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ABSTRACT

Unit tests are labor-intensive to write and maintain. This paper

looks into how well unit tests for a target software package can be

extracted from the execution traces of client code. Our objective is

to reduce the effort involved in creating test suites while minimizing

the number and size of individual tests, and maximizing coverage.

To evaluate the viability of our approach, we select a challenging

target for automated test extraction, namely R, a programming lan-

guage that is popular for data science applications. The challenges

presented by R are its extreme dynamism, coerciveness, and lack

of types. This combination decrease the efficacy of traditional test

extraction techniques. We present Genthat, a tool developed over

the last couple of years to non-invasively record execution traces

of R programs and extract unit tests from those traces. We have

carried out an evaluation on 1,545 packages comprising 1.7M lines

of code. The tests extracted by Genthat improved code coverage

from the original rather low value of 267,496 lines to 700,918 lines.

The running time of the generated tests is 1.9 times faster than the

code they came from.
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1 INTRODUCTION

Testing is an integral part of good software engineering practices.

Test-driven development is routinely taught in Computer Science

programs, yet a cursory inspection of projects on GitHub suggests

that the presence of test suites cannot be taken for granted and

even when tests are available they do not always provide sufficient

coverage or granularity needed to easily pinpoint the source of

errors.
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This paper explores a rather simple idea, namely, can we effec-

tively and efficiently extract test cases from program execution traces?

Our motivation is that if programmers do not write comprehensive

unit test suites, then it may be possible for a tool to extract those

for them, especially when the software to test is widely used in

other projects. Our approach is as follows: For each project and

its reverse dependencies, gather all runnable artifacts, be they test

cases or examples, that may exercise the target, run the artifacts

in an environment that records execution traces, and from those

traces produce unit tests and, if possible, minimize them, keeping

only the ones that increase code coverage.

The key question we aim to answer is: how well can automated

trace-based unit test extraction actually work in practice? Themetrics

of interest are related to the quality of the extracted tests, their

coverage of the target project, as well as the costs of the whole

process. To answer this we have to pick an actual programming

language and its associated software ecosystem. Any combination

of language and ecosystem is likely to have its quirks, we structure

the paper so as to identify those language specific features.

Concretely, this paper reports on our implementation and empir-

ical evaluation of Genthat, a tool for automated extraction of unit

tests from traces for the R statistical programming language [11].

The R software ecosystem is organized around a curated open

source software repository named CRAN. For our purposes, we

randomly select about 12% of the packages hosted on CRAN, or

1,545 software libraries. These packages amount to approximately

1.7M lines of code stripped of comments and empty lines. The main-

tainers of CRAN enforce the presence of so-called vignettes, these

are documentation with runnable examples, for all hosted libraries.

Some libraries come equipped with their own test cases. These

are typically coarse grained scripts whose output is compared for

textual equality. Our aim with Genthat is to help R developers

extract unit tests that can easily pinpoint the source of problems,

are reasonably small, provide good coverage, and execute quickly.

Furthermore, we want to help developers to automatically capture

common usage patterns of their code in the wild. In the R code

hosted on CRAN, most of the code coverage comes from examples

and vignettes, and very little is already in the form of tests. In the

corpus of 1,545 packages we selected for this work, tests provide

only an average of 19% coverage, whereas when examples and

vignettes are executed coverage is boosted to 68%.

As of this writing, we are not aware of any other tool for auto-

matically extracting test cases for R. This likely due to the limited

interest that data analysis languages have garnered in our com-

munity, and also due to features of R that make it a challenging

target for tooling. The language is extremely dynamic: it has no

type annotations to structure code, each and every operation can be

redefined during execution, values are automatically coerced from

type to type, arguments of functions are lazily evaluated and can

be coerced back to source expressions, values are modified using a
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copy-on-write discipline most of the time, and reflective operations

allow programs to manipulate most aspect of a program’s execution

state [9]. This combination of features has allowed developers to

build complex constructions, such as support for object-oriented

programming, on top of the core language. Furthermore, large

swaths of the system are written in C code and may break any

reasonable invariants one may hope for.

The contributions of this paper are the description of a tool,

Genthat, for automatically extracting unit tests for R, as well as

an empirical evaluation of that tool that demonstrates that for a

large corpus, 1,545 packages, it is possible to significantly improve

code coverage. On average, the default tests that come with the

packages cover only 19%. After deploying Genthat we are able

to increase the coverage to 53%. This increase mostly comes from

extracting test cases from all the available executable artifacts in

the package and the artifacts from packages that depend on this

package. Genthat is surprisingly accurate, it can reproduce 80% of

the calls executed by the scripts and it is also able to greatly reduce

the number and size of test cases that are retained in the extracted

suite, running 1.9 times faster than package examples, tests and

vignettes combined with only 15% less code coverage (53% vs 68%).

The reduction in coverage comes from limitations in what code can

be turned into tests.

Artifact. The code of our tools, the analysis scripts used to gen-

erate the reports and sample data are available in the validated

artifact accompanying this paper1.

