
RESEARCH Open Access

High-salt diet does not boost
neuroinflammation and neurodegeneration
in a model of α-synucleinopathy
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Abstract

Aim: Pre-clinical studies in models of multiple sclerosis and other inflammatory disorders suggest that high-salt diet
may induce activation of the immune system and potentiate inflammation. However, high-salt diet constitutes a
common non-pharmacological intervention to treat autonomic problems in synucleinopathies such as Parkinson’s
disease and multiple system atrophy. Since neuroinflammation plays an important pathogenic role in these
neurodegenerative disorders, we asked here whether high-salt diet may aggravate the disease phenotype in a
transgenic model of multiple system atrophy.

Methods: Nine-month-old PLP-hαSyn and matched wildtype mice received normal or high-salt diet for a period of
3 months. Behavioral, histological, and molecular analyses were performed to evaluate the effect of high-salt diet on
motor decline, neuroinflammation, neurodegeneration, and α-synuclein accumulation in these mice.

Results: Brain subregion-specific molecular and histological analyses showed no deleterious effects of high-salt diet
on the level of microglial activation. Moreover, neuroinflammation-related cytokines and chemokines, T cell
recruitment or astrogliosis were unaffected by high-salt diet exposure. Behavioral testing showed no effect of diet
on motor decline. High-salt diet was not related to the deterioration of neurodegeneration or α-synuclein
accumulation in PLP-hαSyn mice.

Conclusions: Here, we demonstrate that high-salt diet does not aggravate neuroinflammation and
neurodegeneration in PLP-hαSyn mice. Our findings discard a deleterious pro-neuroinflammatory effect of high-salt
diet in multiple system atrophy.
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Introduction
High-salt diet (HSD) has been associated with chronic
inflammation [1], neuroinflammation [2, 3], and auto-
immune diseases [4, 5]. In this regard, high-salt intake
has been shown to affect immune cells and induce the
differentiation of T helper (Th)17 cells with pathogenic
phenotype [6, 7] which play an important role in the in-
duction of neuroinflammation, CNS autoimmunity, and
neurovascular and cognitive dysfunction [8–11]. The in-
duction of pathogenic Th17 cells and their infiltration in
the CNS by HSD has shown to potentiate

neuroinflammation in experimental autoimmune en-
cephalomyelitis (EAE), an animal model which mimics
many features of multiple sclerosis (MS) [6, 9, 12, 13]. In
this mouse model, HSD accelerates disease onset, aug-
ments its severity, and enhances blood-brain barrier
(BBB) disruption and brain pathology [6, 7, 14, 15].
Moreover, in experimental models high salt also pro-
motes pro-inflammatory phenotype of myeloid cells by
enhancing cytokine production and polarization towards
M1 phenotype, leading to an overall imbalance of im-
mune homeostasis [14, 16, 17]. In accordance with these
findings, a recent study demonstrated that increased so-
dium intake is associated with clinical disease exacerba-
tion, augmented relapse risk, and increased magnetic
resonance imaging (MRI) activity in MS patients [4].
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However, larger clinical studies recently failed to show
an association between salt intake and higher MS disease
risk, progression, or activity [18, 19], thus the possible
deleterious effect of HSD in MS is still under discussion.
Synucleinopathies such as Parkinson’s disease (PD)

and multiple system atrophy (MSA) constitute neurode-
generative disorders characterized by autonomic failure,
motor impairment and the abnormal accumulation of α-
synuclein (α-syn) in the cytoplasm of either neurons
(Lewy bodies, characteristics of PD) or in oligodendro-
glial cytoplasmic inclusions (GCIs, characteristics of
MSA) [20–23]. The accumulation of α-syn in MSA
brains is associated with microglial activation and neuro-
inflammation [24–26], demyelination [27, 28], and neu-
rodegeneration [29]. MSA is subdivided into two motor
subtypes depending on the main brain areas affected by
the pathology, the parkinsonian variant (MSA-P) charac-
terized by striatonigral degeneration (SND) and the cere-
bellar variant (MSA-C) characterized by
olivopontocerebellar atrophy (OPCA), but autonomic
failure is present in both variants [30–32]. At present,
there are no disease-modifying therapies to stop disease
progression and only mitigation of some symptoms is
feasible [33]. In this regard, increased fluid and salt in-
take is often recommended by physicians to alleviate
neurogenic orthostatic hypotension [34].
The association of HSD with pro-inflammatory disor-

ders together with the experimental evidence showing
its deleterious effects in different in vitro and in vivo
models questions the use of HSD in MSA and PD pa-
tients. The fact that neuroinflammation and the immune
system, especially microglial cells, play an important role
in MSA and PD pathogenesis [24–26, 35–37] and the re-
cent evidences of a possible involvement of Th17 cells in
PD [38–43] support these concerns. In order to evaluate
the pathological consequences of HSD in α-
synucleinopathies we have analyzed its effects in the
PLP-hαSyn transgenic mice model of MSA. Here, we
show that high dietary intake of salt does not accelerate
disease progression nor increase neuroinflammation,
microglial activation, or neurodegeneration in MSA
mice, suggesting that HSD may not have a pro-
neuroinflammatory effect in this particular α-
synucleinopathy.

