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ABSTRACT: In line with recent advances in neural drug design and sensitivity prediction, we propose a novel architecture for
interpretable prediction of anticancer compound sensitivity using a multimodal attention-based convolutional encoder. Our
model is based on the three key pillars of drug sensitivity: compounds’ structure in the form of a SMILES sequence, gene
expression profiles of tumors, and prior knowledge on intracellular interactions from protein−protein interaction networks. We
demonstrate that our multiscale convolutional attention-based encoder significantly outperforms a baseline model trained on
Morgan fingerprints and a selection of encoders based on SMILES, as well as the previously reported state-of-the-art for
multimodal drug sensitivity prediction (R2 = 0.86 and RMSE = 0.89). Moreover, the explainability of our approach is
demonstrated by a thorough analysis of the attention weights. We show that the attended genes significantly enrich apoptotic
processes and that the drug attention is strongly correlated with a standard chemical structure similarity index. Finally, we report
a case study of two receptor tyrosine kinase (RTK) inhibitors acting on a leukemia cell line, showcasing the ability of the model
to focus on informative genes and submolecular regions of the two compounds. The demonstrated generalizability and the
interpretability of our model testify to its potential for in silico prediction of anticancer compound efficacy on unseen cancer
cells, positioning it as a valid solution for the development of personalized therapies as well as for the evaluation of candidate
compounds in de novo drug design.

KEYWORDS: drug sensitivity prediction, computational systems biology, deep learning, machine learning, drug discovery, multiscale,
multimodal, attention, CNN, RNN, explainability, interpretability, molecular networks, molecular fingerprints, GDSC, SMILES,
gene expression, drug discovery, drug sensitivity, anticancer compounds, IC50, EC50, lead discovery, personalized medicine,
precision medicine

1. INTRODUCTION

1.1. Motivation. Discovering novel compounds with a
desired efficacy and improving existing therapies are key
bottlenecks in the pharmaceutical industry and fuel the largest
R&D business spending of any industry, accounting for 19% of
the total R&D spending worldwide.1,2 Anticancer compounds,
in particular, take the lion’s share of drug discovery R&D
efforts, with over 34% of all drugs in the global R&D pipeline

in 2018 (5212 of 15 267 drugs).3 Despite enormous scientific
and technological advances in recent years, serendipity still
plays a major role in anticancer drug discovery4 without a
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systematic way to accumulate and leverage years of R&D to
achieve higher success rates. On the other hand, there is strong
evidence that the response to anticancer therapy is highly
dependent on the tumor genomic and transcriptomic makeup,
resulting in heterogeneity in patient clinical response to
anticancer drugs.5 This varied clinical response has led to the
promise of personalized (or precision) medicine in cancer,
where molecular biomarkers, e.g., the expression of specific
genes, obtained from a patient’s tumor profiling may be used
to choose a personalized therapy.
These challenges highlight a need across both pharmaceut-

ical and healthcare industries for multimodal quantitative
methods that can jointly exploit disparate sources of
knowledge with the goal of characterizing the link between
the molecular structure of compounds, the genetic and
epigenetic alterations of the biological samples, and drug
response.6 In this work, we present a multimodal approach that
enables us to tackle the aforementioned challenges.
1.2. Related Work. There have been a plethora of works

on the prediction of drug sensitivity in cancer cells.7−11 While
the majority of them have focused on the analysis of unimodal
datasets (genomics or transcriptomics, e.g., De Niz et al.,6

Tan,12 Tan et al.,13 and Turki and Wei14), a handful of
previous works have integrated omics and chemical descriptors
to predict cell line−drug sensitivity using a variety of methods
including but not limited to simple neural networks (one
hidden layer) and random forests,15 kernelized Bayesian matrix
factorization,16 Pearson correlation-based similarity net-
works,17 a Kronecker product kernel in conjunction with
support vector machines (SVMs),18 autoencoders in combi-
nation with elastic net and SVMs,19 matrix factorization,20

trace norm regularization,21 link predictions,22 and collabo-
rative filtering.23,24 In addition to genomic and chemical
features, previous studies have demonstrated the value of
complementing drug sensitivity prediction models with prior
knowledge in the form of protein−protein interaction (PPI)
networks.25 For example, in a network-based per-drug
approach integrating these data sources, Zhang et al.26

surpassed various earlier models and reported a performance
drop of 3.6% when excluding PPI information.
However, all previous attempts at incorporating chemical

information in drug sensitivity prediction rely on molecular
fingerprints as chemical descriptors. Traditionally, fingerprints
were applied extensively for drug discovery, virtual screening,
and compound similarity search,27 but it has recently been
argued that the usage of engineered features constrains the
learning ability of machine learning algorithms.1 Furthermore,
for many applications, molecular fingerprints may not be
relevant, informative, or even available.
With the rise of deep learning methods and their proven