2 BACKGROUND AND RELATED WORK

This section starts with a brief overview of the relevant character-

istics of the R programming language, as well as of its ecosystem,

before discussing previous work on automated test extraction and

its application to R.

2.1 The Language

The R programming language is a challenging language for tooling.

The relevant features are the following:

− R does not have type annotations or a static type system. This

means there is nothing to suggest what the expected arguments

or return values of a function could be, and thus there is little to

guide test generation.

− Symbols such as + and ( can be redefined during execution. This

means that every operation performed in a program depends on

the state of the system, and no function call has a fixed semantics.

This holds even for control flow operations such as loops and

conditionals. While redefinitions are not frequent, they do occur

and tools must handle them.

− Built-in types are automatically and silently coerced from more

specific types to more general types when deemed appropriate.

− R is fully reflective, it is possible to inspect any part of a com-

putation (e.g. the code, the stack or the heap) programmatically,

moreover almost all aspects of the state of a computation can be

modified (e.g. variables can be deleted from an environment and

injected in another).

1https://github.com/fikovnik/ISSTA18-Artifact

− All expressions are evaluated by-need, thus the call f(a+b) con-

tains three delayed sub-expressions, one for each variable and

one for the call to plus. This means that R does not pass values

to functions but rather passes unevaluated promises (the order

of evaluation of promises is part of the semantics as they can

have side effects). These promises can also be turned back into

code by reflection.

− Most values are vectors or lists. Values can be annotated by

key-value pairs. These annotations, coupled with reflection, are

the basic building blocks for many advanced features of R. An

example of this are the four different object systems that use

annotations to express classes and other attributes.

− R has a copy-on-write semantics for shared values. A value is

shared if it is accessible from more than one variable. This means

that side effects that change shared values are rare. This gives a

functional flavor to large parts of R.

R is a surprisingly rich language with a rather intricate semantics,

we can’t do it justice in the space at hand. The above summary

should suffice for the remainder of this paper.

2.2 The Ecosystem

The largest repository of R code is the Comprehensive R Achive

Network (CRAN).2 With over 12,000 packages, CRAN is a rapidly

growing repository of statistical software3. Unlike sites like GitHub,

CRAN is a curated repository. Each program deposited in the

archive must come with documentation and abide by a number

of well-formedness rules that are automatically checked at each

submission. Most relevant for our purpose, packages must have

documentation that comes in the examples and vignettes, and, op-

tionally, tests. All executable artifacts are run at each commit and

for each new release of the language. Vignettes can be written using

a variety of document processors. For instance Figure 1 contains

a (simplified) vignette for a package named A3. That particular

vignette combine text formatting comments, bits of documentation

with code. For our purposes, the key part is the section tagged

examples. That section contains code which is a runnable example

intended to showcase usage of the A3 package.

While it is remarkable that every package comes with data and a

least one vignette, this nevertheless does not necessarily make for

good tests. There are two issues with R’s approach, vignettes are

coarse grained, they typically only exercise top-level functions in a

package, and, they do not specify their expected output, sometimes

that output is graphics, often it has some textual output. As shown

above, vignettes are long-form guides to packages: they describe

the problem that the package is designed to solve, and then show

how to solve it. Their primary audience is developers. A vignette

should divide functions into useful categories, and demonstrate how

to coordinate multiple functions to solve problems. Code can be

extracted from a vignette and run automatically. One can therefore

only assert whether code extracted from examples or vignettes

ran without throwing any exceptions and whether the output is

similar to the last time this was run, but nothing can be said about

the correctness of its output and if there is a difference in output

2http://cran.r-project.org
3CRAN is receiving about 6 new packages a day [8]

233



Tests from Traces: Automated Unit Test Extraction for R ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

% Generated by roxygen2

\name{a3}\alias{a3}

\title{A3 Results for Arbitrary Model}

\usage{a3(formula, data, modelfn, model.args = list(),...)}

\arguments{

\item{formula}{the regression formula}

\item{data}{a data frame containing data for model fit}

\item{modelfn}{the function that builds the model}

}

\description{Calculates A3 for an arbitrary model.}

\examples{

summary(lm(rating ~ ., attitude))

a3(rating ~ ., attitude, lm, p.acc = 0.1)

require(randomForest)

a3(rating ~ .+0, attitude, randomForest, p.acc = 0.1)

}

Figure 1: Sample vignette.

whether this is a substantial departure or if it is an accident of the

way numbers are printed.

In our experience, most R developers are domain experts, rather

than trained software engineers; this is a possible explanation for

the relatively low proportion of unit tests in packages hosted in

CRAN. Most tests are simply R scripts that are coupled with a text

file capturing expected textual output from the interpreter running

the given test [12]. The most popular unit testing framework, called

testthat, is used by only 3,017 packages (about 23% of the total

number of packages in CRAN).4 In our experience, even when

testthat is used, only a few tests are defined, covering only a subset

of the interface of the package.

