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Abbreviations and Acronyms 

Acronym Description 

BEV Battery Electric Vehicle 

BMS Battery Management System 

DOD Depth Of Discharge 

DSO Distribution System Operator 

EOL End Of Life 

EV Electric Vehicle 

FCE Full Cycle Equivalent 

HEV Hybrid Electric Vehicle 

GWP Global Warming Potential 

ICA Incremental Capacity Analysis 

LCA Life Cycle Assessment 

LFP Lithium Iron Phosphate 

LIB Lithium Ion Battery 

LMO Lithium Manganese Oxide 

LNO Lithium Nickel Oxide 

LTO Lithium Titanate Oxide 

NCA Nickel Cobalt Aluminium 

NMC/NCM Nickel Manganese Cobalt 

OCV Open Circuit Voltage 

PHEV Plug-In Electric Vehicle 

PV Photovoltaics 

RT Room Temperature 

RUL Remaining Useful Life 

RFB Redox Flow Battery 

SEI Solid Electrolyte Interface 

SOC State of Charge 

SOH State of Health 

VRFB Vanadium Redox Flow Battery 
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Glossary 
 

Aging knee A stage in battery aging, where degradation rate increases 
rapidly due to change in the dominant aging mechanism. 

C-rate A measure of the rate at which a battery is discharged 
relative to the manufacturer’s rated capacity in ampere-
hours. It is also related to the discharge time. For example, 
if the battery’s rated capacity is 40 Ah, then 1C rate is 40 A 
and the battery is empty after a 1-hour discharge, 2C rate 
is 80 A and the battery is empty after a 0.5-hour discharge, 
and C/4 rate is 10 A and the battery is empty after a 4-hour 
discharge. 

Calendar aging Battery degradation due to increase in the calendar age of 
the battery. 

Calendar life The length of time a battery can undergo some defined 
operation before failing to meet its specified end-of-life 
criteria. 

Capacity The capacity of a battery expresses the maximum available 
ampere-hours when a full battery is discharged at a certain 
C-rate until the cut-off voltage is reached. 

Cycle A sequence of a discharge followed by a charge, or a 
charge followed by a discharge under specified conditions. 

Cycle aging Battery degradation due to charge-discharge cycling of the 
battery. 

Cycle life The number of cycles, each to specified discharge and 
charge termination criteria under a specified charge and 
discharge regime, that a battery can undergo before failing 
to meet its specified end-of-life criteria. 

Cycle depth Cycle depth (ΔDOD or ΔSOC) describes the depth of a 
discharge-charge cycle. Cycle depth is usually expressed 
in percentage. 

Degradation stress factor Degradation stress factors are all the operation practices 
or circumstances that accelerate the degradation in battery 
and thus shorten the lifetime of the cell. Also known as the 
state of health stress factors. 

Depth of discharge The depth of discharge (DOD) is a measure of how much 
charge has been discharged from a full battery. It is usually 
expressed in percentage. Closely related to state of charge 
(DOD=1-SOC). ΔDOD is used to describe the depth of 
discharge-charge cycles. 

Discharge rate See C-rate. 

Duty cycle The operating parameters of a battery including factors 
such as charge and discharge rates, depth of discharge, 
cycle length and rest period length. 

End of life The stage at which a battery is not anymore capable to 
meet its performance criteria regarding capacity or power. 
There are two commonly used end-of-life criteria for a 
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battery: capacity fade of 20%, resulting in 80% of the 
original capacity, and power fade of 20%, resulting in 80% 
of the original power and 25% increase in impedance. 

State of charge The state of charge is a measure of how much charge is 
left in a battery. It is a ratio of the present charge and the 
full charge, and it is usually expressed in percents. 

State of health The state of health is a measure of ageing. It can be 
defined for capacity fade and power fade. Typically a 
battery is considered to be at its end of life when the state 
of health has decreased to 80%. 