ability to learn the most informative features from raw data,
machine learning methods used in molecular design and drug
discovery have also experienced a shift.28−30 For instance,
computational chemists borrowed methods from neural
language models31 to encode SMILES32 strings of molecules
and predict chemical properties of molecules.1,33,34 [SMILES
(simplified molecular-input line-entry system) is an equivalent
expression of molecules through text sequences; e.g., benzene
is C1 = CC = CC = C1.] Once a gold standard in sequence
modeling, recurrent neural networks (RNNs) were initially
employed as SMILES encoders.1,35,36 However, it has been
recently shown that convolutional architectures are superior to
RNNs for sequence modeling,37 and specifically for modeling

the SMILES string encoding of compounds.38 It is noteworthy
that these findings are in agreement with our model
comparison results that reveal convolutional architectures as
superior for SMILES sequence modeling.
Most recently, Chang et al.39 adopted deep learning

methods to develop a pan-drug model for predicting IC50
[half maximal inhibitory concentration, i.e., the micromolar
concentration of a drug necessary to inhibit 50% of the cells]
drug sensitivity of drug−cell line pairs. Utilizing >30 000
binary features (∼3000 for the molecular drug fingerprint and
the rest for a genomic fingerprint), they employed a model
ensemble of five deep convolutional networks (four are
completely linear) with convolutions applied separately to
each of the genomic and molecular features before the
encodings were merged. While we are working toward a
common goal, our approaches are vastly different. Our method
presents several key advantages. First, our algorithm ingests
raw information (SMILES string representation), which in turn
enables data augmentation and boosts model performance.35

Second, by applying convolutions on SMILES, we can learn
spatially meaningful filters, in contrast to applying them on
molecular fingerprints. In accordance with Costello et al.,8 we
use transcriptomic features (gene expression profiles) instead
of genomic features since they have higher predictive power.
Moreover, we combine transcriptomic and molecular informa-
tion using a contextual attention encoder that renders our
model transparent and interpretable, a feature that is
paramount in precision medicine and has only recently started
to be tackled.40 An additional key advantage of our approach is
our strict splitting strategy and evaluation criterion. While
previous works relied on lenient splitting strategies that
ensured no drug−cell line pair in the test data was seen
during training, we adopt a more stringent splitting strategy
and deprive the model training of all drugs and cell lines that
are present in the test dataset. Our strict training and
evaluation strategy results in a significantly more challenging
problem but in turn ensures the model is learning generalizable
molecular substructures with anticancer properties as opposed
to memorizing drug sensitivity from cell−drug pairs that it has
encountered during training. A model that has been trained
with such a criterion will generalize better to completely
unseen drugs and cell lines, thus paving the way for both in
silico validation of de novo drug candidates in pharmaceutics
and selection of a suitable therapy in personalized medicine. A
lenient split, on the other hand, may facilitate drug
repositioning, as it performs best when the drug and cell line
have been encountered during training.

1.3. Scope of the Presented Work. In this work we build
upon our previous work on multimodal drug sensitivity
prediction using attention-based encoders41 and propose a
novel best-performing architecture, an attention-based multi-
scale convolutional encoder. In addition, we perform a
thorough validation of the attention weights given by our
proposed MCA model. We combine (1) cell line data, (2)
molecular structure of compounds, and (3) prior knowledge of
protein interactions to predict drug sensitivity. Specifically, for
(1) we explore the usage of gene expression profiles, and for
(2) we explore different neural architectures in combination
with our devised contextual attention architecture to encode
raw SMILES of anticancer drugs in the context of the cell that
they are acting on (see Figure 1). We show that attention-
based SMILES encoders significantly surpass a baseline
feedforward model utilizing Morgan (circular) fingerprints.42
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Using our multiscale convolutional attentive (MCA) encoder,
we show that we achieve superior IC50 prediction perform-
ance on the GDSC database43 compared with the existing
methods.15,39 Utilizing SMILES representations is highly
desirable, as they are ubiquitously available and more
interpretable than traditional fingerprints. Furthermore, our
contextual attention mechanism emerges as the key compo-
nent of our proposed SMILES encoder, as it helps validate our
findings by explaining the model’s inner working and reasoning
process, many of which are in agreement with domain-
knowledge on biochemistry of cancer cells.

2. METHODS
2.1. Data. Throughout this work, we employed drug

sensitivity data from the publicly available Genomics of Drug
Sensitivity in Cancer (GDSC) database.43 The database
includes the screening results of more than a thousand
genetically profiled human pan-cancer cell lines with a wide
range of anticancer compounds (both chemotherapeutic drugs
and targeted therapeutics). The drug sensitivity values were
represented by half maximal inhibitory concentration (IC50)
on the log-scale. From the collected canonical SMILES,
Morgan fingerprints were acquired using RDKit (512-bit with
radius 2). Due to the nature of the SMILES language, most
molecules can be validly represented through different
SMILES strings (e.g., C(O)O and OCO both
represent carbon dioxide). Exploiting this property, Bjerrum35

proposed an effective data augmentation strategy which is
adopted herein. We chose to represent each cell by its

transcriptomic profile as it has been demonstrated that
transcriptomic data are more predictive of drug sensitivity
when compared to other omic data.8 As such, all available
RMA-normalized gene expression data were retrieved from the
GDSC database resulting in transcriptomic profiles of 985 cell
lines in total.

