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Abbreviations and Acronyms 

Acronym Description 

AC Alternating Current 

BDF Benefit-to-Degradation Factor 

BMS Battery Management System 

CC Constant Current 

CC-CV Constant-Current–Constant-Voltage  

CV Constant Voltage 

DC Direct Current 

DOD Depth Of Discharge 

DSF Degradation Stress Factor 

DSO Distribution System Operator 

EMS Energy Management System 

EOL End Of Life 

EV Electric Vehicle 

LCOD Levelized Cost of Degradation 

LFP Lithium Iron Phosphate 

LIB Lithium Ion Battery 

LMO Lithium Manganese Oxide 

LNO Lithium Nickel Oxide 

LTO Lithium Titanate Oxide 

MIP Mixed Integer Programming 

NCA Nickel Cobalt Aluminium 

NMC Nickel Manganese Cobalt 

OCV Open Circuit Voltage 

PCS Power Conversion System 

PV Photovoltaic 

RUL Remaining Useful Life 

SCADA System Control and Data Acquisition 

SOC State of Charge 

SOE State of Energy 

SOH State of Health 

SOS2 Special Ordered Sets of type 2 

  



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D6.5 – Advanced battery techno-economics tool Page 6 of 57 

Symbols 
 

Symbol Description 

a   Slope of efficiency curve 

kb   Binary variable 

jc   Marginal cost of degradation at segment j [€/MWh] 

cyc

jd   Marginal degradation caused by cycle ageing at segment j [%] 

,t je  Segment energy at time t [MWh] 

je   Segment energy [MWh] 

cyc

jd   Segment-wise degradation caused by cycle ageing [%] 

i   Interest rate [%] 

ep   Grid electricity price [€/MWh] 

ch

,t jp  Charging power of segment j at time t [MW] 

dis

,t jp  Discharging power of segment j at time t [MW] 

0q   Constant of the linearized function 

q  Slope of the linearized function 

cal

Ts  Coefficient representing the temperature-to-calendar-life stress funtion 

w   Tuning coefficient for power constraints 

ky   Value of the y coordinate at segment k end 

kB   Value of the x coordinate at segment k end 

invC   Investment cost (or replacement cost) of a battery [€] 

degC   Cost of degradation [€] 

kC   Slope of the linearized curve at segment k 

calD   Degradation caused by calendar ageing [%] 

cycD   Degradation caused by cycle ageing [%] 

0D   Planned degradation during the planning period [%] 

yearD   Planned annual degradation [%] 
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Symbol Description 

E   Energy capacity of a battery [MWh] 

I   Current [A] 

specI  Specified current at which the nominal efficiency is obtained [A] 

J   Number of segments 

calL  Calendar lifetime [# years] 

cycL  Cycle lifetime [# cycles] 

cal

refL  Reference calendar life at reference conditions [# years] 

cyc

refL  Reference cycle life at reference conditions [# cycles] 

d-yN  Number of days in a year 

h-dN  Number of hours in a day 

ts-hN   Number of timesteps in an hour 

periodsN   Number of periods 

gP   Grid power [MW] 

ch

maxP  Maximum charging power [MW] 

ch,ac

tP  Inverter AC charging power at time t [MW] 

ch,dc

tP  Inverter DC charging power at time t [MW] 

dis

maxP  Maximum discharging power [MW] 

dis,ac

tP  Inverter AC discharging power at time t [MW] 

dis,dc

tP  Inverter DC discharging power at time t [MW] 

ch

tP  Charging power at time t [MW] 

dis

tP  Discharging power at time t [MW] 

tR   Revenue at time t [€] 

cal

TS  Temperature-to-calendar-life stress factor 

calS  State-of-energy-to-calendar-life stress factor 

cal

,linS  Linearized state-of-energy-to-calendar-life stress factor 
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Symbol Description 

cyc

TS  Temperature-to-cycle-life stress factor 

avg

cycS  Average-state-of-charge-to-cycle-life stress factor 

cycS   Cycle-depth-to-cycle-life stress factor 

lifeT   Battery lifetime [# years] 

LT   Planned lifetime of a battery [# years] 

revV   Present value of revenues [€] 

tV   Binary variable at time t  

T   Adaptation coefficient during period T 

  Cycle life [# cycles] 

N  Normalized cycle life 

  Efficiency [%] 

ch  Efficiency during charging [%] 

ch

b  Battery efficiency during charging [%] 

dis  Efficiency during discharging [%] 

dis

b  Battery efficiency during discharging [%] 

rt

spec  Roundtrip efficiency at a specified rate [%] 

TD   Actual degradation during the planning period T [%] 

   Cycle depth [% or MWh] 

t  Time step [h] 

  Inverse of cycle life 

t   State of energy at time t [%] 

min   Minimum state of energy at time t [%] 

max   Maximum state of energy at time t [%] 

t   State of energy at time t [MWh] 

max  Maximum state of energy [MWh] 
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Symbol Description 

min  Minimum state of energy [MWh] 

   Adaptation coefficient 

   Calendar lifetime coefficient 
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Glossary 
 

C-rate A measure of the rate at which a battery is discharged 
relative to the manufacturer’s rated capacity in ampere-
hours. It is also related to the discharge time. For example, 
if the battery’s rated capacity is 40 Ah, then 1C rate is 40 A 
and the battery is empty after a 1-hour discharge, 2C rate 
is 80 A and the battery is empty after a 0.5-hour discharge, 
and C/4 rate is 10 A and the battery is empty after a 4-hour 
discharge. 

Calendar life The length of time a battery can undergo some defined 
operation before failing to meet its specified end-of-life 
criteria. 

Capacity The capacity of a battery expresses the maximum available 
ampere-hours when a full battery is discharged at a certain 
C-rate until the cut-off voltage is reached. 

Cycle A sequence of a discharge followed by a charge, or a 
charge followed by a discharge under specified conditions. 

Cycle life The number of cycles, each to specified discharge and 
charge termination criteria under a specified charge and 
discharge regime, that a battery can undergo before failing 
to meet its specified end-of-life criteria. 

Cycle depth Cycle depth (ΔDOD or ΔSOC) describes the depth of a 
discharge-charge cycle. Cycle depth is usually expressed 
in percentage. 

Degradation stress factor Degradation stress factors are all the operation practices 
or circumstances that accelerate the degradation in battery 
and thus shorten the lifetime of the cell. Also known as the 
state of health stress factors. 

Depth of discharge The depth of discharge is a measure of how much charge 
has been discharged from a full battery. It is usually 
expressed in percents, but is sometimes expressed also in 
amperehours. 

Discharge rate See C-rate. 

E-rate Similar to C-rate, but in terms of power against energy 
capacity. That is, E-rate describes the rate of discharge 
power relative to the manufacturer’s rated energy capacity 
in kilowatt-hours. For example, a battery that is discharged 
at a rate of 1E is fully discharged in an hour.  

End of life The stage at which a battery is not anymore capable to 
meet its performance criteria regarding capacity or power.  

Internal impedance Opposition to the flow of an alternating current at a 
particular frequency at a specified state of charge and 
temperature. 

Internal resistance Opposition to direct current flow in a battery. It is the sum 
of the ionic and electronic resistances of a battery. 
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Nominal operating voltage The average voltage of a battery, as specified by the 
manufacturer, during discharging at a specified rate and 
temperature. 

Open-circuit voltage The equilibrium voltage of a battery at a specified state of 
charge and temperature when there is no current flowing. 

Polarization The voltage deviation from the equilibrium voltage under 
loading, i.e., when current is flowing. 

Self discharge The process by which the available capacity of a battery 
decreases spontaneously due to undesirable chemical side 
reactions or short circuits within a cell. 

State of charge The state of charge is a measure of how much charge is 
left in a battery. It is a ratio of the present charge and the 
full charge, and it is usually expressed in percents. 

State of energy The state of energy is a measure of how much energy is 
left in a battery. It is a ratio of the available stored energy 
and the nominal energy capacity. It can be expressed in 
kilowatt-hours and in percents. 

State of health The state of health is a measure of aging. It can be defined 
for capacity fade and power fade. Typically a battery is 
considered to be at its end of life when the state of health 
has decreased to 80%. 