Material and methods
Animals and treatments
Clinical and pathological features of MSA are recapitu-
lated in the PLP-hαSyn mouse model. These mice over-
express human wildtype α-syn in oligodendrocytes
under the myelin proteolipid protein (PLP) promoter
[44] leading to the formation of GCI-like structures,
autonomic failure, progressive SND, and motor impair-
ment [44–54]. SND in the PLP-hαSyn mice is

characterized by a reduction in the number of dopamin-
ergic neurons in the substantia nigra pars compacta
(SNc) [55] followed by a reduction of the density of
dopaminergic terminals and medium spiny neurons
(MSNs) in the striatum linked to significant motor de-
cline [51]. Similar to the human pathology, PLP-hαSyn
mice develop progressive microglial activation initially
triggered by α-syn pathology [51, 53]. Our group has
also previously shown that stressors relevant to human
MSA, e.g., mitochondrial dysfunction [52] or proteolysis
disruption [56], can aggravate the pathology in PLP-
hαSyn mice towards full-blown MSA with spreading of
GCI, SND, OPCA, and strong microglial activation. In
summary, the PLP-hαSyn mouse model provides an im-
portant and relevant pre-clinical tool to study disease
mechanisms of MSA progression downstream of the ac-
cumulation of α-syn in oligodendrocytes.
PLP-hαSyn and C57BL/6 N wildtype animals were

kept under temperature-controlled pathogen-free condi-
tions on a light/dark 12 h cycle. Nine-month-old PLP-
hαSyn and wildtype animals were both randomized in 2
groups, one fed with normal food pellets (0.19% sodium;
SSNIFF Spezialdiäten GmbH) and tap water, another fed
with HSD (4% NaCl; SSNIFF Spezialdiäten GmbH) and
tap water containing 1% NaCl as previously described [2,
6, 7]. After 3 months of treatment, the animals were
sacrificed and brains were collected. Bodyweight of all
animals was measured weekly throughout the treatment
period (Additional file 1: Figure S1). Although PLP-
hαSyn mice presented lower body weight compared to
healthy control animals, no differences due to diet were
observed within the 2 animal groups (Additional file 2:
Figure S1). All the experiments were performed accord-
ing to the ethical guidelines of the EU (Directive 2010/
63/EU for animal experiments) and the Austrian Federal
Ministry of Science and Research (permission BMFWF-
66.011/0018-WF/v/3b/2015). All analyses were done by
a researcher who was blinded to the treatment of the
animals.

Stride length analysis
Stride length analysis was performed with DigiGait™ Im-
aging System (Mouse Specifics Inc.) as previously de-
scribed [51, 56]. Briefly, mice were placed onto a
transparent treadmill belt and gait of each mouse was
recorded with a video camera placed below the belt.
Stride length was analyzed with DigiGait Software 9.0
(Mouse Specific, USA) and expressed in cm.

Tissue processing and histology
Animals were perfused intracardially with phosphate-
buffered saline (PBS, pH 7.4, Sigma) under deep thiopen-
tal anesthesia and brains were extracted. Hemibrains
were post-fixed overnight in 4% paraformaldehyde (pH
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7.4, Sigma) at 4 °C and then cryoprotected in 30% su-
crose (in PBS). Finally, the brains were frozen using 2-
Bodyweight (Sigma) and stored at − 80 °C. The brains
were cut in 40 μm thick coronal sections using a freezing
microtome (Leica) and stored free-floating in a cryopro-
tectant buffer at − 20 °C.