2.2. Network Propagation. Since each of the 985 cell
lines in GDSC was initially represented by the expression levels
of 17 737 genes an informed feature reduction was
indispensable as we found it computationally intractable to
process the high-dimensional raw data. To that end, we
employed network propagation over the STRING protein−
protein interaction (PPI) network44 (a comprehensive PPI
database including interactions from multiple data sources)
leaving a subset of 2128 genes. Following the procedure
described in Oskooei et al.,25 STRING was used to incorporate
intracellular interactions in our model by adopting a network
propagation scheme for each drug, where the weights
associated with each of the reported targets were diffused
over the STRING network (including interactions from all the
evidence types), leading to an importance distribution over the
genes (i.e., the vertices of the network). Our adopted
weighting and network propagation scheme consisted of the
following steps: we first assigned a high weight (W = 1) to the
reported drug target genes while assigning a very small positive
weight (ε = 1 × 10−5) to all other genes. Thereafter, the
initialized weights were propagated over STRING. This
process was meant to integrate prior knowledge about
molecular interactions into our weighting scheme and simulate
the propagation of perturbations within the cell following the
drug administration. Let us denote the initial weights as W0
and the string network as S = (P, E, A), where P are the protein
vertices of the network, E are the edges between the proteins,
and A is the weighted adjacency matrix. The smoothed weights
are determined from an iterative solution of the propagation
function:25

α α= ′ + −+W WA W(1 )t t1 0 (1)

where D is the degree matrix and A′ is the normalized
adjacency matrix, obtained from the degree matrix D:

′ = − −A D AD1/2 1/2 (2)

The diffusion tuning parameter, α (0 ≤ α ≤ 1), defines how
far the prior knowledge weights can diffuse through the
network. In this work, we used α = 0.7, as recommended in the
literature for the STRING network.45 Adopting a convergence
rule of e = (Wt+1 − Wt) < 1 × 10−6, we solved eq 1 iteratively
for each drug and used the resultant weights distribution to
determine the top 20 highly ranked genes for each drug. By
selecting the top 20 genes for every drug, it was possible to
compile an interaction-aware subset of genes (2128 genes in
total). This subset containing the most informative genes was
then used to profile each cell line in the dataset before it was
fed into our models. The selection was limited to the top 20
genes for every drug to guarantee a trade-off between
topology-awareness and the number of features describing
the biomolecular profile. We then paired all screened cell lines
and drugs to generate a pan-drug dataset of cell−drug pairs
and the associated IC50 drug response. Due to missing values
in the GDSC database, pairing of the 985 cell lines with the
208 drugs resulted in 175 603 pairs which could be augmented
to more than 5.5 million data points following SMILES
augmentation.35

Figure 1. Multimodal end-to-end architecture of the proposed
encoders. General framework for the explored architectures. Each
model ingests a cell−compound pair and makes an IC50 drug
sensitivity prediction. Cells are represented by the gene expression
values of a subset of 2128 genes, selected according to a network
propagation procedure. Compounds are represented by their SMILES
string (apart from the baseline model that uses 512-bit fingerprints).
The gene-vector is fed into an attention-based gene encoder that
assigns higher weights to the most informative genes. To encode the
SMILES strings, several neural architectures are compared (for details
see section 2) and used in combination with the gene expression
encoder in order to predict drug sensitivity.
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2.3. Model Architectures. The majority of previous
efforts in drug sensitivity prediction focused on traditional
molecular descriptors (fingerprints). Morgan fingerprints have
been shown to be a highly informative representation for many
chemical prediction tasks.39,46 We explored several neural
network SMILES encoder architectures to investigate whether
the molecular information on compounds, in the context of
drug sensitivity prediction, can be learned directly from the raw
SMILES rather than using engineered fingerprints. As such, all
explored encoder architectures were compared against a
baseline model that utilized 512-bit Morgan fingerprints. The
general architecture of our models is shown in Figure 1.
Deep baseline (DNN). The baseline model is a six-layered

DNN with [512, 256, 128, 64, 32, 16] units and a sigmoid
activation. The hyperparameters for the baseline model were
optimized via a cross-validation scheme (see subsection 2.4)
starting from the model proposed by Menden et al.,15 wherein
512-bit Morgan fingerprints and gene expression profiles
(filtered using the network propagation described in
subsection 2.1) were concatenated into a joint representation
from the first layer onward.
Commonalities of SMILES Encoders. To investigate which

model architecture best learns the molecular information on
compounds, we explored various SMILES encoders. Next to
the expression profiles they ingest the SMILES text encodings
for the structure of the compounds. The raw SMILES strings
were tokenized to individual atoms using the regular
expression from Schwaller et al.47 For example the SMILES
string of dinitrogen tetroxide ([N+](O)([N+](O)-
[O−])[O−]) consists of 26 characters, but is decomposed
into 14 entities ([N+] (O) ([N+] (O) [O−]) [O−]).
This ensured that small functional units of the molecule (such
as [NH] or [N+]) were represented as single entities to the
model. The resulting atomic sequences were zero-padded and
represented as E = {e1, ..., eT}, with learned embedding vectors