Tapering Tapering refers to the reduction of current and power when 
the battery approaches fully-charged or fully-discharged 
state. The high and low cut-off voltages at cell level shall 
not be exceeded, and hence, the current needs to be 
reduced when the first cell reaches the cut-off voltage.  

Thermal runaway Thermal runaway occurs in Li-ion batteries when the rate 
of internal heat generation caused by the exothermic 
reactions exceeds the rate at which the heat can be 
expelled. Eventually, the temperature rises rapidly and the 
battery catches fire and burns at a very high temperature. 
The fire may catch nearby cells, and eventually, the whole 
battery may burn down.  
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Executive summary 

This deliverable presents the advanced battery techno-economic model that will be 

included in the flexibility management allocation and operation algorithm developed in 

Task 5.4 Design and program the flexibility management operation algorithm and 

described in detail in D5.4 Advanced battery operation and control algorithm.  

The main objective of this deliverable is to provide a tool that optimizes the battery 

operation in such a way that maximum economic value can be obtained. Basic technical, 

economical, and performance characteristics of battery energy storage systems 

(BESSs) as well as simplified models for the optimization framework were presented in 

D6.2 Battery techno-economics tool [1], which forms the basis for this deliverable. This 

deliverable adds details and features into the battery modelling methods in general, 

making it more accurate and usable. Furthermore, the overall optimization problem is 

now divided into two parts: (i) long-term planning and (ii) short-term operational 

optimization. With these improvements in the overall methodology and the storage 

system modelling, higher lifetime benefits can be obtained and the operating conditions 

impacting the degradation are covered better and in a computationally efficient way. 
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1 Introduction 

This deliverable presents an advanced battery techno-economic model that will be 

included in the flexibility management allocation and operation algorithm, which is 

developed in Task 5.4 Design and program the flexibility management operation 

algorithm and described in detail in D5.4 Advanced battery operation and control 

algorithm [2].  

The main objective of this deliverable is to provide a tool that optimizes the battery 

operation in such a way that maximum economic value can be obtained. In order to 

achieve this, the degradation mechanisms and phenomenons that are affecting the 

performance need to be identified and characterized. Batteries have very complex 

ageing characteristics with many stress factors and interdependencies that affect the 

rate of ageing. These stressors need to be characterized in order to be able to provide 

limits and constraints for battery operation to ensure long lifetime. This identification and 

characterization of degradation stress factors (DSFs) is performed in Task 6.2 and 

reported in D6.3 Simplified state of health diagnostics tool [3] and D6.4 Advanced state 

of health diagnostics tool [4]. The main findings of these reports are utilized in this report.  

Basic technical, economical, and performance characteristics of battery energy storage 

systems (BESSs) as well as simplified models for the optimization framework were 

presented in D6.2 Battery techno-economics tool [1], which forms the basis for this 

deliverable. This deliverable adds details and features into the battery modelling methods 

in general, making it more accurate and usable. In particular, the modelling of battery 

degradation now includes also the calendar ageing as a function of the SOE, and both 

the cycle ageing and the calendar ageing involve another DSFs; temperature. However, 

the temperature-related DSFs affect indirectly as coefficients representing the impact of 

the average operating temperature, and therefore, they do not complicate the model 

much, keeping the model computationally efficient. Furthermore, the overall optimization 

problem is now divided into two parts: (i) long-term planning and (ii) short-term 

operational optimization. With these improvements in the overall methodology and the 

storage system modelling, higher lifetime benefits can be obtained and the operating 

conditions impacting the degradation are covered better and in a computationally 

efficient way.  
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2 Simplified models and advanced models 

Battery storage system characteristics and simplified modelling methods were presented 

in D6.2 [1]. In this Chapter, updates on the storage characteristics and modelling 

approaches are provided and the differences between the simple models and the 

advanced models are briefly discussed. The final modelling methodology is presented in 

Chapters 3 and 4. 

2.1 Pilots’ storage systems 

The pilot sites and applications as well as the technologies and specifications are 

provided in detail in D10.1 [5]. Generally, the pilots are demonstrating the use of variable 

energy sources such as photovoltaic (PV) panels as well as controllable loads, such as 

smart charging of electric vehicles (EVs). The following battery technologies are used in 

the pilots: (i) lithium nickel manganese oxide (NMC), (ii) a blend of lithium manganese 

oxide (LMO) and NMC, (iii) lithium iron phosphate (LFP), and (iv) vanadium redox flow 

battery. A brief summary of the pilot applications and the selected storage technologies 

are shown in Table 1. All pilots use lithium-ion batteries (LIBs), but the German pilot is 

demonstrating also the use of a vanadium redox flow technology, which is totally different 

than lithium ion technologies. The VRFB characteristics of the storage used in the 

German pilot are described briefly in Section 2.13. The rest of this Chapter deals with 

lithium-ion technologies.  
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Table 1: Applications and characteristics of the batteries used in the INVADE pilot sites. 

Pilot Application Total capacity Battery type 

Bulgaria Centralized battery for hotel and restaurant, 
connected to PVs. 

201 kWh / 201 kW* NMC (Samsung SDI)  

Norway 30 residential batteries connected to PV 
systems, EV-chargers and smart heating 
systems. One battery connected to PV and 
11 smart EV-chargers.  

30 x 4,2 kWh / 6 kW 
(residential) 

LMO+NMC  
(AESC Nissan 2nd life) 

NMC (AESC) 

LFP (Fronius) 

The Netherlands Centralized battery next to an office building. 
Power quality and local balancing: solar 
panels, windmills, EV charging.  

138 kWh / 140 kW* NMC (Samsung SDI) 

Spain Backup battery storage system connected to 
the grid. Secures electricity supply for critical 
buildings. Can also be used to balance 
production and consumption in the area. 

211 kWh / 48 kW* 
(100 kWh for 
backup, ~100 kWh 
for balancing) 

LFP  
(ThunderSky-Winston) 

 

Germany Main value stream: Feed-in of the generation 
peaks of the PV plants (30 kWp) into the 
battery system (locally controlled). A second 
value stream: Peak-shaving of the grid 
(controlled by the IIP). 

10 existing residential batteries connected to 
PV systems. 

120 kWh / 20 kW 

 
 
 
 
2–10 kWh 

Vanadium redox flow 
(Storion) 

 
 
 
Lithium ion  

2.2 Battery efficiency characteristics 

A method for evaluating the energy efficiency of a battery at different rates based on the 

value provided in the specification was presented in D6.2 [1]. It was expected that this 

method results in conservative values especially at higher rates, because the rate effect 

and temperature effect are not taken into account in any way. Other influencing factors 

are the cycle depth and the ambient temperature. An experiment was made to 

investigate the energy efficiency characteristics of a commercial battery cell in detail. A 

commercial Kokam 40-Ah NMC battery was tested with a commercial PEC SBT0550 

battery tester. The battery was located inside a thermal chamber, which was controlled 

by the battery tester. The test parameters are gathered in Table 2. The average SOC 

was 50% for all tests. Therefore, the SOC range of the tests is as follows: 

 100% cycle depth: SOC 100%  0% 

 50% cycle depth: SOC 75%  25% 

 10% cycle depth: SOC 55%  45% 

Figure 1–Figure 2 show the test cycle at 25 °C ambient temperature at 100 % cycle depth 

and 50 % cycle depth, respectively.  
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Table 2: Test parameters for the efficiency characterization.  

Test parameter Value 

Charging voltage 4.15 V 

End-of-charge current C/100 

Discharging cut-off voltage 3.20 V 

Rest period 2 h 

Average SOC 50% 

Cycle depths 100%, 50%, 10% 

Current rates C/3, 1C, 2C* 

Ambient temperatures 10 °C, 25 °C, 40 °C 

* Not applicable at 40 °C ambient temperature. 

 

Figure 1: Test cycle at 25 °C ambient temperature and 100 % cycle depth. 

 
Figure 2: Test cycle at 25 °C ambient temperature and 50 % cycle depth. 
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Experimental roundtrip energy efficiency at different cycle depths, rates, and ambient 

temperature are shown in Figure 3. In Figure 4, the experimental results at 25 °C and 

100% cycle depth are compared with the analytical results. At higher rates the 

experimental results were better than the results obtained with the analytical method. 