Thermal runaway Thermal runaway occurs in Li-ion batteries when the rate 
of internal heat generation caused by the exothermic 
reactions exceeds the rate at which the heat can be 
expelled. Eventually, the temperature rises rapidly and the 
battery catches fire and burns at a very high temperature. 
The fire may catch nearby cells, and eventually, the whole 
battery may burn down.  
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Executive summary 

One of the main objectives in the INVADE project is to connect electric vehicles and 

batteries to the grid in order to provide flexibility to the electricity system. This document 

is part of the INVADE WP6, which focuses on energy storage technologies. 

This deliverable includes results from Task 6.2 Battery state of health and lifetime and 

Task 6.4 Battery safety and lifecycle management. This document is a continuation of 

deliverable D6.3 Simplified state of health diagnostics tool and updates and completes 

its contents. 

A state of health diagnostics tool developed in Task 6.2 for batteries in INVADE pilots is 

presented. Results from the analysis of battery lifetime data from the literature are also 

presented. These results are utilized in the state of health diagnostics tool and in the 

battery operation optimization tool developed for the INVADE platform in Task 6.3 

Battery techno-economics and optimal operation. 

Battery end of life criteria for first and second life batteries is discussed. Life cycle 

assessment for INVADE pilots is carried out partly in WP3 Task 3.7 and partly in WP6 

Task 6.4. The life cycle assessment related to batteries in INVADE pilots is reported in 

this document. 
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1 Introduction 

In INVADE, stationary batteries and electric vehicles are integrated to the grid to provide 

flexibility to the system. This is demonstrated at five INVADE pilot sites: Bulgaria, 

Norway, The Netherlands, Spain and Germany. The batteries utilized in the pilot sites 

are Li-ion batteries except the stationary battery at German pilot, which is a Vanadium 

redox flow battery. More information about pilot batteries is presented in Chapter 2. A 

state of health diagnostics tool developed in Task 6.2 for pilot batteries is presented in 

this deliverable. The diagnostics tool is designed for stationary Li-ion batteries. 

Battery state of health (SOH) describes the present condition of the battery compared to 

fresh battery, and it is usually determined based on available capacity. The battery 

capacity decreases as the cycle and calendar life of the battery increases. More 

information about the definition of SOH, the degradation of Li-ion batteries, and the 

degradation stress factors can be found from D6.3 Simplified state of health diagnostics 

tool [1]. 

To understand the degradation of Li-ion batteries, experimental cycle life and calendar 

life test results from the literature are analysed and the main degradation stress factors 

are identified. In Chapter 3, the main stress factors related to cycle aging and calendar 

aging are presented and degradation stress factor models are formed for all relevant Li-

ion chemistries for which sufficient data is available. The degradation stress factor 

models are utilized in the battery operation optimization tool developed in Task 6.3 and 

presented in D6.5 Advanced battery techno-economics tool [2]. These degradation 

stress factor models can also be used to estimate the lifetime of the battery as presented 

in Chapter 4. 

The state of health estimation tool for batteries in INVADE pilots is implemented as a 

stand-alone tool, which can be run on a regular basis for updating the SOH of the battery 

into the INVADE platform. The SOH tool is based on a degradation model, which utilizes 

battery measurement data, battery lifetime data and the degradation stress factor models 

formed in Chapter 3. The operating principle of the degradation model and the 

implementation of the SOH tool are presented in Chapter 5. Depending on the 

constraints of the pilots, the periodic diagnostic test proposed in D6.3 Simplified state of 

health diagnostics tool [1] can be used to tune the parameters of the degradation model 

and thus increase the accuracy of the SOH estimation. 
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A concept closely related to the battery state of health is the battery end of life (EOL): 

the state where the battery no longer meets the requirements of the application. The 

degradation of the battery weakens the battery characteristics and increases safety risks. 

The end of life criteria for first and second life batteries is discussed in Chapter 6. 