∈ ei
H for each dictionary token (see Figure 2A). Each cell

line, represented by the genetic subset selected through
network propagation, is fed to the gene attention encoder
(see Figure 2B). A single dense softmax layer with the same
dimensionality as the input produces an attention weight
distribution over the genes and filters them in a dot product,
ensuring most informative genes are given a higher weight for
further processing. The resulting gene attention weights render
the model interpretable, as they identify genes that drive the
sensitivity prediction for each cell line. This architecture was
also investigated for the deep baseline model but discarded due
to inferior performance. All SMILES encoders were followed
by a set of dense layers (as shown in Figure 1) with dropout
(pdrop = 0.5) for regularization and sigmoid activation function.
The regression was completed by a single neuron with linear
activation (rather than sigmoid) to avoid restricting the values
between 0 and 1 and hindering the learning process of the
network as a result.
Bidirectional Recurrent (bRNN). RNNs have traditionally

been the first-line approach for sequence encoding. To
investigate their effectiveness in encoding SMILES, we adopted
a two-layered bidirectional recurrent neural network (bRNN)
with gated recurrent units (GRUs).48 The final states of the
forward and backward GRU-RNN were concatenated and fed
to the dense layers for IC50 prediction.
Stacked Convolutional Encoder (SCNN). Next, we

employed an encoder with four layers of stacked convolutions

and sigmoid activation function. 2D convolution kernels in the
first layer collapsed the embedding vectors’ hidden dimension-
ality while subsequent 1D convolutions extracted increasingly
long-range dependencies between different parts of the
molecule. As a result, similarly to the bRNN, any output
neuron of the SCNN SMILES encoder had integrated
information from the entire molecule.

Self-Attention (SA). We investigated several encoders that
leveraged neural attention mechanisms, originally introduced
by Bahdanau et al.31 Interpretability is paramount in healthcare
and drug discovery.49 As such, neural attention mechanisms
are central in our models as they enable us to explain and
interpret the observed results in the context of underlying
biological and chemical processes. Our first attention
configuration is a self-attention (SA) mechanism adapted
from document classification50 for encoding SMILES strings.
The SMILES attention weights αi were computed per atomic
token as

α =
∑

= +
u

u
u V W s b

exp( )

exp( )
where tanh( )i

i

j
T

j
i

T
e i

(3)

The matrix ∈ ×We
A H and the bias vector ∈ ×b A 1 are

learned in a dense layer. si is an encoding of the ith token of the
molecule, in the most basic case simply the SMILES
embedding ei. In all attention mechanisms, the encoded smiles
are obtained by filtering the inputs with the attention weights.

Contextual-Attention (CA). Alternatively, we devised a
contextual-attention (CA) mechanism that utilizes the gene
expression subset G as a context (Figure 2C). The attention
weights αi are determined according to the following equation:

= + ∈ ×| |u V W s W G Wtanh( ) wherei
T

e i g g
A G

(4)

First, the matrices Wg and We project both genes G and the
encoded SMILES tokens si into a common attention space, A.

Figure 2. Key layers employed throughout the SMILES encoder. (A)
SMILES Embedding (SE): An embedding layer transforms raw
SMILES strings into a sequence of vectors in an embedding space.
(B) Gene attention (GA): An attention-based gene expression
encoder generates attention weights that are in turn applied to the
input gene subset via a dot product. (C) Contextual attention (CA):
A contextual attention layer ingests the SMILES encoding (either raw
or the output of another encoder, e.g., CNN, RNN, and so on) of a
compound and genes from a cell to compute an attention distribution
(αi) over all tokens of the SMILES encoding, in the context of the
genetic profile of the cell. The attention-filtered molecule represents
the most informative molecular substructures for IC50 prediction,
given the gene expression of a cell.
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Adding the gene context vector to the projected token
ultimately yields an αi that denotes the relevance of a
compound substructure for drug sensitivity prediction, given
a gene subset G.
Multiscale Convolutional Attention (MCA). In their

simplest form, the attention mechanisms of the SA and CA
models operate directly on the embeddings, disregarding
positional information and long-range dependencies. Instead
they exploit the frequency counts on individual tokens (atoms,
bonds). Interestingly, the attention models nevertheless
outperform the bRNN and SCNN which integrated
information from the entire molecule. In order to combine
the benefits of the attention-based models, i.e., interpretability
with the ability of sequence encoders to extract both local and
long-range dependencies, we devised the multiscale convolu-
tional attentive (MCA) encoder shown in Figure 3. Using