Moreover, the efficiency increases slightly at lower cycle depths, which was expected.  

 

Figure 3: Experimental roundtrip energy efficiency characteristics of a commercial Kokam 40-Ah 
NMC battery cell.  

 

Figure 4: Comparison of the analytical and the experimental results. The analytical curves are 
defined at the specified roundtrip efficiency and rate, and the curves are calculated based on 

the analytical model presented in D6.2 [1] and represented in Section 3.5.1. 

The results provide evidence that the analytical method gives conservative values at 

higher rates. Moreover, as the average cycle depth in real applications varies and is 

always less than 100%, the use of 100% cycle depth in the parameter extraction further 

increases the conservativeness of the analytical method. However, it must be kept in 

mind that there are contrary effects as well. First, the cell degradation results in lower 

efficiency due to increased internal impedance. Second, the lower ambient temperature 
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results in higher impedance as well, and therefore, in lower efficiency. Moreover, cabling, 

switches, transformers, etc. cause losses, and therefore, result in lower overall efficiency.  

2.3 Storage system efficiency modelling 

In the simplified model, a constant efficiency was used for the BESS, i.e., it included the 

efficiency of the battery and the power conversion system (PCS). However, in order to 

avoid the low efficiency area of the PCS at low power levels, the nonlinear efficiency 

characteristics need to be included into the model. The proposed modelling methodology 

separates the battery efficiency and the PCS efficiency. The battery efficiency is 

modelled with a constant efficiency, and the nonlinear efficiency of the PCS is 

characterized with an input–output power mapping with a binary variable or with a special 

ordered sets of type 2 (SOS2) variable. The SOS2 method is more accurate, but it is 

also more computationally complex. Moreover, SOS2 is not supported by all solvers, 

e.g., GLPK does not have a support for the SOS2 variable. Therefore, the input–output 

mapping with a binary variable can be used in such cases where low computationally 

burden is required or SOS2 cannot be used. 

2.4 Discharging and charging characteristics 

Experimental data on constant current (CC) discharging and CC–constant-voltage (CV) 

charging of the commercial Kokam 40-Ah NMC battery at a rate of 1C at 25 °C ambient 

temperature is shown in Figure 5. Full voltage region was used in the experiment, i.e., 

state of charge (SOC) range was 0–100 %. The end-of-constant-voltage (EOCV) 

charging was C/100, which is a very low rate for practical applications. The boundary 

between CC and CV charging occurs approximately at 92.5% SOC, after which the 

current, and consequently, the power are reduced rapidly. As can be seen from the 

figure, topping up of the battery at CV mode until C/100 rate is slow, as it took 29 min. 

For C/20 and C/10 rates, the corresponding CV mode duration would be 15 min and 

11 min, respectively. If the maximum SOC is limited to 95%, the CV operation lasts only 

for 2 minutes in this case, which is about the same time as would happen at CC mode. 

Therefore, a constraint for the maximum SOC shall be set to avoid the slow finishing of 

the charging. Furthermore, this also prolongs the lifetime of the battery, which is an 

additional benefit of limiting the voltage range from the top. If the maximum SOC limit 

would be set so that the CV operation would be avoided at normal operating conditions, 

i.e., at room temperature and nominal power, there would be no prediction error caused 
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by the CV operation when operating at nominal operating conditions even without any 

further power constraints. For the Kokam battery, this would mean that the maximum 

SOC would be limited to approximately 90 %. This decision would further improve the 

lifetime of the battery compared to the 95 % limit.  

Performance at 10 °C ambient temperature is shown in Figure 6. During discharging, the 

minimum voltage was hit at approximately 6.5 % SOC. During charging, the CV mode 

boundary was hit at approximately 85 % SOC, and moreover, it took 57 min to top up 

the battery at end-of-charging (EOC) rate of C/100. Duration of the CV mode until 95 % 

SOC was 11 min, which is 5 min more than it would be with CC charging.  

 

Figure 5: Performance at 25 °C ambient temperature and 1C rate. Constant-current discharge 
followed by a rest period of 2 h and constant-current–constant-voltage charge. Red vertical lines 

show the time instants of the boundaries between operating modes during charging. 
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Figure 6: Performance at 10 °C ambient temperature and 1C rate. Constant-current discharge 
followed by a rest period of 2 h and constant-current–constant-voltage charge. Red vertical lines 

show the time instants of the boundaries between operating modes during charging. 

2.5 State of energy and power constraints 

The default minimum and maximum state of energy (SOE) limits of 5 % and 95 %, which 

were proposed in D6.2, are expected to yield in CC operation in almost full SOE area, 

when operating in 25 °C or higher ambient temperature. Consequently, only slight 

prediction error in the SOE is expected to be caused by the occasional CV operation. 

Furthermore, there is no severe need for additional power constraints. However, if the 

operating temperature is expected to be commonly below 20 °C, either more narrow 

SOE window shall be set or additional power constraints shall be used to avoid the 

minimum and maximum voltages. Practical and computationally efficient implementation 

of additional power constraints are presented in Section 3.1 
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2.6 Battery lifetime 

Battery degradation characteristics and modelling are described in detail in D6.4 [4]. The 

main DSFs affecting the cycle life are the cycle depth, the temperature, and the average 

SOC. The main DSFs affecting the calendar life are the SOC and the temperature [4]. 

If a battery is cycled repetitively with a specified load profile at a constant ambient 

temperature, the cycle lifetime 
cycL   can be estimated as follows: 

 

avg

cyc cyc

refcyc cyc cyc

avg avg,ref ref avg avg,ref

1 1 1

( , ) ( , ) ( , )T

L L
S S S T T    

   
 

, (1) 

where avg  is the average SOE (the midpoint of the cycle),   is the cycle depth, avgT  

is the average operating temperature, 
cyc

refL  is the reference cycle life at reference 

conditions ( avg,ref , ref , avg,refT ), 
avg

cycS  is the average-state-of-charge-to-cycle-life DSF, 

cycS   is the cycle-depth-to-cycle-life DSF, and 
cyc

TS  is the temperature-to-cycle-life DSF. 

At a reference operating point, all DSFs are 1.  

Similarly, if a battery is kept at a constant voltage or SOC at a constant ambient 

temperature, the calendar lifetime 
calL  expressed in years can be estimated as follows: 

 cal cal

refcal cal

avg

1 1

( ) ( )T

L L
S T S 

   , (2) 

where 
cal

n,yearsN  is the reference calendar lifetime in reference conditions expressed in 

years, 
cal

TS  is the temperature-to-calendar-life DSF, 
calS  is the state-of-energy-to-

calendar-life DSF, and 
cal

refL  is the reference calendar life at reference conditions.  

2.7 Optimal operating area 

A summary of the DSFs addressed in the lifetime tests of the reviewed articles in D6.4 

[4] is shown in Table 3. Results vary widely depending on the chemistry and even among 

different studies regarding the same chemistry. The values in the low-stress and optimal-

range columns are very coarse generalisations based on the results.  
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Table 3: Summary of the degradation stress factors addressed in the lifetime tests of the 
reviewed articles in [4].  

Stressor High stress Low stress Optimal range 

Cycle depth (ΔDOD) High ΔDOD < 50% < 30% 

Temperature High and low temperature 10–35 °C 15–30 °C 

Current (C-rate) High rate < 1C < C/2 

SOC / voltage High SOC / voltage < 4 V < 70% SOC  

 

The operational decisions are based on the flexibility management algorithm, and hence, 

this algorithm dictates indirectly the average cycle depth, C-rate, and SOC of the battery. 

Consequently, the typical operating area can be controlled by modelling these stress 

factors and including their effect on the degradation into the objective function. However, 

the modelling of the stressors increases the computational complexity of the model 

significantly, and therefore, only the stressors that have the highest impact shall be 

included in the optimization. Moreover, simplified approaches shall be developed to 

decrease the computational burden.  

2.8 State of health 

The state of health (SOH) of a battery is not estimated within the integrated INVADE 

platform (IIP). However, the SOH indication will be obtained either from the energy 

management system (EMS) or by applying regularly a SOH diagnostics tool, which is 

described in detail in D6.4 [4]. This SOH diagnostics tool is an offline toolkit that can be 

run locally at the pilot site. It uses the battery usage data provided by the IIP or the 

supervisory control and data acquisition (SCADA) system and provides an estimate of 

the remaining capacity of the battery as an output. This capacity estimate is then updated 

to the IIP by the IIP operator.  