Immunohistological analyses
Free-floating sections were immunostained following
standard protocols. Microglial activation was evaluated
by immunofluorescence using antibodies against IBA1
(1:600, WAKO) and CD68 (1:200, R&D). In order to
evaluate the level of SND, SNc sections were stained
with anti-tyrosine hydroxylase (TH) antibody (1:1000,
Millipore) and the number of dopaminergic (TH+) neu-
rons was analyzed by stereological counting. Striatal sec-
tions were stained with anti-DARPP32 antibody (BD
Bioscience; 1:2000) and the number medium spiny neu-
rons (MSNs; DARPP32+) was quantified. OPCA in the
cerebellum was evaluated by DARPP32 immunostaining
of Purkinje cells (DARPP32+). To analyze the number of
GCIs, representative sections including SNc, cerebellar
white matter (CBWM), and motor cortex (M2) were
stained with anti-phosphorylated α-syn antibody (pS129;
1:1000, Abcam). For immunofluorescence, suitable sec-
ondary anti-IgG antibodies conjugated with Alexa 488
or Alexa 594 (Life Technologies) were applied and cov-
erslipped with mounting medium Fluromount-G (South-
ern Biotech). For immunohistochemistry, sections were
incubated with biotinylated secondary antibodies
followed by Vectastain ABC reagent (Vector Laborator-
ies) and 3,3′-diaminobenzidine (Sigma) to visualize the
binding sites. Stained sections were mounted on slides,
dehydrated, and coverslipped with Entellan (Merck).

Image analyses
Neuroanatomy was assessed using a Mouse Brain Atlas.
For microglial activation assessment, images were ac-
quired with a fluorescence microscope (Leica DMI4000)
and the positive area for IBA1 or CD68 was estimated
using ImageJ (National Institutes of Health). Results are
presented as percentage of IBA1 or CD68 area per sec-
tion total area. Stereological analysis was performed
using the Nikon E-800 microscope equipped with Nikon
digital camera DXM1200 and Stereoinvestigator soft-
ware (Microbrightfield Europe e.K) as described previ-
ously [56]. The number of TH+ neurons in the SNc and
DARPP-32+ neurons in the striatum was measured by
applying the optical fractionator workflow [51]. The
density of GCIs and Purkinje cells (DARPP32+) were
assessed with meander scan and is expressed in GCI/
mm2 and DARPP32+ neurons/mm2 respectively.

RNA extraction and quantitative RT-qPCR
For molecular analyses, hemibrains were quickly dis-
sected in the forebrain, midbrain, cerebellum, and brain-
stem, frozen in liquid nitrogen and stored at − 80 °C.
RNA was extracted using TRIzol reagent (Life technolo-
gies) according to the manufacturer’s instructions. Tis-
sue was homogenized with ULTRA-TURRAX T-8 basic
tissueruptor (IKA) in the presence of TRIzol. RNA sam-
ples (3 μg) were retrotranscribed to cDNA using High-
Capacity cDNA Reverse Transcription Kit (Applied-Bio-
systems). Real time PCR was performed in a 7500 Real-
Time PCR Systems (Applied-Biosystems) using Taq-
Man™ Universal PCR Master Mix (Applied-Biosystems).
Gapdh mRNA levels were estimated to normalize for
mRNA input amounts. TaqMan probe sequences are
available upon request. mRNA levels were obtained
using the 2−ΔΔCt method and expressed as fold-change
relative to the wildtype normal diet control group [57].

Cytokine/chemokine levels
Fresh frozen forebrain, midbrain, cerebellum, and brain-
stem were homogenized in Triton-X (TX) extraction
buffer (50 mM Tris-base pH 7.6, 150mM NaCl, 1%
Triton-X-100, 2 mM EDTA) containing protease and
phosphatase inhibitors. The lysates were centrifuged (16,
000×g for 10 min at 4 °C) to remove debris and the
supernatant was collected and stored at − 80 °C. Protein
concentrations were determined with BCA Protein
Assay Kit (Sigma). ProcartaPlex® Multiplex Immunoassay
system (eBioscience, Waltham, MA USA) was used to
simultaneously measure the concentration of different
cytokines and chemokines. The same protein amount
was loaded for all samples. Duplicates were performed
per each sample and mean values were calculated for
subsequent statistical analysis. Data are presented as pg
cytokine/chemokine per mg total protein.

Dot blot analysis of soluble α-syn
Lysates obtained previously were ultra-centrifuged (100,
000×g for 60 min at 4 °C) and the supernatant was col-
lected and stored at − 80 °C. Equal amounts of protein
(5 μg) per sample were spotted onto nitrocellulose mem-
branes (GE Healthcare) and air-dried for 30 min. Mem-
branes were incubated overnight at 4 °C in blocking
buffer (PBS, pH 7.6, 0.1% Tween 20, 5% non-fat dry
milk) with primary antibody against human α-syn (4B12;
1:1000, Genetex). Signal detection was performed using
HRP-conjugated secondary antibodies and Wester-
nBright Quantum kit (Advansta). Images were acquired
using the Fusion FX system for western blot and gel im-
aging and quantified with FUSION CAPT V16.09b soft-
ware (Vilber Lourmat).
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Statistical analyses
All statistical analyses were conducted using the soft-
ware Graph-Pad Prism 7 (Graphpad Software). The
mean ± S.E.M was used to present the results. Two-way
analysis of variance (ANOVA) with post hoc Bonferroni
test was used to compare the groups if not indicated
otherwise. A p value < 0.05 was considered statistically
significant.