MCA, the SMILES string of a compound is analyzed using
three separate channels, each convolving the SMILES
embeddings with a set of f kernels of sizes [H, 3], [H, 5],
and [H, 11] and ReLU activation. The efficacy of a drug may
be tied primarily to the occurrence of a specific molecular
substructure that attaches to the receptor’s binding site. MCA
is designed to capture substructures of various size using its
variable kernel size. For instance, a particular kernel could
detect a steroid structure, typical across anticancer molecules.51

Following the multiscale convolutions, the resulting feature

maps of each channel were fed into a contextual attention layer
that received the filtered genes as context. Similarly to Vaswani
et al.,52 we employed m = 4 contextual attention layers for each
channel, in order to allow the model to jointly attend several
parts of the molecule. The multihead attention approach,
counteracts the tendency of the softmax to filter out the vast
majority of the sequence steps.53 In a fourth channel, the
convolutions were skipped (residual connection), and the raw
SMILES embeddings were directly fed to the parallel CA
layers. The output of these 4m layers was concatenated before
being given to the stack of dense feedforward layers.

2.4. Model Evaluation. Strict Split. To benchmark the
different proposed architectures, a strict data split approach
was adopted to ensure neither the cell lines nor the compound
structures within the validation or test datasets have been seen
by our models prior to validation or testing. This is in contrast
to previously published pan-drug models which have explored
only a lenient splitting strategy, where both compound and
cell-line of any sample in the test dataset were encountered
during training. In our data split strategy, 10% subsets of the
total number of 208 compounds and 985 cell lines from the
GDSC database were set aside to be used as an unseen test
dataset to evaluate the trained models. The remaining 90% of
compounds and cell lines were then used in a 25-fold cross-
validation scheme for model training and validation. In each
fold, 4% of the drugs and 4% of cell lines were separated and
used to generate the validation dataset, and the remaining
drugs and cell lines were paired and fed to the model for
training. In practice, this strategy deprived the model from a
significant proportion of samples which were not sorted into
any of training, validation, or testing data. We decided to
choose 25-fold cross-validation (1) because this number is
large enough to employ tests of statistical significance across
different models and (2) to increase the size of the training set
and in turn improve the performance of the trained models by
decreasing the number of pairs that were excluded from the
training set (i.e., the validation set).

Lenient Split. To compare our model with prior works that
chose a less strict data split strategy, we adopted a similar
strategy that, rather than depriving the model from both the
cells and drugs in the test set, ensured no cell−drug pair in the
test set has been seen before. This split consisted of a standard
5-fold cross-validation scheme, wherein 10% of the pairs
(175 603 pairs from 985 cell lines and 208 drugs) were set
aside for testing.
IC50 values of the training data were normalized to [0,1],

and the same transformation was applied to validation and test
data. Gene expression values in the training set were
standardized, and the same transformation was applied to
the gene expression in the validation and test sets.

2.5. Training Procedure. All described architectures were
implemented in TensorFlow 1.10 with a MSE loss function
that was optimized with Adam (β1 = 0.9, β2 = 0.999, ε = 1 ×
10−8) and a decreasing learning rate.54 An embedding
dimensionality of H = 16 was adopted for all SMILES
encoders. The attention dimensionality was set to A = 256 for
the SA and CA models, while A = f = 64 for MCA. In the final
dense layers of all models, we employed dropout (pdrop = 0.5),
batch normalization, and a sigmoid activation. All models were
trained with a batch size of 2048 for a maximum of 500k steps
on a cluster equipped with POWER8 processors and an
NVIDIA Tesla P100.

Figure 3. Model architecture of the multiscale convolutional attentive
(MCA) encoder. The MCA model employed three parallel channels
of convolutions over the SMILES sequence with kernel sizes K and
one residual channel operating directly on the token level. Each
channel applied a separate gene attention layer, before (convolved)
SMILES and filtered genes were fed to a multihead of four contextual-
attention layers. The outputs of these 16 layers were concatenated and
resulted in an IC50 prediction through a stack of dense layers. For
CA, GA, and SE, see Figure 2.
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3. RESULTS
3.1. Model Performance Comparison on Strict Split.