2.9 Degradation modelling 

The simplified model included only the cycle depth stressor, whereas the advanced 

model includes also the SOC and the temperature stressors. The operating temperature 

data is not collected in the IIP, and hence, actual temperature data cannot be used in 

the optimization. However, this was not intended in the first place, as it would further 
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complicate the model. Instead, the selected approach is to use historical long-term 

average temperature from the local SCADA system, which can be updated regularly by 

the IIP operator. In this way, the long-term average temperature is used to calibrate the 

degradation rate of the battery. If the temperature data is not available in the SCADA 

system, the parameter shall be set to resemble the average ambient temperature or the 

expected average operational temperature of the battery.  

2.10 Separation into planning problem and operational problem 

In D6.2 [1], the operational optimization algorithm included the levelized cost of 

degradation (LCOD) in the objective function to address the costs that are related to the 

battery degradation. The LCOD was obtained by calculating the marginal degradation 

caused by cycling and by utilizing either the investment cost or the replacement battery 

cost. The cycle depth stress factor was incorporated into the algorithm by applying the 

equivalent rainflow counting algorithm proposed by Xu et al. in [6]. This approach has 

three drawbacks: (i) The future benefits are not discounted, (ii) the battery lifetime and 

the replacement battery cost are not known initially, and (iii) the operational decisions 

are solely based on the technical and economical parameters, and therefore, the battery 

may be totally unused or overused in some cases. For example, a battery with high 

investment cost or low cycle lifetime may be used very little in cases where the benefits 

are low. However, even in that case, it is not meaningful not to use the battery at all, 

because the investment has already been made, and the battery has a limited calendar 

life as well. Therefore, it would be better to use the battery to obtain the available benefits 

to minimize the losses.   

In a recent article [7], He et al. proposed an intertemporal decision framework for the 

management of a storage, in which the optimal usage of the storage in the economic 

sense is first planned for the long term, which is followed by the formulation of the 

operational decision-making in the short term. The operational algorithm includes the 

battery degradation in the objective function, but it excludes the investment cost of the 

battery, because the investment cost is a sunken cost that should not affect the 

operational decision making. This approach is intuitive and solves the main problems of 

the LCOD method. However, it requires additional efforts to first determine the optimal 

usage and later on to manage the utilization of the battery and the associated rate of 

degradation according to the predefined plan.  
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The idea of separating the main problem into long-term planning problem and short-term 

operational problem was adopted in this deliverable. A comprehensive methodology that 

covers both problems is described in detail in Chapter 3. 

2.11 End of life 

End of life of a battery is when it no longer meets its performance requirements. As long 

as safety is maintained, the limit of performance requirements can be decided internally, 

but normally end of life (EOL) is when the performance is about 60–80 % of its rated 

performance.  

In order to identify when the EOL of a battery is reached, the SOH of the battery needs 

to be tracked. Many battery management systems (BMSs) and EMSs provide some SOH 

indication, which can be based simply on coulomb-counting or on more advanced 

methods. In INVADE, a SOH diagnostics tool was developed in T6.4. The tool is an 

Excel-based offline tool that can be used locally by the pilots. The tool incorporates a 

detailed battery degradation model that addresses the degradation stress factors to the 

historical usage data of the battery system. Time-series data is given as an input, and 

the estimated SOH is provided as an output. The IIP operator can then update the battery 

capacity parameter to the IIP. It is suggested to update the parameters on a monthly 

basis. 

The EOL is highly dependent on the application-specific performance requirements and 

the techno-economics of the use case. At some point, a critical performance requirement 

cannot be anymore achieved, or the flexibility profit no longer exceeds the marginal cost 

of operation. A default EOL criterion of 70 % of the original capacity (i.e., 70 % SOH) will 

be used for INVADE pilot batteries, but it can be adapted for each pilot based on the 

application-specific requirements, battery technical specification and warranty terms and 

conditions, and techno-economic evaluations. 

2.12 Second-life batteries 

From the modelling point-of-view, second-life batteries will be considered as normal 

batteries. The degraded performance characteristics are reflected in the battery model 

parameters. Generally, the efficiency is typically lower due to increased impedance. This 

has also implications to the power constraints, because the voltage limits are hit sooner 

than for new batteries. Therefore, it may be appropriate to use more conservative 
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minimum and maximum SOE limits or, alternatively, to implement additional power 

constraints.  

2.13 Vanadium redox flow battery 

Redox flow batteries (RFBs) are different from conventional batteries in that they use two 

electrolytes as energy carriers which are located in external tanks and pumped through 

a stack of electrochemical cells. The electrolytes are divided by using a separator, e.g., 

an ion-selective membrane, which allows selected ions to pass and complete the 

chemical reaction during charging and discharging. In RFBs the energy capacity and 

power capacity can be decoupled: the energy capacity is dictated by the volumes of 

active materials, while the power capability is determined by the membrane surface area.  

Redox flow batteries do not suffer from processes that lead to mechanical degradation 

of the active material or formation of dendrites. Therefore, their cycle lifetime is very long 

and there is no danger of internal shortcircuiting caused by the dendrites. The vanadium 

RFB is the most commercially developed flow battery [8]. Its cycle life is affected mainly 

by the stability of the membrane in the highly corrosive V(V) solution in the charged 

positive half-cell electrolyte [8]. Membranes with up to 10 years have been developed, 

allowing 10-years of operation before replacement of the membrane. A BMS is also 

needed to ensure that no extended overcharge occurs that could damage the positive 

electrode. Cycle life values of over 200,000 cycles have been reported in large systems 

[9]. 

The efficiency of vanadium redox flow batteries (VRFBs) is significantly lower than that 

of LIBs. The coulombic efficiency of VRFBs is affected by two factors: (i) side reactions 

such as gassing during charging, and (ii) self-discharge caused by the diffusion of 

vanadium ions across the membrane. Also ohmic losses and polarization losses occur 

in the cell during loading, which reduce the energy efficiency. Moreover, additional 

polarization losses occur at high and low SOC, which is why most VRFBs are used within 

10–90 % SOC range [8]. Maximum overall energy efficiency of approximately 80 % has 

been demonstrated [9].  

For battery modelling in the INVADE project, the degradation stress factors shall not be 

used for VRFBs, i.e., all DSFs shall be set to 1 for all input values. Another exception is 

that the default value for the efficiency shall not be used in any case. Instead, the battery 

efficiency shall be determined from the technical specification or requested from the 

battery system provider.   
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3 Short-term optimization 

3.1 Battery storage system model 

The SOE is dictated by the cumulative net energy of the battery, i.e, the difference 

between the charged and discharged energy, and it needs to stay within the specified 

minimum ( min ) and maximum ( max ) limits: 
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where   is the SOE, t  is the time step, 
ch

tP  is the charging power, 
dch

tP  is the 

discharging power, 
ch  is the total ESS efficiency during charging, 

dch  is the total ESS 

efficiency during discharging, and ψ is the SOE expressed in per unit values.  

Upper bounds for charging and discharging power are defined as 

 
 

dis dis

max

ch ch

max1

t t

t t

P V P

P V P



 
  (6) 

where chP  and dchP  are the power constraints regarding charging and discharging, 

respectively, and the variable V(t) is a binary variable which ensures that charging and 

discharging cannot take place during the same time step.  

Constant energy capacity shall be used in the model. That is, the rate effect and the 

temperature effect to the capacity will not be taken into account. However, the energy 

capacity parameter will be updated regularly by the IIP operator to take into account the 

battery degradation due to ageing.  

The use of equivalent rainflow counting algorithm for online calculation of the marginal 

degradation caused by the cycle depth stress factor was proposed in D6.2 [1]. In order 

to implement the equivalent rainflow algorithm, the battery needs to be divided into equal-

sized segments. This will be presented next. The following notation is used: small letters 
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are used for segments, J is the number of equally sized segments, subscript j denotes 

segment j, and e is used for segment-wise energy. 