2.3 Automating Test Extraction

Our goal is to extract black-box unit tests for packages from a large

body of client code. The benefit we are aiming for is to reduce

the manual effort involved in the construction of such regression

testing suites and not necessarily to find new bugs. To the best of

our knowledge there are no tools that address this issue for R, and

the previous work requires substantial adaptation to translate to

our context.

Test generation is a topic with an extensive body of work. We

will only touch on the research directly relevant to our develop-

ment. We focus on automated techniques that do not require users

to write specifications or to provide additional information. The

literature can be split into work based on static techniques, dynamic

techniques and a combination of both.

Static techniques use the program text as a starting point for

driving test generation [1, 5, 16]. The difficulty we face with R is its

extreme dynamism. Consider the following expression f(x/(y+1)).

The semantics of R entails that definitions of f, /, +, and even ( have

4https://cran.r-project.org/web/packages/testthat

to be looked up in the current environment. Given that x and ymay

have class attributes, any of those functions could have to dispatch

on those. At any time, any of these symbols can be redefined (and

in practice they are, sometimes for good reasons [9]). It is also

possible for code to reflectively inject or remove variable bindings

in any environment and turn any expression back into text that

can be manipulated programmatically and then turned back into

executable code.

One approach that would be worth exploring, given that sound

static analysis for R appears to be a non-starter, is some combina-

tion of static analysis and machine learning. For instance, MSeqGen

uses data obtained by mining large code bases to drive test genera-

tion [19]. So far we have not gone down that road.

Dynamic approaches for generating unit tests often rely on some

form of record and replay. Record and replay has been used to

generate reproducible benchmarks from real-world workloads [13],

and, for example, capture objects that can be used as inputs of

tests [6]. Joshi and Orso describe the issues of capturing state for

Java programs [7]. Test carving [4] and factoring [15] have very

similar goals to ours, namely to extract focused unit tests from

larger system tests. These works mostly focus on capturing and

mocking up a sufficiently large part of an object graph so that a

test can be replayed. Rooney used similar approach to extract tests

during an actual use of an application through instrumentation [14].

While R has objects, their use is somewhat limited, they are typically

self=contained, and capturing them in their entirety has worked

well enough for now.

In terms of pushing our work towards bug finding, we pine for

the sanity of languages such as Java or even JavaScript, as in these

languages it is not too hard to get an errant program to throw an

exception—null pointers or out of bound errors are reliable oracles

that something went wrong [3]. In R, most data type mismatches

cause silent conversions, out of bound accesses merely extend the

target array, and missing values are generated when nothing else

fits; none of this causes the computation to stop or is an obvious

sign that something went wrong.

Finally, there are few tools dealing with languages that support

call-by-need. The most popular tool in that space is QuickCheck [2]

for Haskell. It leverage types as well as user-defined annotations to

drive random test generation.

3 GENTHAT: DESIGN & IMPLEMENTATION

An execution trace is the sequence of operations performed by a

program for a given set of input values. We propose to record sets

of execution traces of clients of a target package and from those

traces extract unit tests for functions in either the public interface

or the internal implementation of that target package. To create

those unit tests, only data needed to execute individual function

calls is required. This boils down to capturing function arguments

and any global state the function may access or rely on. To validate

that the function ran successfully, outputs must be recorded so that

the value observed in the trace can be compared with results of

running the generated test.

Consider Figure 2 which is illustrates generation of a test for

function subset in some target package. It features code from a

client of that target package (a), the target package (b) that is
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> a <- c("Mazda", "Fiat", "Honda")

> b <- c(110, 66, 55)

> cars <- data.frame(name=a, hp=b)

> subset(cars, cars$hp >= 60)

name hp

1 Mazda 110

2 Fiat 66

(a) Client code

subset <- function(xs, p) {

# filter the data frame rows

xs[p, ]

}

(b) Package

test_that("subset", {

cars <- data.frame(

name=c("Mazda", "Fiat", "Honda"), hp=c(110, 66, 55)

)

expect_equal(

subset(xs=cars, p=cars$hp >= 60),

data.frame(name=c("Mazda", "Fiat"), hp=c(110, 66))

)

})

(c) Extracted test

Figure 2: Extracting a test case for subset.

> a <- c("Mazda", "Fiat", "Honda")

> b <- c(110, 66, 55)

> cars <- data.frame(name=a, hp=b)

# hp is only defined in the cars data frame

> subset(cars, hp >= 60)

name hp

1 Mazda 110

2 Fiat 66

(d) Client code

subset <- function(xs, p) {

# capture the expression without forcing promise

expr <- substitute(p)

with(xs, xs[eval(expr), ])

}

(e) Package

test_that("subset", {

cars <- data.frame(

name=c("Mazda", "Fiat", "Honda"), hp=c(110, 66, 55)

)

expect_equal(

subset(xs=cars, p=hp >= 60),

data.frame(name=c("Mazda", "Fiat"), hp=c(110, 66))

)

})

(f) Extracted test

Figure 3: Tracing lazy-evaluation and promises.

to be tested, and the corresponding generated test (c). The client

code creates a data frame with information about vehicles and then

filters out cars with horse power less than 60. The subset function

subsets the given data frame (the cars$hp >= 60 returns a vector of

booleans c(TRUE,TRUE,FALSE) that is used to filter out data frame

rows in xs[p, ]). The generated test first recreates the argument

of the call, then it calls the subset function and checks the return

value.