Table 1 compares the test performance of all models trained

using a 25-fold cross-validation scheme. As shown in Table
1:performance, the MCA model yielded the best performance
in predicting drug sensitivity (IC50) of unseen drugs-cell line
pairs within the test dataset. Since IC50 was normalized to
[0,1], the observed RMSE implies an average deviation of
10.4% of the predicted IC50 values from the true values.
Interestingly, the bRNN SMILES encoder matched, but did
not surpass the performance of the baseline model (DNN).
The SCNN encoder, which combined and encoded
information from across the entire SMILES sequence,
performed significantly worse than the baseline, as assessed
by a one-sided Mann−Whitney U-test (U = 126, p < 2 ×
10−4). We therefore hypothesize that local features of the
SMILES sequence (such as counts of atoms and bonds)
contain information most predictive of a drug’s efficacy.
Attention-based models that operated directly on the SMILES
embeddings (SA, CA), performed significantly better than all
previous models (e.g., CA vs DNN: U = 42, p < 9 × 10−8, SA
vs DNN: U = 82, p < 5 × 10−6). Surprisingly, neither
complementing the SMILES embedding with positional
encodings (similarly to Vaswani et al.52) nor complementing
the bRNN encoder with attention was found to improve the
model performance. Ultimately, the MCA model, a develop-
ment of the CA model (itself a progression from SA), was
devised to combine token-level information (beneficial for the
attention-only SA and CA models) with spatially more holistic
chemical features within the same model. By architecture,
some convolution kernels in the MCA could for example
develop a sensitivity for a pyrimidine ring, potentially
indicative of a tyrosine kinase inhibitor (such as Gefitinib,
Afatanib, or Erlotinib), an enzyme which inhibits phosphor-
ylation of epidermal growth factor receptors (EGFR) to
suppress tumor cell proliferation.55

The resulting MCA model also outperformed the baseline
model significantly (U = 136, p < 3 × 10−4). In accordance
with previous theoretical and empirical works demonstrating
the superiority of model ensembles over single models in
predictive accuracy,56 we utilized a prediction averaging
technique to further boost performance. Pooling the
predictions of 20 MCA models (from different time points

during training), we obtained a RMSE of 0.104 on test data
that not only significantly outperformed the baseline, but also
the single MCA model (U = 10, p < 2 × 10−9 to the baseline
and U = 152, p < 9 × 10−4 comparing to the plain MCA).
While model averaging is known to be an efficient way to
improve accuracy, the ensemble size of 20 was set to
compromise computational cost and performance. In general,
we observed a strong variability across the folds, leading us to
report median as a more robust measure of performance than
the mean across the folds. The variability across the folds
stemmed from the strict splitting strategy (see subsection 2.4)
that resulted in training, validation, and test datasets that were
significantly different from one another. In conclusion, our
results suggest that in order to effectively capture the mode of
action of a compound, we require information from a
combination of token-level (i.e., atom or bond level) and
longer range dependencies across the SMILES sequence.

3.2. Model Validation on Lenient Data Split. In
addition to the performance evaluations in Table 1, we
evaluated the MCA model using a less strict data split strategy
that had been adopted in previous works.39 This allowed for a
more meaningful comparison between the performance of our
models with previous state of the art. As Figure 4 shows, the

MCA model ensemble achieved a RMSE of 0.887 on the log-
IC50 scale, corresponding to a deviation of 4.6%. The
explained variance of 86.19% suggests that our model learned
to a significant extent to predict the IC50 value of an unknown
pair, when both the cell line and drugs in the test set were not
excluded from the training set.
Comparing to previous pan-drug models, we surpass the

results of Menden et al.15 and the recently presented
CDRscan39 model [they achieved a RMSE of 1.07 and R2 of
0.84 despite using more than 1 order of magnitude more
features than our model’s cell biology] while leveraging model
interpretability as follows.

Table 1. Performance of the Explored Architectures on Test
Data Following 25-Fold Cross-Validationa

encoder type
drug

structure
standardized RMSE
median ± IQR

deep baseline (DNN) fingerprints 0.122 ± 0.010
bidirectional recurrent (bRNN) SMILES 0.119 ± 0.011
stacked convolutional (SCNN) SMILES 0.130 ± 0.006
self-attention (SA) SMILES 0.112* ± 0.009
contextual attention (CA) SMILES 0.110* ± 0.007
multiscale convolutional
attentive (MCA)

SMILES 0.109* ± 0.009

MCA (prediction averaging) SMILES 0.104** ± 0.005
aThe median RMSE and the IQR between predicted and true IC50
values on test data of all 25 folds are reported. Interestingly, attention-
based models outperform all other models, including models trained
on fingerprints, with a statistically significant margin (* indicating a
significance of p < 0.01 compared to the DNN encoder, ** to the
MCA).

Figure 4. Test performance of MCA on lenient splitting. Scatter plot
of correlation between true and predicted drug sensitivity by a late-
fusion model ensemble of all five folds. The model was fitted in log
space.
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3.3. Attention Analysis. Drug Structure Attention. To
quantify and analyze the drug attention on a large scale, we
retrieved attention profiles for a panel of drug−cell line pairs
where each drug has been evaluated for all the cell lines in the
set. The selected panel consisted of 150 drugs and 200 cell
lines. For each drug, we defined a matrix of pairwise Euclidean
distances between the attention profiles of the treated cell
lines. The resulting distance matrix quantifies the variation in
attention profiles of a drug as a function of the treated cell
lines. We then computed, for each pair of drugs, the Frobenius
distance between the attention distance matrices defined
above. Finally, we evaluated the correlation between the
Frobenius distances of each pair of drugs and their Tanimoto
coefficient,57 an established index for evaluating drug similarity
based on fingerprints.58 This approach resulted in a Pearson
correlation of ρ = 0.64 (n = 22500, p < 1 × 10−50). The fact
that the attention similarity of any two drugs is highly
correlated with their structural similarity indicates that the
model indeed learns valuable insights on structural properties
of compounds.
Gene Attention. In order to thoroughly validate the gene

attention weights, we computed the attention profiles of all cell
lines in the test data, averaged the attention weights, and
filtered them by discarding genes with negligible attention
values ( <ai K

1 , where K is the number of genes in the panel).