Segment energy balances: 
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Segment energy bounds: 
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Constraints relating segment energies and the battery energy:  
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Constraints on charging and discharging power:  
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3.2 Additional charging and discharging constraints 

Additional power constraints to avoid reaching maximum and minimum voltages, where 

current needs to be limited, can be defined as follows: 

 

min

1dis dis

max
(1 )

t

tP P
w t

 
  

 
 

 (13) 

 

max

1ch ch

max
(1 )

t

tP P
w t

  
  

 
 

,  (14) 

where t  is the time step in hours and w  is a tuning coefficient, which can be different 

for charging and discharging. 0w   is the implicit constraint, while 0w   reduces the 
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power. The power constraints are illustrated in Figure 7 and Figure 8, in which 0.2w   

was used. 

 

Figure 7: Discharging power constraint. The blue dashed line describes the maximum power to 

reach the 5 % minimum SOE during one time step, i.e., 0w  . The blue solid line describes the 

reduced discharge power and the red solid line (right axis) shows the energy left in the storage 
above the minimum level due to the applied power constraint. 

 

Figure 8: Charging power constraint. The blue dashed line describes the maximum power to reach 
the 95 % maximum SOE during one time step. The blue solid line describes the reduced charging 
power and the red solid line shows the energy left in the storage below the maximum level due to 
the applied power constraint. 

3.3 Efficiency 

3.3.1 Introduction 

The efficiency of the PCS is highly nonlinear at low power regime. Advanced methods to 

model the efficiency characteristics are described in this Section. The main idea is to 

separate the efficiency into two parts: (i) the battery system and (ii) the PCS. A constant 

efficiency is used for the battery system, but the PCS is represented as an input–output 
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mapping regarding power. The mapping is defined as a piecewise linear function. The 

efficiency characteristics are embedded into this mapping.   

Figure 9 shows the system under study. Equations for the inverter on the discharging 

side and charging side are presented in (15) and (16), respectively, where 
dis,ac

tP  is the 

inverter alternating current (AC) discharging power at time t, 
dis,dc

tP  is the inverter direct 

current (DC) discharging power, 
inv  is the inverter efficiency, 

ch,ac

tP is the inverter AC 

charging power, 
ch,dc

tP  is the inverter DC charging power. These inverter efficiencies are 

inherently nonlinear functions of power. The implementation of the nonlinear efficiency 

characteristics is presented next. 

 
dis,ac inv dis,dc dis,dc( )t t tP P P    (15) 

 
ch,dc inv ch,ac ch,ac( )t t tP P P    (16) 

 

Figure 9: Battery storage system. 

3.3.2 Implementation issues 

Two implementations, which are based either on SOS2 variables or on applying binary 

variables directly, are presented. The final decision on the method depends on the 

requirements regarding the computational complexity and the capabilities of the solver. 

The binary variable method is suitable for all solvers, whereas the SOS2 variables are 

not supported e.g. by the GLPK solver. 

The inverter efficiency characteristics and the corresponding input–output mapping are 

shown in Figure 10. Although not clearly visible on the right panel, the slope of the first 

10 % of the range is different from the rest.  By dividing the input range in two parts we 

end up having a two-segment model in which the segments are defined by the input 

power level. The first segment describes the first 10 % of the input power range, [0,0.1], 
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and the second [0.1,1.0]. Therefore, the relation of the input and the output power 

consists of two lines: The first covers input power from 0 to 0.1 and the second from 0.1 

to 1. The two segment model is a feasible compromise between accuracy and model 

complexity.  

   

Figure 10: Inverter efficiency (left panel) and its output (efficiency*input power) (right panel). 

Connecting two interacting segments to describe one piece of equipment calls for a 

specific approach. Figure 11 explains the approach. The improvement in efficiency 

decreases incrementally: C1>C2>C3.  

 

Figure 11: Incremental efficiency breaks. 

3.3.2.1 SOS2 method 

Referring to Figure 11, we introduce decision variables wi at the points 0, B1, B2 and B3. 

In addition, we define y axis values that correspond to the total output (y) of the inverter 

using a certain input power level 0, B1, B2, B3: 
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Then we can write 
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where 2iw SOS  (Special Order Sets of type 2). SOS2 means that at most two of the 

iw  can be non-zero, and if there are two non-zeros, they must be contiguous: They are 

the end points of the line segment. The algorithm interpolates linearly between these 

points to find an exact output relating to the input. 

3.3.2.2 Binary variables method 

Referring to Figure 11, it is possible to define the problem using binary variables, bi, for 

the same problem. The decision variable x (input power) describes the activity in each 

cost segment. The total activity is 

 
i

i

x x   (19) 

In this method the starting point is always the origin and the search proceeds to the right 

so far that the equation (19) is fulfilled. The following set of constraints describes this 

process in which the order is strictly defined: 

    

 

1 2 1 1 1

2 1 3 2 2 1 2

3 3 2 3

B b x B b

B B b x B B b

x B B b

   

     

   

  (20) 

A general definition of the constraints on decision variables: 

    1 1 1i i i i i i iB B b x B B b          (21) 

And for the binary variables we define 

 1 2 3b b b    (22) 

This last constraint ensures that the yi values of (17) will be calculated the same way in 

this approach as in the SOS2 case. The total output power of the inverter is obtained by 

summing up all the segments: 
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Notice that we cannot operate in efficiency area 3 without first activating the first two 

segments. 

Now we are ready to apply the binary variable approach to the inverter description using 

the sa data in Figure 10. Notice that we do not make a piecewise linear description of 

the efficiency curve. Instead, we define a piecewise linear model of the inverter output 

as a function of the input.  

The first segment covers the input power range [0,0.1] and the second [0.1,1]. At input 

power level Pin=0, the inverter output, Pout, is zero and at Pin=0.1, the inverter output is 

0.0915. The second segment defined by its end points, [Pin,Pout], are the following:         

[0.1, 0.0915] and [1.0, 0.976]. The slopes of the line segments describing the inverter 

are: C1=0.915, C2=(0.976-0.0915)/(1-0.1)=0.983.  

These values are not efficiencies but coefficients relating input to output. The output of 

the inverter is obtained by summing up all the segments, as shown in (23). The efficiency 

is obtained by dividing the total output with the total input. 

The binary variable approach took less time than the SOS2 method in the test 

environment used (GAMS, CPLEX).  Although the methods are equivalent in principle, 

the actual implementations and the many coefficients that control the solver performance 

lead in practice to similar but not equivalent solutions.  

3.3.2.3 Comparison 

The binary variable method and the SOS2 variable method are compared in Figure 12. 

It is evident that SOS2 approach leads to a slightly larger variability in the SOE values 

compared to that of the binary variable. However, the difference in the minimum total 

electricity purchase cost was only 0.1 %, i.e., negligible. 

 

Figure 12: Comparison of SOE development in a test case using CPLEX solver. 
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3.4 Battery degradation 

The advanced battery degradation model includes the following parts:  

 Cycle ageing as a function of the cycle depth 

 Calendar ageing as a function of the SOE 

The cycle depth is considered as the most important DSF, because it has a significant 

impact on the lifetime of the battery, and importantly, it can be directly controlled by the 

operational algorithm. The calendar ageing was included to provide more realistic 

degradation characteristics, and hence, more accurate estimate of the cost of 

degradation. Because of the calendar ageing, the degradation happens even without 

using the battery at all. With the cost of degradation involved in any case, it becomes 

clear that the battery shall be used at least for some extent even in such cases where 

the real cost of degradation is always higher than the available benefits. As the calendar 

ageing is a function of the SOC, the optimization results in operating the battery mostly 

in the operating area that maximizes the calendar life.  

In addition to the above-mentioned DSFs, the temperature-related stress factors 

regarding the cycle ageing and the calendar ageing are included indirectly through 

coefficients. However, due to lack of battery operating temperature data in the IIP, an 

estimate of the average operating temperature must be used. This parameter is set by 

the IIP operator based on either an estimate or the actual historical data from the SCADA 

system or the BMS. Average operating temperature based on historical data shall be 

used. Therefore, the long-time effect of the temperature stress factor is taken into 

account in the degradation, but the optimization algorithm is not burdened 

computationally by it. 