In a simpler language, all one would need to do would be to

record argument and return values as shown in the example of

Figure 2. Not so in R. Lazy evaluation complicates matters as argu-

ment are passed by promise, a promise is a closure that is evaluated

at most once to yield a result. Thus, at function call one cannot

record values as they are not yet evaluated. The example in Figure 3

shows an improved version of the subset function which allows

programmers to reference the columns directly so the sub-setting

predicate in the client code (d) can be more directly written as

hp>=60 instead of cars$hp>=60. But, in (d) the is no definition for hp,

so the code would be incorrect if the argument was evaluated ea-

gerly. Instead, in (e) reflection is used to reinterpret the argument.

The expression substitute(p) does not force a promise, instead it

simply gets the source code of the expression passed as argument

p. This is subsequently used in the with function that evaluates its

arguments in an environment that has been enriched by content of

the first argument. Thus hp>=60 is evaluated in the context of cars

which has a column named hp. Now, the problem for our tool is

that we cannot simply record the values of the passed arguments

because doing so would force promises that cannot be evaluated in

the current frame. In our example, trying to record p would force

the evaluation of hp>=60 which would fail since there is not vari-

able binding called hp at the scope of the call. In general, manually

forcing a promise is dangerous. It may alter the behavior of the

program since promises can have side effects. Moreover the reflec-

tive capabilities of R dictate that the generated expression must be

as close to original call as possible. Any syntactic change may be

observable by user code. The generated test thus attempts to retain

the structure of the client source code as much as possible.

3.1 Genthat Overview

Figure 4 presents an overview of the main phases of Genthat:

(a) Install: given a target package, the package is downloaded from

CRAN and installed in the current R environment. Furthermore,

any package in CRAN that transitively depends on the target

package is also acquired.

(b) Extract: executable code is extracted from the examples and

vignettes in the installed packages. Target package functions

that are to be tested are instrumented. Depending on which

option is selected, either the public API functions or the private

ones are decorated. All executable artifacts are turned into

scripts. Each script is a self-contained runnable file.
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Figure 4: Overview. Genthat installs packages from CRAN, it extracts scripts, traces their execution, and generates unit tests.

Unit tests are checked for correctness and validity, and finally tests are minimized.

(c) Trace: for each script, run that script and record trace informa-

tion. From these traces generate unit tests for all calls to target

functions.

(d) Check: all unit tests are checked for validity and correctness.

Valid tests are those that execute without error. Correct ones

are those that return the expected result. Invalid and incorrect

tests are discarded. Code coverage data is recorded for the tests

that are retained.

(e) Minimize: optionally, minimize the test suite. Minimization

uses simple heuristics to discard tests that do not increase code

coverage. Coverage being equal, tests that are, textually, smaller

are preferred.

Test extraction can fail. Section 4.4 details the reasons, but at

a high-level, the failures can occur during (a) tracing because the

instrumentation perturbs the behavior of the program, (b) gener-

ation because some value could not be serialized, (c) validation

because deserialization fails, and (d) correctness checking because

the test was non-deterministic or relied on external state that was

not properly captured. These failures account for the difference in

coverage between the original traces and the extracted tests.

We will now describe salient points of our implementation. R is

an interpreted language. A straightforward solution would there-

fore be to modify the R interpreter. However, one of our design

goals was to make Genthat available as a package in the CRAN

repository so that developers can use it without having to modify

their distribution. This limits the implementation of Genthat to

publicly available APIs of the R environment. The implementation

is mostly written in R. The only exception is the serializer which

is written in C++ for performance reason; a serializer written in R

turned out to be an order of magnitude slower.

The whole system consists of 4,500 lines of code and 760 lines of

C++ code. The software is released in open source5.

3.2 Tracing

Tracing involves capturing function invocations and recording the

inputs and outputs, including any additional details need to re-

produce the function call in an isolation. Consider the following

example of a function that filters a vector xs by a predicate p:

filter <- function(xs, p) xs[sapply(xs, p)]

Tracing is realized by instrumentation of R functions. Code is in-

jected in target function bodies to record argument values, return

value, and the state of the random number generator.6 After instru-

mentation, the above function body is rewritten to:

5https://github.com/PRL-PRG/genthat
6In statistics, random number generators are omnipresent.

`_captured_seed` <- get(".Random.seed", env=globalenv())

on.exit({

if (tracing_enabled()) {

disable_tracing()

retv <- returnValue(default = `_deflt_retv`)

if (normal_ret(retv)) {

record_trace(name = "filter", pkg = NULL,

args = as.list(match.call())[-1],

retv = retv,

seed = `_captured_seed`,

env = parent.frame())

}

enable_tracing()

}})

xs[sapply(xs, p)] # original function body

The inserted code has a prologue that runs before any of the

original function’s code and an epilogue that runs right before the

function exits. The latter relies on the on.exit hook provided by

R. The prologue records the random seed. Due to R’s lazy nature,

recording of the argument values is done at the end of the function

to avoid forcing a promise before it is needed—that might cause

a side effect and change the result of the program or cause an

error. With the exception of environments, R values are immutable

with a copy-on-write semantics, so any modification of function

arguments in the function’s body will trigger their duplication.