Based on the resulting subset of 371 highly attended genes, we
performed a pathway enrichment analysis using Enrichr.59,60

The goal was to identify relevant processes highlighted by the
genes the model learned to focus on. The analysis revealed a
significant activation (adjusted p < 0.004) of the apoptosis
signaling pathway in PANTHER.61 Programmed cellular death
is a key molecular process elicited by anticancer compounds
which validates the attention mechanism as being in
accordance with prior knowledge from cell biology.
A Case Study: Two TK Inhibitors. As a further validation, we

analyzed in detail the neural attention mechanism of the best
MCA model (lenient split) for two very similar anticancer
compounds (Imatinib and Masitinib) which only differ in one
functional group: a thiazole ring for Masitinib instead of a
piperazine ring for Imatinib. Both studied drugs are tyrosine
kinase inhibitors that are predominantly applied in hema-
topoietic and lymphoid tissue. Generally, their IC50 values are
highly correlated, particularly for their target cell lines (ρ =
0.72). Figure 5 depicts the attention over both molecules when
paired with cell line MEG-01 (COSMIC ID 1295740, a type of
chronic myelogenous leukemia). Leukemia is targeted quite
successfully by both drugs, with Imatinib (IC50 = 81 nM)
being superior to Masitinib (223 nM). Comparing the
attention weights on both molecules depicted in Figure 5
reveals that the attention weights on the affected functional
groups (encircled) are drastically different in the two
compounds whereas the remaining regions of the both
molecules are primarily unaffected. The localized discrepancy
in attention centered at the affected rings suggests that these
substructures are of primary importance to the model in
predicting the sensitivity of the MEG-01 cell line to Imatinib
and Masitinib.
At the bottom of Figure 5 are presented the most attended

genes of the studied leukemia cell line and their STRING
protein neighborhoods. Interestingly, the DDR1 protein is a
member of receptor tyrosine kinases (RTKs), the same group
of cell membrane receptors that both Imatinib and Masitinib

inhibit.62 DDR1 gene is highly expressed in various cancer
types, such as in chronic lymphocytic leukemia.63 In addition,
BMP2K gene has been recently shown to be implicated in
chronic lymphocytic leukemia (CLL),64 while CHST11 has
long been known to be deregulated in CLL.65 TNFSF11
encodes RANKL, which is part of a prominent cancer signaling
pathway,66 and TNFSF11 has been reported to be the most
overexpressed gene in a sample of n = 129 acute lymphoblastic
leukemia (ALL) patients.67 RRP9 has been shown to be crucial
in treating ALL.68 In conclusion, the prior knowledge from the
cancer literature validates our findings and indicates that the
genes that were given the highest attention weights by our
model are indeed crucial players in the progression and
treatment of leukemia.

4. DISCUSSION
We presented an attention-based multimodal neural approach
for explainable drug sensitivity prediction using a combination
of (1) SMILES string encoding of drug compounds, (2)
transcriptomics of cancer cells, and (3) intracellular
interactions incorporated into a PPI network. In an extensive
comparative study of SMILES sequence encoders, we

Figure 5. Neural attention on molecules and genes. The molecular
attention maps on the top demonstrate how the model’s attention is
shifted when the thiazole group is replaced by a piperazine group. The
change in attention across the two molecules is particularly
concentrated around the affected rings, signifying that these functional
groups play an important role in the mechanism of action for these
tyrosine kinase inhibitors when they act on a chronic myelogenous
leukemia (CML) cell line. The gene attention plot at the bottom
depicts the most attended genes of the CML cell line, all of which can
be linked to leukemia (details see text).