The environmental impact of a product throughout its lifecycle is investigated with a 

technique called life cycle assessment (LCA). The principle of the LCA method and its 

application to batteries is introduced in Chapter 7. A LCA model for NMC and LFP 

batteries is presented. Additionally, literature on the LCA of redox flow batteries is 

surveyed. The benefits of taking into consideration the battery degradation and SOH in 

battery LCA are also noted. 
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2 Battery systems in INVADE pilots 

Battery systems in the INVADE pilot sites are different and they are used in various 

applications. More detailed descriptions of the pilots are given in D10.1 [3]. All five 

INVADE pilot sites have stationary batteries: either residential batteries or larger 

stationary battery systems. The stationary batteries used in INVADE pilot sites are listed 

in Table 1. 

Pilot Application Total capacity Battery type 

Bulgaria Centralized battery for hotel and restaurant, 
connected to PVs. 

200 kWh NMC 

(Samsung SDI, 
Tesvolt) 

Norway 30 residential batteries connected to PVs, EV 
chargers and smart heating systems.  

30 x 10 kWh 
(residential) 

LMO+NMC  

(AESC Nissan 2nd life) 

The Netherlands Centralized battery next to an office building. 
Local balancing: solar panels, windmills, EV 
charging. 

138 kWh NMC 

(Samsung SDI, Alfen) 

Spain Backup battery storage system connected to 
the grid. Secures electricity supply for critical 
buildings. Can also be used to balance 
production and consumption in the area. 

200 kWh (100 kWh 
for backup, 100 kWh 
for balancing) 

LFP 

(ThunderSky-Winston) 

Germany Main value stream: Feed-in of the generation 
peaks of the PV plants (30 kWp) into the 
battery system (locally controlled). A second 
value stream: Peak-shaving of the grid 
(controlled by the IIP). 

10 existing residential batteries connected to 
PV systems. 

120 kWh 

 

 

 

2-10 kWh 

Vanadium redox flow 
(Storion) 

 

 

Lithium ion 

Table 1: Applications and characteristics of the batteries used in the INVADE pilot sites.  

INVADE pilots use mostly Li-ion batteries: NMC cells in Bulgaria and in the Netherlands, 

LFP cells in Spain and second life NMC-LMO cells in Norway. The only exception is the 

German pilot, which has a larger scale stationary Vanadium redox flow battery in addition 

to its residential Li-ion batteries. The operating principle and thus the aging processes 

for the redox flow battery are different to those for Li-ion batteries. Typically the 

degradation is slower in redox flow batteries compared to Li-ion batteries, which results 

in longer lifetime. Most of this deliverable focuses on Li-ion batteries, except Chapter 7.4, 

which focuses on the LCA of redox flow batteries. The SOH estimation tool presented in 

Chapter 5 is designed for large scale stationary Li-ion batteries. 
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3 Degradation stress factors 

This Chapter is an update to Chapter 4 in deliverable D6.3 Simplified state of health 

diagnostics tool [1]. More comprehensive introduction on degradation stress factors is 

presented in D6.3. 

Degradation stress factors are all the operation practices or circumstances that 

accelerate the degradation in battery and thus shorten the lifetime of the cell. By 

identifying the stress factors, the battery operating conditions and practices can be 

optimized within the application limits so that the degradation of the battery is minimized 

and longer lifetime achieved. 

The degradation processes in lithium-ion batteries can be divided into two groups: 

degradation during cycling (cycle aging) and degradation during storage (calendar 

aging). The degradation stress factors can be divided correspondingly: stress factors 

related to cycle ageing (Chapter 3.1) and stress factors related to calendar ageing 

(Chapter 3.2). 

In this Chapter experimental cycle and calendar life test from the literature are analysed 

to detect the effect of each stress factor on battery lifetime. The degradation stress factor 

models formed in this Chapter are exploited in the battery operation optimization tool 

developed for the INVADE platform in Task 6.3 as explained in deliverable D6.5 

Advanced battery techno-economics tool [2]. 