There are two things that need to be done before recording a call.

First, tracing must be temporally disabled as it could recursive. Next,

we need to check whether the function terminated normally or

threw an exception. A call is only recorded in the case the function

did not fail. While most values can be easily recorded, three type

of values must be handled specially: symbols, expressions, and

closures. Consider this example:

m <- 0.5; n <- 1;

filter(runif(10) + m, function(x) x > n)

The code has a call to filter with a nested, anonymous function

definition which captures the variable n from the environment at

the call site. Captured variables need to be resolved to their actual

values. R has a built-in code analysis toolkit7 that can report the

list of free variables used by a closure. In the above call the set

of free variables is `{`, runif, `+`, m, n, `>`. They are resolved

to their values using the hierarchy of environments starting with

the enclosing environment of the traced function. Extra care is

needed for symbols coming from other packages. For those, we do

not store values but instead a call to get their values at runtime.

In the example, runif is a function from the stats package so the

7https://cran.r-project.org/web/packages/codetools/
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call stats::runif will be kept. Since it is possible to redefine any

symbols including `+` and `>`, we have to resolve them as well.

However, from the base library, we only keep the symbols that were

modified. The complete trace for the above call will therefore be:

$ :List of 6

..$ fun : chr "filter"

..$ pkg : NULL

..$ args :List of 2

.. ..$ xs : language runif(10) + m

.. ..$ fun: language function(x) x > n

..$ globals:List of 3

.. ..$ runif: language stats::runif

.. ..$ m : num 0.5

.. ..$ n : num 1

..$ seed : int [1:626] 403 20 -1577024373 1699409082 ...

..$ retv : num [1:3] 0.5374310 1.4735399 0.9317512

The very same has to be done for global variables that are closures.

For example, if the filter function is called as follows:

gt <- function(x) x > n

filter(runif(10) + m, gt)

The tracer needs to capture the free variable n and store it in the

environment of the gt function. The args and globals of this call

become:

..$ args :List of 2

.. ..$ xs : language runif(10) + m

.. ..$ fun: symbol gt

..$ globals:List of 3

.. ..$ runif: language stats::runif

.. ..$ m : num 0.5

.. ..$ gt : language function(x) x > n

The value of n is stored in the enclosing environment of the gt

function.

3.3 Generating Tests

To generate unit tests out of the recorded trace we need to write

out arbitrary R values into a source code file and to fill a template

representing a unit test with the generated snippets of code.We first

describe the general mechanism for serializing values to source code

also known as deparsing.8 The deparse function turns some values

into a character string. Unfortunately, it handles only a subset of

the 25 different R data types [10]. Since any of those data types can

show up as an argument to a function call, we had to provide our

own deparsing mechanism to support them all. In general we strive

to output textual forms of arguments because they can be inspected

and modified by developers. But there are values for which it is

either impractical (e.g. large vectors or matrices) or not possible (cf.

below) to turn them back into source code, for those we fallback to

built-in binary serialization. The data types can be divided into the

following groups:

Basic values There are 6 basic vector types (logical, integer,

numeric, character, complex, and raw). Together with types

representing internal functions (e.g., if, +) as well as the type

representing the NULL value, they can be turned into source

8In the R world, serialization refers to a binary serialization while deparsing denotes
turning values into their source code form.

code using deparse. The subtleties of floating-point numbers

and Unicode characters are therefore handled directly by R.

Lists and symbols Lists are polymorphic, they can contain

any value and therefore we cannot use deparse. For symbols,

deparse does not handle empty symbol names and does not

properly quote non-syntactic names.

Environments Environments are mutable hash maps with

links to their parent environments. They are not supported

by deparse. Serialization is similar to lists; however, we need

to keep track of possible cycles. It is also important to prop-

erly handle named environments and exclude the ones that

were imported from packages.

Language objects A language object contains the name of

the function and a list of its arguments values. Additionally

to ordinary functions, there are also unary functions, infix

functions, (), [], [[]] and {} all of which needed to be

properly handled.

Closures Closures are triples that contain a list of formal pa-

rameters, code, and a closing environment. To serialize them

properly, we need to resolve all their dependencies which

is a transitive closure over its global symbols. We used the

same mechanism for recording closures.

S4 S4 is one of the builtin R object systems. S4 classes and

objects are internally represented by a special data type.

They are complex and are currently serialized in a binary

form.

Promises If a promise is encountered, the serialization tries

to force it while hoping for the best. They are infrequent,

because, when we serialize all the arguments to the function

which have been used have been forced.

External pointers External pointers are used for system ob-

jects such as file handles or in packages that expose native

objects. They are linked to the internal state of the interpreter

and there is no general mechanism for persisting them across

R sessions. They are currently not supported.