Results
High-salt diet causes partial upregulation of genes linked
to microglial and astroglial activation without changes at
protein level in PLP-hαSyn brains
To assess the effect of HSD on microglia we performed
histological and molecular analyses for two different
markers of microglial activation, IBA1 and CD68 [58,
59]. The increase of IBA1 and CD68 levels has been as-
sociated with α-syn accumulation and neurodegenera-
tion in PD and MSA animal models [51, 53, 60–65]. In
agreement with previous data [51], significant microglial
activation was observed in PLP-hαSyn mouse brains
compared to healthy controls (Fig. 1). Gene expression
analysis showed upregulation of Cd68mRNA in the fore-
brain, midbrain and cerebellum of PLP-hαSyn mice
(Fig. 1a). A significant upregulation of Cd68mRNA was
also observed in the HSD PLP-hαSyn group compared
to PLP-hαSyn mice fed with normal diet (Fig. 1a). How-
ever, immunohistological analysis only showed a signifi-
cant increase of CD68 in PLP-hαSyn mice compared to
healthy control animals with no specific effect of diet
(Fig. 1b, c). Higher levels of CD68 were observed by im-
munofluorescence in striatum, substantia nigra (SN),
pontine nuclei (PN), and cerebellar white matter
(CBWM) of PLP-hαSyn animals compared to wildtypes
with no effect of diet either in PLP-hαSyn or healthy
control mice, keeping both high-salt groups similar
levels to their normal diet groups (Fig. 1b, c). Similar re-
sults were obtained with IBA1 (Fig. 1d–f). A significant
upregulation of Iba1mRNA was observed in the mid-
brain and cerebellum of PLP-hαSyn mice compared to
wildtype animals (Fig. 1d). Immmunohistological ana-
lyses showed a significant increase of IBA1 levels in the
SN, PN, and cerebellum of transgenic vs control mice
(Fig. 1e, f). No effects of the diet were observed either in
PLP-hαSyn or in healthy control animals discarding a
specific effect of diet on microglial activation (Fig. 1e, f).
In order to assess the role of astroglia in the inflamma-

tory response observed in PLP-hαSyn mice, we analyzed
in the brain subregions the expression levels of Gfap
(glial fibrillary acidic protein), a marker of astrogliosis.
Significant upregulation of Gfap mRNA was only ob-
served in the cerebellum of PLP-hαSyn with no effect of
diet, discarding a general involvement of astroglia in
neuroinflammation (Additional file 2: Figure S2).

High-salt diet does not interfere with the
neuroinflammatory signaling in the PLP-hαSyn brain
To further characterize the subregion-specific effect of
HSD on neuroinflammation in PLP-α-syn mice, we eval-
uated separately the levels of 36 cytokines and chemo-
kines in forebrain, midbrain, cerebellum, and brainstem
by using a multi-analyte detection system (Fig. 2a, b).
Heatmap portraying the overall changes of cytokines/
chemokines in PLP-hαSyn and control mice showed dif-
ferent profiles between genotypes but no effect of diet
(Fig.2a). The analysis revealed a significant increase of
CCL3, CCL4, and CCL5 chemokines in PLP-hαSyn
mouse brains compared to wildtype animals but no ef-
fect of salt (Fig. 2a-b and Additional file 3: Figure S3).
The brain concentration of the remaining analytes
showed no significant effect of genotype or diet (Add-
itional file 4: Tables S1–S4).
We also evaluated changes in the adaptive immune

system by analyzing the gene expression levels of two
markers of T lymphocytes, Cd4, and Cd8. RT-qPCR ana-
lysis showed no changes between animal groups (Fig. 2c
and Additional file 3: Figure S3), excluding an effect of
the synucleinopathy or diet on T cell recruitment and
discarding the involvement of the adaptive immune sys-
tem in neuroinflammation in PLP-hαSyn mice (Fig. 2c
and Additional file 3: Figure S3).