3.1 Cycle ageing 

Degradation stress factors related to cycle aging include cycle depth (ΔDOD), average 

SOC during cycling, cell temperature and the magnitude of charge and discharge 

current. The batteries in INVADE pilots are only operated with low charge and discharge 

currents so the current stress factor can be excluded from consideration. The most 

important cycle ageing stress factors for INVADE pilots are cycle depth and average 

SOC. Depending on the environmental conditions of the battery, the temperature stress 

factor should also be taken into account. 
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3.1.1 Cycle depth 

Results from experimental cycle life tests with different cycle depths (ΔDOD) collected 

from the literature are presented in Figure 1. To be able to compare the results, the data 

sets are normalized based on the cycle life with 100% ΔDOD. In practice, the cycle life 

(L𝑐𝑦𝑐) at given ΔDOD is multiplied with ΔDOD to obtain the cycle life in equivalent full 

cycles (FCE), which is then divided by the cycle life with 100% ΔDOD (𝐿Δ𝐷𝑂𝐷=100%
𝑐𝑦𝑐

) to 

obtain the normalized cycle life: 

𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑐𝑦𝑐

=
L𝑐𝑦𝑐  ×  ΔDOD

𝐿Δ𝐷𝑂𝐷=100%
𝑐𝑦𝑐  

 

Figure 1: Normalized cycle life of different types of Li-ion cells as a function of ΔDOD. [4] [5] [6] 

[7] [8] [9] [10] [11] [12] 

As Figure 1 shows, the variation between different data sets is large even among the 

same Li-ion battery chemistry. The overall trend is that the cycle life increases as the 

ΔDOD decreases, but there is great variation in the magnitude of the increase. Generally, 

the relation seems to follow exponential curve. 

An exponential model is fit to NMC cell data set from Ecker et al. 2014 [4] in Figure 2 

and to NMC-LMO cell data set from Wang et al. 2014 [7] in Figure 3. Both cycle depth 

stress factor models are presented in Table 2. In both cases the exponential model fits 

well to the data but the magnitude of the lifetime increase is different. The model based 

on the data from Wang et al. represents fairly average curve from the data sets in Figure 

1, whereas the model based on the data from Ecker et al. represents the steeper end. 
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Figure 2: An exponential cycle depth stress factor model fit to experimental NMC cell data from 
Ecker et al. [4]. 

 

Figure 3: An exponential cycle depth stress factor model fit to experimental NMC-LMO cell data 
from Wang et al. [7]. 

Chemistry Degradation stress factor model Reference 

NMC 𝑓𝛥𝐷𝑂𝐷
𝑐𝑦𝑐 (𝛥𝐷𝑂𝐷) = 17.8𝑒−4.8𝛥𝐷𝑂𝐷 + 0.866 Ecker et al. [4] 

NMC-LMO 𝑓𝛥𝐷𝑂𝐷
𝑐𝑦𝑐 (𝛥𝐷𝑂𝐷) = 2.371𝑒−2.438𝛥𝐷𝑂𝐷 + 0.7929 Wang et al. [7] 

Table 2: Cycle depth stress factor models. 
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3.1.2 Average SOC 

Results from experimental cycle life tests with different average SOC values for NMC 

cell from Ecker et al. 2014 [4] and for LFP cell from Jiang et al. 2014 [13] are presented 

in Figure 4. The data sets are normalized based on the highest cycle life in the data set. 

According to these results the longest cycle life is achieved with average SOC close to 

50% and the cycle life decreases with low and high average SOC values. 

 

Figure 4: Normalized cycle life of a) NMC cell [4] b) LFP cell [13] as a function of average SOC.  

Due to lack of comprehensive data sets, it is difficult to tell the exact shape of the relation 

between the average SOC and cycle life. In Figure 5, a piecewise Gaussian model is fit 

to the data from Ecker et al. The Gaussian model seems to be a fairly good 

approximation based on the data that is available. The stress factor model is presented 

also in Table 3.  