R internal values These values are usedwithin R’s implemen-

tation. There is no reason these should be exposed in a unit

test and thus they are not supported.

Some values might be large in their serialized form. For example,

the only way to capture the random number generator is to write

out its entire state, which is a vector of over 600 floating-point

numbers. If we were to add that to the generated test, it would

create ungainly clutter; 126 lines of the test would be full of floating

point values that are of no obvious advantage for the reader. Such

values are therefore kept separately in an environment that is saved

in a binary form next to the test file.

With all the trace values serialized, generating a unit test is

merely filling a string template and reformatting the resulting code

for good readability. For the latter we use the formatR package9. The

extracted unit test from the second example call filter(runif(10)

+ m, gt) is listed in Figure 5. The .ext.seed referencing an external

value which will be loaded into the test running environment at

runtime.

9https://cran.r-project.org/web/packages/formatR/index.html
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library(testthat)

.Random.seed <<- .ext.seed

test_that("filter", {

m <- 0.5

gt <- genthat::with_env(function(x) x > y, list(y=5))

expect_equal(

filter(xs=stats::runif(10) + m, fun=gt),

c(0.5374310 1.4735399 0.9317512)

)

})

Figure 5: Extracted test for filter(runif(10)+m,gt).

3.4 Minimization

Once tests have been created, Genthat checks that they pass and

discards the failing ones. At the same time we record their code

coverage. Given the code coverage we can minimize the extracted

test suite, eliminating redundant test cases [21]. Our minimization

strategy is a very simple heuristic that aims to decrease the number

of tests and to keep the size of individual tests small. In future work

we will investigate alternative goal functions such as minimizing

the combination of test size, test number, and execution time.

The current heuristic works as follows. Tests are sorted by in-

creasing size (in bytes), with the intuition that, all things being

equal, we prefer to retain smaller tests over the larger ones. We use

the covr package to compute code coverage during minimization.

The approach is to take each test, compute the coverage and com-

pare that coverage to the union of all the previously retained tests.

If the new test’s coverage is a subset of the coverage so far, the test

can be discarded. If the test increases coverage, it is retained. In

practice, only a small fraction of tests are retained.

It is technically possible to compute the code coverage during

tracing, discarding redundant traces. However, running R code

with code coverage is slow and since there are many duplicate calls

(only a third of the calls in our experiment were unique) this would

impose a significant overhead. Instead we discard duplicate calls

during tracing and then run the minimization at the end.

4 EVALUATION

To evaluate Genthat, we were interested in finding out how much

we can improve test coverage by extracting tests from documenta-

tion and reverse dependencies and how efficient such an extraction

can be. We were also interested in finding what proportions of

the functions calls can be turned into test cases and how large the

resulting test suites would become.

For these experiments, we selected 1,700 packages from CRAN.

We picked the 100 most downloaded packages from RStudio CRAN

mirror10 including their dependencies and then 1000 random se-

lected CRAN packages, again including their dependencies. This

added up to some 1,726 packages. The motivation for this choice

is to have some well established and popular packages along with

a representative sample of CRAN. From the 1,726, some 1,545 ran

succesfully. The remaining 181 failed either because of a timeout (5

10Used data for June 2017 from http://cran-logs.rstudio.com.

hours during tracing), a runtime error, or failure to compute code

coverage. The packages amounted to 1.7M lines of R (stripped of

comments and empty lines). There were 158,208 lines of examples

(on average 102 lines per packages), 32,524 lines of code extracted

from vignettes (on average 21 lines per package) and 163,835 lines

of tests (on average 106 lines per package).

The experiments were carried out on two virtual nodes (each

60GB of RAM, 16 CPU at 2.2GHz and 1TB virtual drive) using GNU

parallel [17] for parallel execution. We used GNU R version 3.4.311

from Debian distribution.

4.1 Scale

Table 1 presents an overview of the scale of the experiment in terms

of number of function calls and number of extracted tests. Out of

5.3M of function calls, Genthat traced 1.6M unique calls, calls with

distinct arguments and return values. Out of the recorded traces,

93.6% were saved as unit tests. On average, 86.2% of the generated

tests were valid and correct. From the total of 1.3M correct tests

97.9% were redundant, i.e. not increasing code coverage. Finally,

some 26,838 tests were retained.

Table 1: Function calls & extracted tests for 1,545 packages

(s=standard deviation,m=median). Reproducibility is the ra-

tio between the number of valid and correct tests and the

number of traced unique calls.

Overall Average per package

Total number of calls 5,274,108 3,413 (s=13,375 m=141)

Traced unique calls 1,615,151 1,045 (s=3,145 m=82)

Extracted tests 1,512,555 979 (s=3,067 m=68)

Valid & Correct tests 1,303,114 843 (s=2,823 m=50)

Non-redundant tests 26,838 17.4 (s=33 m=9)

Reproducibility 0.8 0.75 (s=0.3 m=0.9)

4.2 Coverage

Figure 6 compares the code coverage obtained with the default

tests and the coverage obtained using Genthat using code from

examples, vignettes and tests. The default tests provide very little

coverage for many packages. Genthat is able to increase the cover-

age from an average of 19% to 53% per package. This is a significant

improvement.