3.4.1 Degradation stress factors 

The DSF characteristics are addressed in detail in D6.4 [4]. In general, each battery type 

has unique DSF characteristics. Therefore, in order to obtain accurate and reliable DSF 

characteristics, they should be requested from the battery integrator or they should be 

characterized experimentally. Unfortunately, the battery manufacturers or the battery 

system integrators are often not willing to provide these characteristics to the customers, 

and it is very time consuming to extract them experimentally. Therefore, data and models 

from the literature are often used to estimate the DSFs. The disadvantage of this 

approach is that these models do not represent the actual battery type in the application, 

and therefore, high uncertainty is introduced in the model reliability. The big trends in the 
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DSF characteristics are certain and proven in the scientific literature, but the uncertainty 

is related to the detailed shape of the curves and especially to the level of the values far 

away from the nominal point. Example DSF characteristics are shown in Figure 13– 

Figure 16. The normalized lifetime is shown always in the left axis and the stress factor 

in the right axis, respectively.  

 

Figure 13: Example of the cycle-depth-to-cycle-life stress factor characteristics. The cycle life 
data is normalized to 100% SOE, which corresponds to unity stress factor.  

 

Figure 14: Example of the temperature-to-cycle-life stress factor characteristics.  

 

Figure 15: Example of the state-of-energy-to-calendar-life stress factor characteristics. The 
calendar life data is normalized to 50 % SOE, which corresponds to unity stress factor. 
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Figure 16: Example of the temperature-to-calendar-life stress factor characteristics. The 
calendar life data is normalized to 23 °C temperature, which corresponds to unity stress factor. 

The lifetime models of (1)–(2) cannot be used in the optimization framework. Instead, we 

need to calculate the degradation at each time step. The total degradation D  is 

calculated by summing the degradation caused by cycle ageing and calendar ageing, 

cycD  and 
calD , respectively, as shown in (24). In literature, the degradation is typically 

defined as the lost capacity with respect to the nominal capacity. However, in the 

modelling part of this report, the degradation is defined as the lost capacity with respect 

to the anticipated lifetime in the application, i.e., the cycle lifetime and calendar lifetime 

until the EOL criterion has been reached. Therefore, the range of the value is from 0 to 

1, or equivalently, from 0–100 %, with 100 % meaning that the battery capacity has 

reached the EOL criterion1. 

 
cyc calD D D    (24) 

3.4.2 Degradation caused by cycle ageing 

The cycle depth at each time step cannot be directly determined during the operation. 

Therefore, an equivalent rainflow counting algorithm [6] is applied to determine the half 

cycles and full cycles during the operation, and consequently, to determine the 

associated marginal degradation. The implementation and application of the equivalent 

rainflow counting algorithm was discussed in detail in [1]. We start here by defining some 

concepts of battery use, and based on these concepts, we derive the degradation 

equations to be used in the optimization algorithm. 

In the equivalent rainflow algorithm, the battery is divided into J equally-sized segments 

having an energy capacity of je . Generally, both the accuracy and the computational 

complexity increase with increasing J. It was demonstrated in [6] that 10 segments 

                                                

1 Typical EOL criterion is 70 % of the nominal capacity.  
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provide good accuracy and that the improvements in the accuracy become negligible 

after 16 segments. All simulations in this report have been performed by using ten 

segments. 

One of the basic concepts is the cycle depth, which is the difference of the DOD at the 

beginning and the end of the discharge or charge half cycle. We define it both for each 

segment (∆δj) and for the battery as a whole (∆δ). 

Cycle depth at segment level: 
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where E is the energy capacity of the battery. Using segment and battery capacities we 

define the cycle depth of one segment as follows: 

 
1j

j

e

E J
   .  (26) 

This constant value applies for all segments. 

Cycle depth at battery level is obtained by summing up over all the segments: 
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Battery lifetime is usually described as the number on normalized cycles. The equation 

that relates the normalized cycle life N  to actual cycles   and cycle depth is as follows: 
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 , (28) 

where 100  is the number of cycles of 100 % cycle depth. The life loss function 

(degradation) is defined as an inverse of the cycle-depth dependent number of cycles, 

as follows: 
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 (29) 

Degradation is defined above for the whole battery, but we are interested in defining it 

separately for each segment and summing them up to get the total degradation. 

Therefore, the marginal degradation as a function of discharge in each segment is 

defined as follows:  
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At each time step, the battery degradation can now be defined on the basis of per 

segment discharged energy: 
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    
    (31) 

Using the segment-based degradation, we can reconstruct a piecewise linear life loss 

function 
cyc

jd  that generates the original life loss function in an additive way (Figure 17): 
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,  (32) 

where 
dis

je  is the energy discharged from segment j.  

Figure 17 describes an example of the original life loss function of a LIB as a histogram, 

its derivative, and the piecewise linear reconstruction of it. The piecewise linear 

reconstruction is not used in the optimization; it is presented here just to illustrate the 

concept. 

 

Figure 17: Elements of life loss function.  

Finally, the effect of the temperature-to-cycle-life stress factor need to be considered. As 

the DSF is implemented as a coefficient, it is possible to either add it explicitly in the 

equations—e.g. to (31)—or to include it implicitly in one of the parameters, i.e., the cycle 

life of the battery. It would also be beneficial if it would be possible to tune the coefficient 
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regularly to represent the real historical temperature of the battery. To enable this, a 

dedicated parameter would be needed for this in the IIP.  

3.4.3 Degradation caused by calendar ageing 

Normalized calendar ageing as a function of the SOE as well as the associated stress 

function and a linearized stress function is shown in Figure 18. Linearization of the curve 

is required in order to be able to use the formulation in a mixed integer programming 

(MIP) model.  

The linearized SOE stress function regarding the calendar life is as follows: 

 
cal

,lin 0S q q    ,  (33) 

where 1.7q   and 0 0.3q   for this specific battery type described in Figure 18.   

 

Figure 18: SOE stress factor regarding calendar ageing. 

The SOC=50% corresponds to the nominal rate of degradation: 

 
life d-y h-d ts-h

1

T N N N
  , (34) 

where   is the calendar-lifetime coefficient, lifeT  is the battery lifetime in years, d-yN  is 

the number of days per year, h-dN  is the number of hours per day, and ts-hN  is number 

of time steps per hour. Deviation from the SOE=50% level leads to an accelerated or 

decelerated rate of degradation according to the DSF value at the corresponding SOE.  

Degradation caused by calendar ageing: 

 
cal cal cal

,lin ( )T t

t
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where 
cal

Ts  is the coefficient representing the temperature-to-calendar-life stress funtion.  

3.4.4 Cost of degradation  

The cost of degradation is defined on the basis of lost life using the investment (or 

replacement) cost, as follows:  
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deg inv ( ) ( )
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T t t t t

t
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where invC  is the investment cost (or replacement cost) of the battery and T  is the 

adaptation coefficient, which can be used to adjust the cost of degradation to achieve 

the average annual degradation target set by the long-term planning. Long-term planning 

phase is described in detail in Chapter 4. 

3.5 Default parameter mappings 

The default parameter mappings for the efficiency and the degradation stress factors are 

presented in this subsection. These parameter mappings shall be used if there are no 

BESS-specific parameter mappings available.   

3.5.1 Efficiency 

The default discharging efficiency characteristics for the battery and the PCS with a 

power-to-energy (P/E) ratio of 1:1 are shown in Figure 19. The default battery efficiency 

characteristics were obtained with 98% roundtrip efficiency defined at a rate of C/3. If the 

battery specification provides a rountrip efficiency rt

spec   at a specified rate specI  , then 

the discharging/charging efficiency characteristics as a function of current I  can be 

estimated [1] as follows: 
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As the battery efficiency is represented with a constant efficiency in the IIP, the efficiency 

at the typical operating point shall be used. If the typical operating point is not known in 

advance, the average value or the value at the nominal power shall be used. The typical 

operating point can be obtained by performing a simulation with a default efficiency value 

and by aggregating the resulting power data into segments. An example of the power 

and energy distribution at 10 % intervals for one-week simulation of the Bulgarian pilot  

is shown in Figure 20. A good choice for the efficiency would be the value at 

approximately 85 % of the nominal power, as it represents the typical power level.  

 

Figure 19: Default battery and inverter efficiency characteristics.  