 

Figure 5: A piecewise Gaussian average SOC stress factor model fit to experimental NMC cell 
data from Ecker et al. [4]. 
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Chemistry Degradation stress factor model Reference 

NMC 

𝑓𝑆𝑂𝐶
𝑐𝑦𝑐(𝑆𝑂𝐶) = {

0.88𝑒
−(

𝑆𝑂𝐶−0.5
0.3

)
2

+0.12
, 0 ≤ 𝑆𝑂𝐶 ≤ 0.5

 0.745𝑒
−(

𝑆𝑂𝐶−0.5
0.215

)
2

+0.255
, 0.5 < 𝑆𝑂𝐶 ≤ 1

 

Ecker et al. [4] 

Table 3: Average SOC stress factor model. 

3.1.3 Temperature 

Results from experimental cycle life tests with different operating temperatures collected 

from the literature are presented in Figure 6. The data sets are normalized with respect 

to the cycle life in room temperature (22-26 °C): 

𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑐𝑦𝑐

=
𝐿 𝑐𝑦𝑐

𝐿𝑅𝑇
𝑐𝑦𝑐  

 

Figure 6: Normalized cycle life of different types of Li-ion cells as a function of temperature. 
Normalization is done with respect to the cycle life in room temperature (22-26°C). [5] [14] [15] 

[7] [9] [16] [17] 

Figure 6 clearly shows that the cycle life of Li-ion batteries decreases as the operating 

temperature is increased from the room temperature level. Similarly, the cycle life 

decreases as the operating temperature is decreased from the room temperature level. 

However, there are only few data points available from low temperatures, which 

increases the uncertainties. 
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A Gaussian model is fit to NMC cell data in Figure 7 and to LFP cell data in Figure 8. In 

both cases the Gaussian model fits well to the data above room temperature, but in cold 

temperatures the fitting is challenging due to lack of data points. For both chemistries 

the optimal operating temperature is around room temperature, but for NMC the cycle 

life seems to decrease faster when the operating temperature is increased or decreased 

compared to LFP. Both temperature stress factor models are presented also in Table 4. 

 

Figure 7: A Gaussian temperature stress factor model fit to experimental NMC-LMO cell data 
from Wang et al. [7] and NMC cell data from Richter et al. [14] and Käbitz et al. [5]. 

 

Figure 8: A Gaussian temperature stress factor model fit to experimental LFP cell data from 
Omar et al. [9] and Tan et al. [16]. 
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Chemistry Degradation stress factor model Reference 

NMC 

𝑓𝑇
𝑐𝑦𝑐(𝑇) = 𝑒

−(
𝑇−23
21.5

)
2

 

Wang et al. [7] 

Richter et al. [14] 

Käbitz et al. [5] 

LFP 
𝑓𝑇

𝑐𝑦𝑐(𝑇) = 𝑒
−(

𝑇−25
38

)
2

 
Omar et al. [9] 

Tan et al. [16] 

Table 4: Cycle aging temperature stress factor models. 
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3.2 Calendar ageing 

The key degradation stress factors related to calendar aging are storage temperature 

and battery SOC during storage. Battery SOC during idle time is the major calendar 

aging stress factor, which can be affected by battery usage. The effect of storage 

temperature on battery calendar life should also be taken into account if the battery is 

not located in a temperature-controller space or the environmental temperature differs 

from normal room temperature. 

3.2.1 Storage temperature 

Results from experimental calendar life tests in different temperatures for NMC chemistry 

collected from the literature are presented in Figure 9. As can be seen from Figure 9, the 

calendar life of NMC cells decreases almost linearly as the temperature increases. 

Consequently, a linear model is fit to NMC cell data in Figure 10. The temperature stress 

factor model is presented also in Table 5. 

 

Figure 9: Calendar life of NMC cells as a function of temperature. EOL at 80% SOH (capacity). 
[4] [5] [18] [19] [14] 

Chemistry Degradation stress factor model Reference 

NMC 𝑓𝑇
𝑐𝑎𝑙(𝑇) = −0.0264𝑇 + 1.6067 Schmitt et al. [18], Richter et al. [14] 

Table 5: Calendar aging temperature stress factor model. 
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Figure 10: A linear temperature stress factor model for calendar aging of NMC cells. Model is fit 
to experimental data from Schmitt et al. [18] and Richter et al. [14]. 