4.3 Performance

Table 2 presents the average time of tracing and generating tests for

our 1,545 packages (tracing), running the generated tests (testing w.

Genthat), and running all of the code that comes with the package

(default tests, vignettes and examples); s is standard deviation and

m is median. In our testbed, running 16 packages in parallel on

each node, the tracing took 1d 18h, running genthat tests 19m and

running the package code 1h 09m.

Tracing clearly has a significant overhead. The median time is 60

seconds. Given that test generation is a design time activity, this is

likely acceptable. The main portion of the time is spent in running

11Released in November 2017
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Figure 6: Code coverage from package tests and Genthat

extracted unit tests. Each bar shows the ratio of packages

that have at least that code coverage.

Table 2: Average running time for 1,545 packages.

Task Average per package

Tracing 420s (s=1500, m=60)

Testing w. Genthat 15s (s=29, m=8)

Testing (default) 28s (s=60, m=10)

the generated tests which are numerous. On average, each package

yields 1000 tests. They all have to be run to determine validity

and correctness, as well as test minimization to determine whether

they increase code coverage. On the other hand, testing with the

minimized tests runs quickly.We are able to process all the packages

in 19 minutes. Thanks to test minimization, this is faster than the

time it would take to run all of the original examples, tests and

vignettes. Concretely, running Genthat extracted tests for the

1,545 is 1.9 times faster. The resulting coverage is 15% smaller, but

what we provide are actual unit tests while the code in examples

and vignettes (and often in R tests as well) is just a plain R code

with no assertion of expected behavior other than that it runs.

4.4 Accuracy

In terms of accuracy, Genthat managed to recreate 80% of all the

unique function calls. Here we discuss the remaining 20%. Problems

can be divided into three groups: tracing, generation, and replay.

They are summarized in Table 3.

The tracing inaccuracies happen while recording function argu-

ments. They account for 4.3% of the failures. Most are due to trace

size; we intentionally discard values larger than 512KB in the R

Table 3: Issues in 312,037 failed test extraction.

Overall %

Tracing 70,020 4.3%

- skipped traces (size > 512kB) 60,360

- ... used in an incorrect context 2,150

- unable to resolve symbol 1,419

- unclassified 6,091

Test generation 32,576 2.0%

- environments with cycles 24,200

- other serialization errors 1,655

- unclassified 6,721

Test replay 209,441 12.9%

- incorrect tests (value mismatch) 77,850

- invalid tests (execute with error) 131,591

binary data format. Our reasoning is that tests which are too large

are awkward to work with. The size limit was chosen empirically

such that no single package loses more than 10% of its tests. The

largest test was 887 MB (on average, skipped tests were 3.5 MB).

Among the other tracing inaccuracies are the triple-dots (...) used

in an incorrect context and missing symbols. Both problems are

related to non-standard evaluation [20] in which the function ar-

guments are not meant to be resolved in the usual scope. In most

cases, Genthat records arguments correctly, but sometimes (0.2%)

it fails to resolve them properly. The remaining problems are diffi-

cult to classify; many issues are related to some of the corner cases

and issues with Genthat itself. They contribute very little to the

overall failure rate.

The test generation inaccuracies are related to environment

serialization in the presence of cycles. This happens for example

if there is a variable in an environment that references the same

environment or any of its parents. This is a known issue that shall

be fixed in future version of Genthat. Other serialization problems

are related to unsupported values such as weak references or byte

code. Similarly, to the unclassified tracing errors, the rest of the

problems does not have a common cause. Some problems come

from the deparse function. Again, they occur very rarely.

The final category is responsible for most of the inaccuracies.

They are the most difficult to reason about since they require knowl-

edge of the actual package code. However, there are some common

causes:

− External pointers (pointers to native code) are not supported, so

any functions that use them explicitly or transitively will not

work.

− We do not keep any state, so if there is an expected sequencing

for function calls Genthat will not work (for example, close

must follow open).

− Non-standard evaluation and serialization do not always play

well together. Currently, Genthat does not have any heuristics

to guess in which evaluation mode a function uses and thus the

serialization might fail.
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Figure 7: Code coverage obtainedwith reverse dependencies.

− Out of the 4 popular object systems used in R, we only cover the

builtin S3 and S4. Reference classes and R612 are currently not

supported.

There is one last source of inaccuracy. The function calls tracing

happens in the on.exit hook that is injected into method bodies.

While this mostly works, the hook can be overwritten and the entire

call will be missed. To quantify the frequency of such event, we

instrumented the code with a counter to count the number of func-

tion calls. In the 1,545 packages, the counter registered 5,274,108

function calls, on average 3,413 per package. The on.exit hook

registered 245,815 fewer calls (5% less). Currently, the on.exit hook

is the only way to inject code into a R function without changing

the R interpreter. We have raised this question of how to avoid

hooks being overridden with the Core R team and a solution will

be hopefully included in an upcoming release.