Molecular Pharmaceutics Article

DOI: 10.1021/acs.molpharmaceut.9b00520
Mol. Pharmaceutics 2019, 16, 4797−4806

4803

http://dx.doi.org/10.1021/acs.molpharmaceut.9b00520


demonstrated that using the raw SMILES string of drug
compounds, we were able to surpass the predictive perform-
ance reached by a baseline model utilizing Morgan fingerprints.
In addition, we showed that the attention-based SMILE
encoder architectures, especially the newly proposed MCA,
performed the best while producing results that were verifiably
explainable. The validity of the drug attention has been
corroborated by demonstrating its strong correlation with a
well established structure similarity measure. To further
improve the explainability of our models, we devised a gene
attention mechanism that acts on genetic profiles and focuses
on genes that are most informative for IC50 prediction. We
validated the correctness of the gene attention weights by
performing a pathway enrichment analysis over all the cell lines
contained in GDSC and finding a significant enrichment of
apoptotic processes. In a case study on a leukemia cell line, we
have showcased how our model is able to focus on relevant
compounds’ structural elements and consider genes relevant
for the disease of interest. Following a propagation technique
over the STRING PPI network, our model explored the 2128
most informative instead of all 17 737 genes. Utilizing the full
set of genes instead would render model training computa-
tionally intractable; but alternative feature reduction techni-
ques that do not neglect the majority of genes, such as deriving
single-sample signature scores for all relevant pathways,69 were
not yet explored herein. The apparent benefit of our gene-
based approach is the gene attention mechanism which would
be dropped in an approach purely based on pathway activity
scores. However, extending our model with an additional input
channel for pathway scores and an associated pathway
attention mechanism could greatly complement the represen-
tation of the tumor cell.
A key feature of our models was the strict training and

evaluation strategy that set our work apart from previous
approaches. In our strict model evaluation approach, cells and
compounds were split in training, validation and test datasets
before building the pairs, ensuring neither cells nor compounds
in the validation or test datasets were ever seen by the trained
model, thus depriving the model from a significant portion of
available samples. Despite this unforgiving evaluation criterion,
our best model (MCA) achieved an average standard deviation
of 0.11 in predicting normalized IC50 values for unseen drug−
cell pairs. Furthermore, in a separate comparative study on the
same dataset, this time with a lenient data split and model
evaluation criterion, we demonstrated that our MCA model
outperformed previously reported state-of-the-art results by
achieving a RMSE of 0.89 and a R2 of 86%. A valid concern is
regarding the choice of IC50 as cell response metric. We
acknowledge that choice being simplistic, but we emphasize
that our method is data driven and the large public databases
(GDSC, CCLE etc.) do not share any information about cell
growth rates. However, an interesting future endeavor is to
incorporate the full dose−response curve instead of only
exploring the IC50 point estimates. This would not only
greatly increase the amount of available data points but also to
assay and employ the model more rigorously and precisely as
the user could also vary drug concentration.
We envision our attention-based approach to be of great

utility in personalized medicine and de novo anticancer drug
discovery where explainable prediction of drug sensitivity is
paramount. Furthermore, having established a solid multi-
modal predictive model we have paved the way for future
directions such as (1) drug repositioning applications, as our

model enables drug sensitivity prediction for any given drug−
cell line pair, and (2) leveraging our model in combination
with recent advances in small-molecule generation using
generative models70,71 and reinforcement learning72 to design
novel disease-specific or even patient-specific compounds. This
opens up a scenario where personalized treatments and
therapies can become a concrete option for patient care in
cancer precision medicine.
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(22) Stanfield, Z.; Cosķun, M.; Koyutürk, M. Drug response
prediction as a link prediction problem. Sci. Rep. 2017, 7, 40321.
(23) Liu, H.; Zhao, Y.; Zhang, L.; Chen, X. Anti-cancer drug
response prediction using neighbor-based collaborative filtering with
global effect removal. Mol. Ther.–Nucleic Acids 2018, 13, 303−311.
(24) Zhang, L.; Chen, X.; Guan, N.-N.; Liu, H.; Li, J.-Q. A hybrid
interpolation weighted collaborative filtering method for anti-cancer
drug response prediction. Front. Pharmacol. 2018, 9, 01017.
(25) Oskooei, A.; Manica, M.; Mathis, R.; Martínez, M. R. Network-
based Biased Tree Ensembles (NetBiTE) for Drug Sensitivity
Prediction and Drug Sensitivity Biomarker Identification in Cancer.
arXiv:1808.06603 [q-bio.QM], arXiv preprint, 2018. https://arxiv.org/
abs/1808.06603

(26) Zhang, F.; Wang, M.; Xi, J.; Yang, J.; Li, A. A novel
heterogeneous network-based method for drug response prediction in
cancer cell lines. Sci. Rep. 2018, 8, 3355.
(27) Cereto-Massague,́ A.; et al. Molecular fingerprint similarity
search in virtual screening. Methods 2015, 71, 58−63.
(28) Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T.
The rise of deep learning in drug discovery. Drug Discovery Today
2018, 23, 1241.
(29) Grapov, D.; Fahrmann, J.; Wanichthanarak, K.; Khoomrung, S.
Rise of deep learning for genomic, proteomic, and metabolomic data
integration in precision medicine. Omics: a journal of integrative biology
2018, 22, 630−636.
(30) Wu, Z.; et al. MoleculeNet: a benchmark for molecular
machine learning. Chem. Sci. 2018, 9, 513−530.
(31) Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation
by jointly learning to align and translate. arXiv:1409.0473 [cs.CL],
arXiv preprint, 2014. https://arxiv.org/abs/1409.0473.
(32) Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Model. 1988, 28, 31−36.
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