Results from experimental calendar life tests in different temperatures for LFP chemistry 

collected from the literature are presented in Figure 11. In high temperatures the effect 

of temperature on calendar life of LFP cells seems to be similar to that of NMC cells. 

Instead in lower temperatures much longer calendar life is reached with LFP cells 

according to Lewerenz et al. 2017 [20]. However, the lack of comprehensive data at 

temperatures below 30 °C makes forming an applicable temperature stress factor model 

for LFP chemistry unfeasible. 

 

Figure 11: Calendar life of LFP cells as a function of temperature. EOL at 80% SOH (capacity). 
[20] [21] [22] 
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3.2.2 Storage SOC 

Results from experimental calendar life tests with different storage SOCs collected from 

the literature are presented in Figure 12. The data sets are normalized with respect to 

the calendar life with 100% SOC. Variation between the data sets is large, but a clear 

pattern can be seen: NMC chemistry has the steepest curve, NMC-LMO moderate and 

LFP the lowest. In Figure 13, an exponential model is fit to data sets from each examined 

Li-ion chemistry. For each chemistry the exponential model describes the overall trend, 

but more data sets would be needed for determining more accurate models. For LFP 

chemistry the change in calendar life as a function of storage SOC is fairly small and it 

could also be described with a linear model. The storage SOC stress factor models are 

presented also in Table 6. 

 

Figure 12: Normalized calendar life of different types of Li-ion cells as a function of storage 
SOC. [4] [5] [18] [23] [20] [22] [21] 
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Figure 13: Exponential storage SOC stress factor models fit to experimental NMC cell data from 
Ecker et al. [4], NMC-LMO cell data from Wu et al. [23] and LFP cell data from Grolleau et al. 

[21]. 

Chemistry Degradation stress factor model Reference 

NMC 𝑓𝑆𝑂𝐶
𝑐𝑎𝑙 (𝑆𝑂𝐶) = 13.7𝑒−3.2𝑆𝑂𝐶 + 0.442 Ecker et al. [4] 

NMC-LMO 𝑓𝑆𝑂𝐶
𝑐𝑎𝑙 (𝑆𝑂𝐶) = 8.2𝑒−5.05𝑆𝑂𝐶 + 0.947 Wu et al. [23] 

LFP 𝑓𝑆𝑂𝐶
𝑐𝑎𝑙 (𝑆𝑂𝐶) = 1.4𝑒−2.4𝑆𝑂𝐶 + 0.873 Grolleau et al. [21] 

Table 6: Storage SOC stress factor models. 

  



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D6.4 - Advanced state of health diagnostics tool Page 23 of 60 

4 Li-ion battery lifetime model 

Degradation stress factor models formed in Chapter 2 can be combined to produce a 

lifetime model for estimating the cycle life or calendar life of Li-ion cells in different 

operating and environmental conditions. As input for the lifetime model a reference 

lifetime under known conditions is needed. As an example in this Chapter, the lifetime 

model is formed for Samsung SDI NMC cell, similar to those used in INVADE pilot sites 

in Bulgaria and the Netherlands.  

4.1 Cycle life model 

The battery cycle life model estimates the cycle life of the battery considering the main 

degradation stress factors related to cycle aging, which are cycle depth (ΔDOD), average 

SOC during cycling and cell temperature. The model estimates battery cycle life 𝐿𝑐𝑦𝑐
 

utilizing battery degradation stress factor models: 