4.5 Reverse Dependencies

One of the ideas we wanted to explore is to use the code found in

clients of a package to generate additional unit tests. As computing

test for the transitive closure of a package’s reverse dependencies

can be quite expensive we randomly selected 65 packages among

all packages that had at least 20 reverse dependencies. For each

of these package, we downloaded all of the packages that depend

on it, extracted scripts from those packages tests, vignettes and

examples, and used those scripts to extract test cases. In 42 cases,

using reverse dependencies improved code coverage. On average,

the coverage increased from 52% to 60%. Figure 7 is a histogram

of the cumulative test coverage obtained from only the default

tests, the Genthat results for the package only, and the Genthat

12https://cran.r-project.org/web/packages/R6/

results including all reverse dependencies. The improvements are

significant in some cases.

5 DISCUSSION

Following the evaluation we present the threats to validity of the

selected approach, propose some of its application and discuss a

possible generalization.

5.1 Threats to Validity

There are certain limitations to our work. Some can be mitigated

by more engineering work, some is intrinsic to the approach.

Large tests. Programs in R naturally tend to use large vectors

and matrices. Serializing them into source code results in

rather a large unreadable chunks of tests which have a little

value for the reader. On average the generated tests are 18.58

kB (median 490.00 B). The largest test that was generated

was 1.55 MB of R code. Genthat can already be tuned to

discard traces that exceed certain size already at runtime

(cf. Section 4.4). Further, large values can be separated into

the .ext file keeping only a reference in the unit test code.

Non-determinism. If a function call includes non-determinism

which is not captured by the value of calling arguments, the

generated tests will most likely fail.

Over specific testing oracle. The resulting unit tests directly

represents the code from which they were extracted. They

are as good as the source code it. If a package does not in-

clude much runnable artifacts or does not have many clients,

Genthat will not do much.

Brittleness. Extracting tests from existing code can in general

produce false positives (extracted tests passes while the orig-

inal code from which it is generated fails) or false negatives

(extracted tests fails while the original code runs) [14]. False

positives do not occur in Genthat since if a function call

fails, Genthat does not keep the trace (cf. Section 3.2). False

negatives, apart from the reasons discussed in 4.4, also occur

when the tests are run on a different version of a package

than the one that was used to extract the test suite. If the

code base changes, the extracted tests naturally becomes

out of date. The same happens for manually written tests.

The advantage of the automatically extracted tests is that the

process can be simple repeated. On the other hand, Genthat

does not currently have any support for simple regenerating

tests that are out of date.

Tracing time. The tracing comes with some overhead. On av-

erage, tracing is 21.5 (s=97.1 m=4.9) times slower than simply

running the package code artifacts. For most packages, the

running time reasonably short, 75% of them runs under 4m.

But there are packages for which the overhead makes the

running very long, with some exceeding the set timeout of

5h. Commonly, this happens in packages that contains some

iterative algorithms that run on a sufficiently large matri-

ces. Since most of these calls are from the execution code

path very similar, it shall be possible to mitigate this prob-

lem by using stochastic tracing. Instead of tracing each an

every function call, the tracing should be guarded by some

probability with long-tail distribution.
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5.2 Utility

There are multiple applications for the extracted tests. First, they

help regression testing. Especially in the case when it is possible

to extract code from package clients. Genthat can also help to

bootstrap manual tests by first generating an initial test suite which

then package authors updates by hand. This approach can also

be useful for Core R developers and package repositories where

packages need to be often tested (for example with every change in

the R interpreter). Since the extracted tests runs faster than package

artifacts it might be beneficial to use them. They might also help to

narrow root cause of a failure since they are actual unit tests.

5.3 Generalization

Text extraction from runtime program traces is naturally going to

work better in language/programming models that limit mutable

global state and where arguments to functions tend to be self con-

tained. We would expect that scientific programming languages like

MATLAB or Julia, and functional languages like Haskell or OCaml

should behave in similar ways to R. Imperative languages are likely

to be less conducive to this approach. Whether our approach would

yield reasonable results in C or C++ is an open question.

6 CONCLUSION

We have presented the design, implementation and evaluation of

Genthat, a tool for the automated extraction of unit tests for the R

language. Our evaluation of this tool on a large corpus of packages

suggests that it can significantly improve coverage of the code being

tested.

In a way our results are surprising, as the limitations of our

tool are quite severe. Genthat does not keep any global state or

external state, so any test that changes values in a lexically scoped

environment is bound to fail. Any code that manipulates pointers

to C data structures is likely to fail. And lastly, any code that is not

deterministic will surely fail. Our intuition is that Genthat works

well because of the functional nature of R, mutation is rarely used,

function access values passed in, and produce new ones.

For future work, we aim to explore techniques geared towards

finding new bugs. This can be achieved by fuzzing the inputs to a

function. We also will look for more changes that allow to reduce

the inaccuracies of Genthat as well as to speed up the process of

handling reverse dependencies.
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