 

Figure 20: Energy throughput for each power segment. Case study for the Bulgarian pilot. 

The default PCS efficiency characteristics were obtained from the specification of a SMA 

Sunny Tripower STP 60 inverter [10]. The nominal charging and discharging power of 

the inverter is 60 kW and 75 kW, respectively. There is no transformer included in the 

system, and therefore, in the efficiency. Consequently, if a transformer is included in the 

PCS, a slightly lower efficiency shall be used. 

The default efficiency mapping can be scaled by using the maximum efficiency provided 

by the PCS manufacturer. If the technical specification provides a complete efficiency 

chart, it shall be used instead of the default mapping. 
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3.5.2 Degradation stress factors 

The degradation stress factors are addressed in detail in D6.4 [4]. In general, the 

adaptation of the degradation stress factor characteristics shall be done specifically for 

each case, i.e., for each pilot’s battery. The stress factor mappings which were shown in 

Section 3.4.1 shall be used as default mappings. 

3.6 Parameters 

The input parameters that are needed to run the model are shown in Table 4. Some 

parameters are used directly in the model or constraints, whereas some parameters are 

used indirectly to calculate or define other parameters or characteristics of the model. 

Continuous power ratings shall be used in the model, i.e., peak-power operation is not 

modelled. The usable energy capacity is impacted by the performance degradation due 

to ageing. The time-scale of ageing is much longer than the prediction horizon of the 

optimisation algorithm. Therefore, the energy-capacity parameter can be a constant. 

However, the parameter needs to be adapted once in a while to the measured or 

estimated capacity. 
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Table 4: Parameters that are needed to run the model.  

Parameter Unit Default Info Source 

Energy capacity MWh  
Updated 
regularily  

Specification 

Discharging power 
capacity 

MW  Continuous rating Specification 

Charging power capacity MW  Continuous rating Specification 

Battery charging and 
discharging efficiency 

% 98.5% 
At typical rate in 
the application 

Calculated based 
on specification 

PCS maximum efficiency % 98.5% Maximum value Specification 

Cycle lifetime FCE  
Convert to full 
cycles equivalent 

Specification or 
warranty terms 

Calendar lifetime years 10 years  
Specification or 
warranty terms 

End of life % 70% 
Percentage of the 
original capacity 

Specification or 
warranty terms 

Replacement battery cost €  
Battery system 
only 

Estimation 

Cost of degradation 
tuning parameter 

 1 
Updated 
regularily 

SOH diagnostics 

Typical operating 
temperature 

°C 25 °C  Application-specific 

Minimum SOE % 5%  Application-specific 

Maximum SOE % 95%  Application-specific 

Power constraint 
coefficient for charging 

 0.2  Application-specific 

Power constraint 
coefficient for discharging 

 0.2  Application-specific 
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4 Long-term planning 

The cost of degradation is used in the operational optimization, as was described in 

Chapter 3. With this approach, the battery is used only when the available benefits cover 

also the cost of degradation of the battery. However, this may not always lead to an 

optimal usage of the battery, as was pointed out in [7]. Moreover, when the investment 

has been made, the investment cost itself becomes a sunken cost that should not dictate 

the economic reasoning of the operational phase. Instead, what is of importance is the 

benefit flow that can be generated by using the battery during its whole lifetime.  

The main objective in long-term planning is to define guidelines for the battery use for 

the planned lifetime. It is assumed here that the use of the battery will be the same each 

year provided that there aren’t any major changes in the environment in which the battery 

operates. Naturally, changing circumstances call for updated operating procedures. 

Maximizing the benefits of using a battery can be carried out as a parametric study in 

which the battery degradation is used to update parameters. Here we use a simplified 

inverter model (a constant efficiency) to make the program easier to solve. Then, the 

objective function does not contain the cost of degradation, but only the costs of 

electricity purchases. By tightening the constraint on the maximum amount of life lost per 

year reduces the degradation, reduces the benefits obtained in a year, but prolongs the 

number of years the battery is able to generate monetary benefits. Here, the discount 

factor comes into play: the more we appreciate the benefits obtained in the beginning of 

the planning period, the higher the interest rate should be and the shorter the lifetime of 

the battery. It is a question of expectations and preferences that dictate the solution.  

4.1 Planning procedure 

The present value of revenues revV  is calculated by discounting the future revenues tR  

at time t  with an interest rate i , as follows: 
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0 1
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i




 .  (40) 

The planning process produces the planned battery lifetime, which can be transformed 

to an average annual degradation rate. When these are fixed, a simple controller can be 

used to adapt the objective function’s cost of degradation level with the help of a β 

parameter to fulfil the plan.  
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The planning process is as follows: 

 Derive the annual degradation from the planned lifetime TL for the battery;  

 
year

1

L

D
T

   (41) 

 Adapt that value to the updating period: If parameter updating takes place 

seasonally, then divide the yearly value by the number of seasons: 

 
0 year

period

1
D D

N
   (42) 

 Update the control parameter based on the measured degradation TD :  

  1 0T T TD D       (43) 

 The beta value is used in the objective function to adapt the cost of degradation 

so that the measured yearly degradation equals its planned value. 

A base value for ρ is 1/ (the length of updating period as a share of year), e.g. 1/0.25 = 

4 for seasonal updating.  Beta is always bigger than zero. The larger the value, the 

quicker it attains its final value. The drawback of a large yield is that the value varies 

more around the final value. The updating can be switched off when the apparent value 

has been attained. It need not to be updated as long as no major changes either in the 

environment or in the plan take place. As a final remark, a dedicated parameter needs 

to be defined in the IIP for tuning the beta coefficient. 

4.2 Case example 

Long-term planning was applied to the Bulgarian pilot case example2. The results are 

shown in Figure 21. In this particular case, a lifetime of 10 years maximizes the benefits. 

For interest rates between 7 % and 15 %, the benefit flow is maximized with the battery 

lifetime of 10 years. With 5 % interest rate, the 20-year result seems marginally more 

profitable. The lifetime of 10 years translates into a planned annual ΔSOH of 3 %.  

                                                

2 The Bulgarian pilot case example is explained in more detail in Section 5.1. 
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Figure 21: Present value of benefit flows. 

The impact of the ρ parameter in (43) on the time it takes for the beta parameter to settle 

is shown in Figure 22. According to the figure, the beta value of 0.4 drives the battery to 

the right operational range. The beta value is updated seasonally, i.e., four times a year. 

The original equation is of the form 

  1 0T T TD D     ,  (44) 

in which the value for ρ is defined by the length of the beta updating period as a share of 

a year: 1/0.25 = 4 for seasonal updating. This is the base value for beta. The two other 

values stand for a sensitivity analysis. 

 

Figure 22: Left panel: Yield parameter (ρ) comparison for a seasonally updated beta-parameter. 
The common initial value for the beta is 0.2. beta_4 means that beta’s value is four. Right panel: 

Seasonal degradation transformed into a yearly value for the case beta_4. 

The beta coefficient is used to make the use of the battery to follow the planned 

degradation rate. The targeted degradation rate in Figure 22 is 0.1 per year (10 year 

lifetime) corresponding the results in Figure 21. We have used the same target value for 
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the degradation in each season, although the optimal use varies by season. This is the 

prime reason for the cyclic seasonal variation in the beta value (Figure 22). 

Figure 23 shows the results of comparing the effect of beta on the use of a battery. It can 

be seen that with the beta value of 0.4 the battery is used much more aggressively, the 

cycles being significantly deeper.  

 

Figure 23: Impact of beta coefficient on the SOE. 
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5 Implementation and validation 

5.1 Case example 

The Bulgarian pilot will be used in the examples and case studies. However, in these 

studies, the electricity price is not constant but varies. The price data was obtained from 

the Austrian spot market. Therefore, these case studies and examples do not reflect the 

real situation of the pilot. However, the case studies and examples are used to illustrate 

the performance and operation of the models and the differences between different 

modelling methods.  

The Bulgarian pilot demonstrates how a centralised battery storage could contribute to 

the overall energy efficiency of a large energy consumer. At the site of a five-star-hotel 

Flamingo Grand, a PV installation and a battery storage system have been installed. 