𝐿𝑐𝑦𝑐 =
𝐿𝑟𝑒𝑓

𝑐𝑦𝑐

𝑆𝛥𝐷𝑂𝐷
𝑐𝑦𝑐

(𝛥𝐷𝑂𝐷, 𝛥𝐷𝑂𝐷𝑟𝑒𝑓)𝑆𝑆𝑂𝐶
𝑐𝑦𝑐

(𝑆𝑂𝐶, 𝑆𝑂𝐶𝑟𝑒𝑓)𝑆𝑇
𝑐𝑦𝑐

(𝑇, 𝑇𝑟𝑒𝑓)
 

where 𝐿𝑟𝑒𝑓
𝑐𝑦𝑐

 is a reference cycle life with reference cycle depth (ΔDODref), average SOC 

(SOCref) and temperature (Tref). Coefficients 𝑆𝛥𝐷𝑂𝐷
𝑐𝑦𝑐

, 𝑆𝑆𝑂𝐶
𝑐𝑦𝑐

 and 𝑆𝑇
𝑐𝑦𝑐

 describe the effects of 

each degradation stress factor on battery cycle life. These stress factor coefficients are 

based on the degradation stress factor models formed in Chapter 3.1. 

The use of the cycle life model is demonstrated for NMC chemistry. The stress factor 

models utilized for cycle life estimation are presented in Table 7. 

Stress factor 
coefficient 

Stress factor model 
Model based on 

data from  

𝑆𝛥𝐷𝑂𝐷
𝑐𝑦𝑐

=
𝑓𝛥𝐷𝑂𝐷

𝑐𝑦𝑐
(𝛥𝐷𝑂𝐷𝑟𝑒𝑓)

𝑓𝛥𝐷𝑂𝐷
𝑐𝑦𝑐 (𝛥𝐷𝑂𝐷)

 𝑓𝛥𝐷𝑂𝐷
𝑐𝑦𝑐 (𝛥𝐷𝑂𝐷) = 2.371𝑒−2.438𝛥𝐷𝑂𝐷 + 0.7929 Wang et al. [7] 

𝑆𝑆𝑂𝐶
𝑐𝑦𝑐

=
𝑓𝑆𝑂𝐶

𝑐𝑦𝑐
(𝑆𝑂𝐶𝑟𝑒𝑓)

𝑓𝑆𝑂𝐶
𝑐𝑦𝑐(𝑆𝑂𝐶)

 

𝑓𝑆𝑂𝐶
𝑐𝑦𝑐(𝑆𝑂𝐶)

= {
0.88𝑒

−(
𝑆𝑂𝐶−0.5

0.3
)

2

+0.12
, 0 ≤ 𝑆𝑂𝐶 ≤ 0.5

 0.745𝑒
−(

𝑆𝑂𝐶−0.5
0.215

)
2

+0.255
, 0.5 < 𝑆𝑂𝐶 ≤ 1

 
Ecker et al. [4] 

𝑆𝑇
𝑐𝑦𝑐

=
𝑓𝑇

𝑐𝑦𝑐
(𝑇𝑟𝑒𝑓)

𝑓𝑇
𝑐𝑦𝑐(𝑇)

 𝑓𝑇
𝑐𝑦𝑐(𝑇) = 𝑒

−(
𝑇−23
21.5

)
2

 

Wang et al. [7] 

Richter et al. [14] 

Käbitz et al. [5] 

Table 7: Degradation stress factor models used in the cycle life model. 
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The cycle depth stress factor model based on data from Wang et al. (Figure 3) is used 

instead of the model based on data from Ecker et al. (Figure 2) as the data from Wang 

et al. is close to average curve whereas the data from Ecker et al. differs significantly 

from the average (Figure 1). 

The reference cycle life used is 6000 FCE (ΔDOD=100%, SOCavg=50%, T=25°C), which 

is based on the cycle life promised for Samsung SDI NMC cells [24] [25] [26]. The results 

of the cycle life model for NMC cell are presented in Figure 14. 