High-salt diet causes no deterioration of motor
impairment, neurodegeneration, and myelin dysfunction
in PLP-hαSyn mice
In order to evaluate the effect of diet on the gait impair-
ment, we performed Digigait behavioral test. PLP-hαSyn
mice showed a significant reduction of stride length
compared to healthy control mice with no effect of diet
on motor impairment (Fig. 3a). To assess the conse-
quences of HSD on SND, the number of dopaminergic
(TH+) neurons in the SNc and the number of MSNs
(DARPP-32+) in the striatum were quantified in control
and PLP-hαSyn mice. As previously described [51], ste-
reological counting showed significant loss of TH+ and
DARPP-32+ neurons in SNc and striatum respectively of
PLP-hαSyn mice compared to wildtype animals
(Fig. 3b–d). We did not detect any effect of diet neither
in control nor in PLP-hαSyn mice (Fig. 3b–d). OPCA
was evaluated by the stereological counting of Purkinje
cells (DARPP32+) in the cerebellar cortex of PLP-hαSyn
and control animals (Fig. 3e). No changes in the number
of Purkinje neurons in the cerebellar cortex were ob-
served between animal groups (Fig. 3e), discarding an
expansion of the pathology after high-salt exposure simi-
lar to the ones observed previously after oxidative stress
insult or proteasome inhibition [52, 56]. We also per-
formed a subregion-specific evaluation of the effect of
diet on myelin (Fig. 3f and Additional file 3: Figure S3).
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Fig. 1 (See legend on next page.)
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Gene expression analysis showed significant downregu-
lation of Mbp mRNA (myelin basic protein) in PLP-
hαSyn mice compared to healthy controls in most brain
subregions (Fig. 3f and Additional file 3: Figure S3).
However, we did not observe diet-associated differences
neither in control nor in PLP-hαSyn animals, thus ex-
cluding a possible role of HSD in motor impairment,
neurodegeneration, or myelination dysfunction (Fig. 3
and Additional file 3: Figure S3).

High-salt diet does not affect α-syn pathology in PLP-
hαSyn mice
To fully evaluate the effect of HSD in the PLP-hαSyn
mouse model, we assessed α-syn accumulation by histo-
logical and molecular analyses. In order to do that, rep-
resentative brain sections of SNc, CBWM, and motor
cortex (M2) were stained with anti-phosphorylated (p-
S129) α-syn antibody and the density of GCIs was quan-
tified (Fig. 4a, b). HSD showed no effect on GCI number
in any of the regions analyzed (Fig. 4a, b). We also per-
formed subregion-specific dot blot analysis of soluble α-
syn (Fig. 4c, d). Significant higher levels of soluble α-syn
were found in all brain subregions of PLP-hαSyn mice
compared to wildtype animals, but no effect of diet was
observed (Fig. 4c, d). Therefore, an effect of diet on α-
syn accumulation was discarded.

Discussion
Recently, several publications have associated HSD with
activation of the immune system and neuroinflammation
in experimental models of different neurological disor-
ders, including MS [2–7, 11, 14, 16, 17, 66]. Despite the
possible deleterious effect of salt on neuroinflammation,
a high dietary intake of salt constitutes one of the most
recommended non-pharmacological approaches to treat
autonomic symptoms in MSA and PD patients [34].
Since microglial activation and neuroinflammation con-
stitute two of the main pathological features of MSA
and PD [24–26, 35–37], the use of HSD could aggravate
CNS pathology by enhancing microglial activation, neu-
roinflammation, and the infiltration of peripheral im-
mune cells.
In order to evaluate the effect of HSD on CNS path-

ology in α-synucleinopathies, PLP-hαSyn and wildtype

animals were both fed with food pellets containing
0.19% (control diet) or 4% NaCl (high-salt diet). HSD
consisting 4% NaCl constitutes an increase of about 8–
19 times depending on the salt content in normal diet
food pellets, which usually range between 0.19 and 0.4%
depending on the study. For the human general popula-
tion, the level of sodium intake recommended in major
dietary guidelines ranges from 1200 to 2300mg per day
[67–70]. However, in MSA and PD, physicians often
prescribe increased salt intake to around 10 g of salt per
day [71–73], being 4–7 times higher than dietary recom-
mendation for the general population. Thus, the experi-
mental approach used in the present study is
comparable to the spectrum of human salt consumption
and may reflect changes due to HSD similar, or even
stronger, than those expected in MSA and PD patients
treated with salt. The deleterious effect of HSD in the
CNS has also been described in rodents after exposure
to 8% NaCl food pellets [11, 74]. However, this may not
reflect physiological and clinically relevant conditions
since it represents an increase of dietary salt intake of
about 16–40 times compared to the normal diet.
Here, we demonstrate that HSD does not affect the ac-

tivation of microglial cells in PLP-hαSyn mice. Previous
results from our group have shown a progressive in-
crease in microglial activation with disease progression
in this animal model [51] that can also be augmented in
the presence of second deleterious stimuli such as mito-
chondrial dysfunction or proteasome impairment [52,
56]. In contrast, HSD did not increase microglial activa-
tion in the present study according to different molecu-
lar and histological analyses. We have also previously
shown that the total number of microglial/macrophage
cells (IBA1+) does not change in the CNS of MSA mice
with disease progression and instead only an increase in
their activation state is observed [51]. Therefore, the in-
filtration of peripheral macrophages in PLP-hαSyn
mouse brains appears to be unlikely. Our results differ
from experimental studies of inflammatory disorders as-
sociated with CNS infiltration of peripheral and
monocyte-derived macrophages, where HSD increases
activation and polarization towards an M1 phenotype
[14, 16, 17] (Fig. 5). The difference between those studies
and ours may reflect distinct cell-specific responses of

