

operation)

• A list with the commands to be executed in the

VNFs/PNFs.

It will return the result of the commands execution, which is

then forwarded to the Experiment Execution Manager.

YANG model or configuration

template depending on the

required configuration. This

behaviour is still under

development.

Execute the

commands related to

a test step

(execute_commands

operation)

• A list with the commands to be executed in the

VNFs/PNFs.

It will return the result of the commands execution, which is

then forwarded to the Experiment Execution Manager.

YANG model or configuration

template depending on the

required configuration. This

behaviour is still under

development.

B.3 Updated specific-purpose workflows

The Runtime Configurator workflow presented in D3.2 – section 4.3.3.7 only presented a small interaction

between the Runtime Configurator and the Experiment Execution Manager, without specifying the data

exchanged between them. The following workflows extend the information in D3.2.

First of all, when the experiment execution is started and in “configuring” status, there is a first phase16 in which

the VNFs and PNFs related to the experiment could need some extra configuration in order to work properly

during the tests; for example, the topics in which they have to publish the metrics data to be collected by the

Data Collection Manager (in case this configuration has not been included beforehand). In Figure 21, this

behaviour is presented. For achieving that goal, the Runtime Configurator can handle some specific templates

that can carry out these configuring actions, being called by the execute_config_templates operation (message

1). The Runtime Configurator, after receiving this request, will obtain all the IP addressing information related

to the components by using the Exec_ID (i.e. the ID which identifies the experiment), in order to be able to

16 This extends the “Configure VNFs” block defined in the workflow presented in D4.1 – section 3.2.3.2, related to the Experiment

execution management.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 58 / 59

reach the components to be configured. Then, and depending on the type of component (if it is a non-compatible

VNF/PNF, it is necessary to use the Proxy Component as broker), the Runtime Configurator will apply the

commands contained in the selected templates in the VNFs/PNFs with the apply_configuration operation

(message 2 in compatible components, messages 4 and 5 in non-compatible components), which will return the

result of the configuration operation (message 3 in compatible components, messages 6 and 7 in non-compatible

components), which is forwarded to the Experiment Execution Manager (message 8) in order to monitor the

test execution. This workflow is executed for each step related to this pre-configuration feature in a sequential

way.

Figure 21: Application of Day-2 configuration – experiment in configuring state.

When this phase finishes, it starts a second phase17, depicted in Figure 22, related to the test execution itself;

i.e., the Experiment Execution Manager will update the experiment status to “running” and will start with the

execution of test steps. As a result, the templates which correspond to these steps are called by the Experiment

Execution Manager through the execute_exec_templates operation (message 1), whose format is similar to the

execute_config_templates. From this point, the workflow is completely the same as in the first phase but

changing the apply_configuration operation for the execute_commands operation.

17 This extends the “Execute test” block defined in the workflow presented in D4.1 – section 3.2.3.2, related to the Experiment execution

management.

Deliverable D3.3 First implementation of the interworking reference model

5G EVE (H2020-ICT-17-2018) Page 59 / 59

Figure 22: Application of Day-2 configuration – experiment in running state.

This distinction has been done in order to differentiate between the pre-configuration operations related to a test

and the specific steps to be executed during the test execution, as the second case may have particular temporary

constraints that are not present in the first case, which is always applied at the beginning. Note that the first

phase may be optional in case of not needing to include additional configuration for the test, and its definition

will depend on each Test Case Blueprint.