Currently the PV capacity is 27 kWp, but it is anticipated to be increased significantly in 

near future. TESVOLT TS HV 70 energy storage system [11] has been installed in the 

hotel during INVADE project, and therefore, it is used as the battery system in this study. 

The battery specifications are shown in Table 5. The BESS uses Samsung SDI batteries 

with NMC technology and SMA inverters. The battery model was parameterized by using 

the cycle lifetime of 8000 full cycles equivalent (FCE) and the EOL of 70 %. 

Table 5: Specification of the battery. 

Property Value 

Energy capacity 201 kWh 

Power capacity 201 kW 

Efficiency up to 98 % 

Cycle life @ 100 % & 1C 6000 

Cycle life @ 100 % & C/2 8000 

EOL criterion 70 % 

 

The objective function is to minimize the cost of purchased electricity from the grid: 

 
degmin ( ) ( )g e

t

P t p t t C   , (45) 
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where ( )gP t  is the grid power at time t, ( )ep t  is the corresponding grid electricity price, 

t  is the time step, and 
degC  is the cost of degradation.  

The load profile, the PV generation, and the net load profile as well as the electricity price 

for the two first days of the month of May are shown in Figure 24.  

 

Figure 24: Load profile and electricity price for two days. 

5.2 Base model 

A battery model with both the cycle ageing and the calendar ageing included as 

described in Chapter 3 is used as a base model in the simulations. The model also 

includes the additional power constraints. The beta parameter was set to 0.4 based on 

the results of the long-term planning presented in Section 4.2.  

The net load and the electricity price as well as the resulting optimized BESS charging 

and discharging power, the grid power, and the SOE are shown in Figure 25. The SOE 

profile is highly impacted by the electricity price profile, i.e., the battery is charged when 

the price is low and discharged when the price is the high. Shallow cycles utilize the 

short-time price volatility, while the deep cycles utilize longer trends in the price profile. 

The average SOE for the case shown in Figure 25  (two days) is 49 %. 
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Figure 25: Results of the optimization for the base model. Panels from the top to the bottom: (i) 
Net load and electricity price. (ii) BESS charging (positive) and discharging (negative) power. 

(iii) Grid power. (iv) SOE. 
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5.3 Segment-wise operation 

The Bulgarian pilot case example was studied to illustrate the basic operation and the 

associated cost levels. Here we have defined the minimized cost function using marginal 

cost of degradation (€/MWh) that is formulated as follows: 

 
 
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  (46) 

Multiplying this by the energy discharged from the corresponding segment gives the total 

cost of degradation due to cycling. This formulation gives the same results as the one 

defined earlier. The difference in these two formulations is that now the degradation in 

each segment has a specific monetary value representing degradation as a cost of 

discharging the battery. This cost does not contain the cost of electricity used to charge 

the battery. 

The marginal and average cost of degradation by segment caused by cycle ageing are 

shown in Figure 26. Using this cost data in the simulation leads to a segment-wise use 

pattern shown in Figure 27. For a week long period, the discharged energy by segment 

is shown in Figure 28, which clearly shows how the discharged energy concentrates in 

the shallow end of the spectrum. The depth of 20 % and 30 % followed by 80 % are the 

most common cycle depths in the case study, while other cycle depths seem to be 

marginal. 

 

Figure 26: Cycling costs by segment in one pilot case (∆δ=cycle depth). 
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Figure 27: Battery SOE by segment during a 10 hour time span. 

 

Figure 28: Discharge by segment (vertical) and depth of discharge (horizontal) in a test case. 

5.4 Piecewise linear approximation in Pyomo 

Pyomo includes several piecewise linear interpolation methods, including the SOS2 

method presented in Section 3.3 [12]. Most of these methods require an advanced 

commercial numerical solver such as Gurobi to work properly. In Pyomo, by default a 

SOS variable of type 2 is used for interpolating a nonlinear curve after dividing the curve 
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in different linear segments. However, other methods for this kind of linear approximation 

can influence the overall optimization.  

The inverter efficiency has been considered as nonlinear with respect to the battery 

charging and discharging power. At each time step, the efficiency is calculated by a 

piecewise approximation between the defined segments of the efficiency value and 

battery charging/discharging power. The impact of the piecewise linear approximation 

methods on the simulation results were studied by using the Bulgarian pilot case 

example. A simulation period of one month was used. The comparison of the simulation 

results is presented in Table 6. Only slight deviations in the degradation and the grid 

electricity price can be observed in the results, with SOS2 being in the middle in both 

categories. Generally, all methods provide adequate results in this case, and therefore, 

the selection can be made based on the preference on the solver.  

Table 6: Impact of the inverter modelling method on degradation and costs. 

Different cases Label ΔSOH (%) Power purchase 

cost (€) 

Standard representation using SOS2 constraints SOS2 0.20 2967 

BigM constraint with binary variables BIGM_BIN 0.19 2993 

BigM constraints with SOS1 variables BIGM_SOS1 0.19 2983 

Convex combination model CC 0.20 2958 

Disaggregated convex combination model DCC 0.20 2968 

Incremental (delta) model INC 0.21 2964 

Logarithmic branching convex solutions LOG 0.20 2969 

Logarithmic disaggregated convex combination model DLOG 0.22 2963 

5.5 Additional discharging and charging power constraints 

The additional discharging and charging constraints to avoid reaching the minimum and 

maximum voltages ensures that the battery is charged slowly enough when approaching 

fully charged or fully discharged state. The Bulgarian pilot case example was used to 

study the impact of these additional constraints. The results are shown in Figure 29. It is 

evident that by using these constraints the actual SOE area where the battery typically 

operates becomes a little bit narrower, which is expected. Consequently, the cycle depth 
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of large cycles is typically slightly smaller for the case with the additional constraints. 

Otherwise, the big picture is similar in both cases, i.e., the constraints do not cause major 

changes in the operation.  

 

Figure 29: Impact of the additional power constraints to avoid CV charging. 

5.6 Cost of degradation 

The impact of degradation on the battery use was investigated by defining three versions 

of the objective function, as follows: 

1. No degradation was considered 

2. Degradation where only cycle ageing was considered  (beta = 0.4) 

3. Degradation where both the cycle ageing and the calendar ageing were 

considered (beta = 0.4) 

The example case was simulated for the duration of one week with each of the objective 

function. The reference power purchase cost for the case with no battery included was 

664 €. The actual degradation was calculated similarly for every case. The resulting 

degradation, power purchase cost, benefit3, benefit-to-degradation factor (BDF), and 

expected lifetime are shown in Table 7.  

                                                

3 Benefit is defined here as the difference between the reference power purchase cost 
and the actual power purchase cost.  
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Table 7: Impact of the degradation model on the battery use. 

Case Degradation 

(%) 

Power purchase 

cost (€) 

Benefit (€) BDF (€/%) Lifetime 

(years) 

No degradation (NoDG) 0.63 539 126 200 3.1 

Cycle ageing (DG1) 0.21 554 110 519 9.1 

Cycle and calendar ageing (DG2) 0.20 556 108 547 9.8 

 

The highest benefit was obtained for the case where no degradation was included in the 

objective function. However, this case has also the highest degradation (0.63 %), 

concluding in the lowest BDF and the shortest lifetime. The results for the cases where 

either only the cycle ageing (DG1) or both the cycle and calendar ageing (DG2) was 

considered were far better, concluding in the BDF of 519 and 547 €/% and lifetime of 9.1 

and 9.8 years, respectively. Cases DG1 and DG2 both show good balance between the 

degradation and the obtained benefits.  In general, the final selection of the degradation 

model and the value of beta depends on the expected benefit flow and the interest rate, 

as was discussed in Chapter 4. The above analysis did not take into account the interest 

rate.  

A comparison of the resulting SOE trend for two days duration for the different cases is 

shown in Figure 30. It is evident that NoDG case uses the battery more aggressively, 

resulting in higher cycle depths and higher energy throughput. For the cases DG1 and 

DG2, the overall operation is pretty similar with both methods, but the DG2 results in the 

average SOE being slightly lower than for DG1. This behaviour was also expected by 

looking at the SOE DSF shown in Figure 15. Both of these methods can be calibrated to 

follow the planned degradation rate by tuning the coefficient  . 
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Figure 30: Impact of the cost of degradation modelling methods on the SOE. 
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