(See figure on previous page.)
Fig. 1 High-salt diet does not affect microglial activation in MSA mice. a Relative gene expression (mRNA levels) of the microglial activation
marker Cd68 in different brain regions. The data is expressed in fold change relative to WT mice fed with a normal diet. b Representative
immunofluorescence (IF) images of the substantia nigra (SN) sections stained against CD68 (in red). Scale bar, 150 μm. c CD68 positive (CD68+)
area in different brain regions (STR: striatum; SN; CBWM: cerebellar white matter; PN: Pontine nuclei) determined by ImageJ analysis and
expressed as the % of the total area. d, Relative gene expression of the microglial activation marker Iba1 in different brain regions. The data is
expressed in fold change relative to WT mice fed with a normal diet. e Representative IF images of SN sections stained against IBA1 (in green).
Scale bar, 150 μm. f IBA1 positive (IBA1+) area in different brain regions. WT, wildtype healthy control animals; TG, PLP-hαSyn mice. White bars:
WT mice; gray bars: WT mice fed with HSD (TG + HSD); black bars: TG mice; red bars: TG mice fed with HSD (TG + HSD). Error bars indicate SEM.
Two-way ANOVA: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (Bonferroni’s test)
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Fig. 2 High-salt diet does not affect neuroinflammation in MSA mice. a Heat map comparing the log2 fold change in cytokine and chemokine
expression in different brain regions of MSA mice fed with/without high-salt diet and control mice fed with high-salt, as referred to control mice
fed with a normal diet. b Protein levels of CCL3, CCL4 and CCL5 chemokines in the midbrain. Protein levels are expressed in pg of protein of
interest per mg of total proteins. c Relative gene expression of T-cell markers Cd4 and Cd8 in the midbrain. The data is expressed in fold change
relative to WT mice fed with a normal diet. White bars: WT mice; gray bars: WT mice fed with HSD (TG + HSD); black bars: TG mice; red bars: TG
mice fed with HSD (TG + HSD). Error bars indicate SEM. Two-way ANOVA: *p < 0.05, **p < 0.01, ****p < 0.0001 (Bonferroni’s test)
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peripheral macrophages and microglial cells to HSD due
to their different developmental origin and activation
patterns [75–78]. However, further analyses are required
to fully understand these differences.
We also show that HSD does not interfere with neuro-

inflammation, astroglial activation, or T cell CNS

infiltration in PLP-hαSyn mice. The absence of changes
in different markers of T lymphocytes (CD4 and CD8)
and their associated proinflammatory cytokines and che-
mokines (i.e., IFN-γ, IL-17, IL-12, IL-23) [13, 79–83] in
the brain of MSA mice compared to wildtype animals
suggest that these cells are not critical in the

Fig. 3 High-salt diet has no further harmful effect on motor impairment, neurodegeneration, and myelin dysfunction. a Gait analysis focused on
stride length expressed in centimeter. b Stereological counting of the total number of dopaminergic (TH+) neurons in the entire substantia nigra
pars compacta (SNc). c Representative images of SN sections stained against TH. Scale bar, 400 μm. d Stereological counting of the total number
of medium spiny (DARPP32+) neurons in the entire STR. e Stereological counting of Purkinje (DARPP32+) neurons in the cerebellar cortex (CB). f
Relative gene expression of Mbp in the midbrain. Error bars indicate SEM. Two-way ANOVA: *p < 0.05, **p < 0.01, ***p < 0.001 (Bonferroni’s test)
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neuroinflammatory process observed in PLP-hαSyn
mice. Moreover, human studies have shown no clear evi-
dence of T cell involvement in MSA so far. The absence
of a higher activation of the immune system in PLP-
hαSyn mice could explain the differences with HSD

studies in EAE models of MS where activation and infil-
tration of T cells and peripheral macrophages in the
CNS accelerate disease onset, augment its severity, and
enhance brain pathology [6–10, 12, 14, 15] (Fig. 5).
However, the results obtained from our study cannot be

Fig. 4 High-salt diet does not interfere with α-syn accumulation in MSA mice. a Representative images of SN sections stained against
phosphorylated α-syn. Red arrows indicate individual GCI. Scale bar, 25 μm. b GCI density in SNc, CBWM, and motor cortex (M2) of PLP-hαSyn
mice determined by stereological counting of brain sections stained against phosphorylated α-syn and expressed in GCI/mm2. c Representative
images of DOT BLOT analysis for soluble human α-synuclein levels in the midbrain. d Quantification of soluble human α-synuclein levels in
different brain areas. The data is shown in arbitrary units (a.u.). Error bars indicate SEM. Two-way ANOVA): ***p < 0.001, ****p < 0.0001
(Bonferroni’s test)
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extrapolated to PD, where an association between T cells
and neurodegeneration has been recently suggested [38–
43]. Further studies including pre-clinical models of PD
are needed to clarify the effect of HSD on underlying
neuropathology.
HSD did not affect neurodegeneration or demyelin-

ation in MSA mice. Although PLP-hαSyn animals de-
velop SND and myelin dysfunction characterized
respectively by a significant loss of dopaminergic neu-
rons in the SNc and MSNs in the striatum and a
downregulation of the Mbp gene in several brain sub-
regions, no changes were observed after HSD expos-
ure in these mice. These findings again differ from
the studies in EAE models of MS where HSD has led
to enhanced demyelination [14, 15]. In agreement
with our data, a large clinical study has recently

revealed that salt intake does not influence MS dis-
ease course or activity thus indicating that EAE
models, which are induced by active immunization
with myelin components or by passive transfer of
autoreactive T cells, do not necessarily reflect the hu-
man disease [18, 84]. In contrast to the MSA model
used in our study, where neuroinflammation is a sec-
ondary event induced by the aggregation of α-syn in
oligodendrocytes [51, 53], neuroinflammation is a pri-
mary event induced by a peripheral immune response
in the EAE models used for the studies on salt intake
[9, 12, 13, 84]. Thus, the differences in the effects of
diet on the neuropathology of MSA and MS animal
models could also be explained by the absence of
neuroinflammatory changes induced by HSD in PLP-
hαSyn mice (Fig. 5).

Fig. 5 Pathophysiological features of MSA and EAE models and potential pathogenic effect of a high-salt diet. a Schematic overview of the
central nervous system in healthy conditions. b In MSA, α-syn accumulates in the cytoplasm of oligodendrocytes inducing oligodendroglial
dysfunction. Soluble α-syn oligomeric species spread through the brain parenchyma and trigger microglial activation and neuroinflammation. All
these events lead to demyelination and neurodegeneration. High-salt diet exposure has no effect on the CNS of PLP-hαSyn mice possibly due to
the absence of peripheral immune cell involvement in MSA brain pathology. c EAE mice model mimics many features of MS, such as blood-brain
barrier (BBB) disruption, demyelinating lesions associated with infiltrating T cells, macrophages, and B cells, microglial activation,
neuroinflammation, and neurodegeneration. In EAE mice, high-salt diet increases activation and infiltration of T cells and peripheral macrophages
in the CNS accelerating disease onset, augmenting its severity and enhancing blood-brain barrier disruption and brain pathology
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Previous results from our group have shown that a
combination of synucleinopathy with second hit stimuli
such as oxidative stress or proteasome inhibition can ag-
gravate the pathology in PLP-hαSyn mice towards full-
blown MSA with strong microglial activation and
spreading of SND, OPCA, and GCIs [52, 56]. However,
PLP-hαSyn mice showed no changes in α-syn accumula-
tion after HSD exposure by neither molecular nor histo-
logical analyses, therefore excluding an effect of diet on
any of the synucleinopathy features.
In contrast to our observations, two recent studies by

Faraco et al. have shown that HSD induces cognitive im-
pairment in wildtype animals [11, 74]. Faraco et al. ob-
served significant deleterious effects in wildtype mice
after 12 weeks of HSD with 4% NaCl food pellets, a simi-
lar protocol to the one used in our study. However, we
did not find differences between wildtype animals fed
with normal or HSD. These differences may be ex-
plained by the use of different mouse substrains. The
PLP-hαSyn and control animals used in our study were
C57BL/6 N. Unfortunately, Faraco et al. do not mention
which specific C57BL/6 substrain was used in their
study. It has been shown that C57BL/6 substrains
present behavioral [85] and genetic differences—includ-
ing immune function —[86]. Moreover, other groups
have shown that HSD has either no effect or even ame-
liorates symptoms in animal models of other inflamma-
tory disorders [87, 88]. Thus, the differences between
our data and previous HSD studies, and in particular
data in EAE mice, may be explained by the use of differ-
ent mouse strains or by the different experimental ap-
proaches used to boost the inflammatory process, as
previously discussed.
Despite the publications supporting the deleterious ef-

fect of HSD in experimental models of MS, two large
clinical studies failed to show an association between salt
intake and higher MS disease risk, progression, or activ-
ity [18, 19]. Moreover, although sodium intake differs
between East Asian, American, and European population
[89], MSA cohort study groups from Japan, Europe, and
the USA show a similar median survival [90–92], sup-
porting the current findings and suggesting that salt
consumption differences may not affect disease progres-
sion in MSA.
Several limitations of the current study need to be ac-

knowledged. Despite not having observed an effect of
diet in the CNS of MSA mice, we cannot exclude an ef-
fect in peripheral organs. Moreover, in the present study,
we have not evaluated the effect of HSD on cardiovascu-
lar regulation or pathology. Among the different auto-
nomic cardiovascular problems present in MSA patients,
the presence of orthostatic hypotension (OH) constitutes
one of the major criteria for diagnosis [93]. Data from
our group show cardiovascular defects in PLP-hαSyn

mice [50], but it is not possible to address the issue of
OH in a mouse model. In this regard, we cannot exclude
a role of high sodium intake on neuropathology linked
to OH in MSA patients. However, the analysis of the ef-
fect of diet in both the peripheral immune system and
the different cardiovascular features of PLP-hαSyn mice
is beyond the scope of the present study, where the main
objective was to study the effect of HSD in the neuroin-
flammatory process underlying MSA pathology in the
CNS.

Conclusions
Here, we demonstrate that HSD does not interfere with
microglial activation, neuroinflammation, motor func-
tion, neurodegeneration, and α-syn accumulation in the
PLP-hαSyn mouse model of MSA, making deleterious
effects of HSD on brain pathology and its progression
unlikely. Our findings contrast with experimental data
obtained in EAE models of MS and do not support a
pro-neuroinflammatory effect of the current clinical
practice of a high-salt diet for the treatment of auto-
nomic failure in MSA.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s12974-020-1714-y.

Additional file 1: Figure S1. Animal body weight. Body weight of
healthy control mice fed with normal diet (WT; white circles) or HSD
(WT + HSD; gray circles) and PLP-hαSyn mice fed with normal diet (TG;
black squares) or HSD (TG + HSD; red squares). Body weight was mea-
sured weekly throughout the treatment period.

Additional file 2: Figure S2. High-salt diet does not affect astrogliosis in
MSA mice. Gene expression (mRNA) levels in forebrain, midbrain,
cerebellum and brainstem of the astrocyte marker Gfap. mRNA levels are
expressed in fold change relative to WT mice fed with normal diet. White
bars: WT mice; Gray bars: WT mice fed with HSD (TG + HSD); Black bars:
TG mice; Red bars: TG mice fed with HSD (TG + HSD). Error bars indicate
SEM. Two-way ANOVA: *** p < 0.001, **** p < 0.0001 (Bonferroni’s test).

Additional file 3: Figure S3. Protein levels and gene expression (mRNA)
levels in forebrain, cerebellum and brainstem of the main proteins and
genes analyzed on the study. Protein levels are expressed in pg of protein
of interest per mg of total proteins. mRNA levels are expressed in fold
change relative to WT mice fed with normal diet. White bars: WT mice;
Gray bars: WT mice fed with HSD (TG + HSD); Black bars: TG mice; Red
bars: TG mice fed with HSD (TG + HSD). Error bars indicate SEM. Two-way
ANOVA: * p < 0.05, ** p < 0.01, *** p < 0.001 (Bonferroni’s test).

Additional file 4: Tables S1. Cytokine and chemokine protein levels in
forebrain. The table represent the concentrations (pg/mg total protein) of
the different cytokines and chemokines measured in forebrain of control
and MSA mice fed with normal or high salt diet. Data are presented as
mean ± SD. p-values where obtained by two-way ANOVA with Bonferro-
ni’s post hoc test. Tables S2. Cytokine and chemokine protein levels in mid-
brain. The table represent the concentrations (pg/mg total protein) of the
different cytokines and chemokines measured in forebrain of control and
MSA mice fed with normal or high salt diet. Data are presented as
mean ± SD. p-values where obtained by two-way ANOVA with Bonferro-
ni’s post hoc test. Tables S3. Cytokine and chemokine protein levels in cere-
bellum. The table represent the concentrations (pg/mg total protein) of
the different cytokines and chemokines measured in forebrain of control
and MSA mice fed with normal or high salt diet. Data are presented as
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mean ± SD. p-values where obtained by two-way ANOVA with Bonferro-
ni’s post hoc test. Tables S4. Cytokine and chemokine protein levels in
brainstem. The table represent the concentrations (pg/mg total protein)
of the different cytokines and chemokines measured in forebrain of con-
trol and MSA mice fed with normal or high salt diet. Data are presented
as mean ± SD. p-values where obtained by two-way ANOVA with Bonfer-
roni’s post hoc test.
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