 

Figure 14: Cycle life model results for NMC cell with ΔDOD=70% (a, b), ΔDOD=50% (c, d) and 
ΔDOD=30% (e, f). The reference value used is 6000 FCE with ΔDOD=100%, SOCavg=50%, 

T=25°C. 
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4.2 Calendar life model 

The battery calendar life model estimates the calendar life of the battery considering the 

main degradation stress factors related to calendar aging, which are SOC and 

temperature during storage. The model estimates battery cycle life 𝐿𝑐𝑎𝑙
 utilizing battery 

degradation stress factor models: 

𝐿𝑐𝑎𝑙 =
𝐿𝑟𝑒𝑓

𝑐𝑎𝑙

𝑆𝑆𝑂𝐶
𝑐𝑎𝑙 (𝑆𝑂𝐶, 𝑆𝑂𝐶𝑟𝑒𝑓)𝑆𝑇

𝑐𝑎𝑙(𝑇, 𝑇𝑟𝑒𝑓)
 

where 𝐿𝑟𝑒𝑓
𝑐𝑎𝑙  is a reference calendar life with reference SOC (SOCref) and temperature 

(Tref). Coefficients 𝑆𝑆𝑂𝐶
𝑐𝑎𝑙  and 𝑆𝑇

𝑐𝑎𝑙 describe the effects of main degradation stress factors 

on battery calendar life. These stress factor coefficients are based on the degradation 

stress factor models formed in Chapter 3.2.  

The use of the calendar life model is demonstrated for NMC chemistry. The stress factor 

models utilized for calendar life estimation are presented in Table 8. 

Stress factor coefficient Stress factor model 
Model based on 

data from  

𝑆𝑆𝑂𝐶
𝑐𝑎𝑙 =

𝑓𝑆𝑂𝐶
𝑐𝑎𝑙 (𝑆𝑂𝐶𝑟𝑒𝑓)

𝑓𝑆𝑂𝐶
𝑐𝑎𝑙 (𝑆𝑂𝐶)

 𝑓𝑆𝑂𝐶
𝑐𝑎𝑙 (𝑆𝑂𝐶) = 13.7𝑒−3.2𝑆𝑂𝐶 + 0.442 Ecker et al. [4] 

𝑆𝑇
𝑐𝑎𝑙 =

𝑓𝑇
𝑐𝑎𝑙(𝑇𝑟𝑒𝑓)

𝑓𝑇
𝑐𝑎𝑙(𝑇)

 𝑓𝑇
𝑐𝑎𝑙(𝑇) = −0.0264𝑇 + 1.6067 

Schmitt et al. [18] 

Richter et al. [14] 

Table 8: Degradation stress factor models used in the calendar life model. 

The reference calendar life used for the model is 10 years (SOC=50% and T=25°C), 

which is based on the performance warranty of 10 years promised for Samsung SDI 

NMC cells [26]. The results of the calendar life model for NMC cell are presented in 

Figure 15. 
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Figure 15: Calendar life model results for NMC cell. Reference value used is 10 years with 

SOC=50% and T=25°C. 
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5 SOH estimation tool 

The SOH estimation tool designed for INVADE pilots is based on an empirical battery 

degradation model, which combines the effect of degradation stress factors (Chapter 3) 

with battery lifetime data provided by the battery manufacturer. Taking the stress factors 

into account increases the accuracy of the degradation model in varying battery 

environment and operating conditions. 

5.1 Degradation model 

The degradation model estimates the capacity degradation of the battery occurring 

during the observation period. The degradation model consists of two parts: cycle 

degradation model and calendar degradation model. The estimated total degradation is 

the sum of the outputs of these two submodels. The operating principle of the 

degradation model is presented in Figure 16. 

 

Figure 16: The operating principle of the degradation model. 

The cycle degradation model estimates the capacity degradation occurring due to the 

operation of the battery. The cycle degradation model takes into account four 

degradation stress factors related to cycle aging: cycle depth (ΔDOD), average SOC 

during cycling (SOCavg,cyc), average temperature (Tavg) and the number of cycles cycled 

in full cycle equivalents (FCE) during the observation period. Cycle depths, average SOC 

of the cycles and number of full cycles are obtained from the SOC time series data 
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utilizing Rainflow Counting algorithm. The Rainflow Counting algorithm is a generic cycle 

counting technique traditionally used for material fatigue analysis, but it has been 

successfully applied also for analyzing battery operation cycles [27]. 

The calendar degradation model estimates the capacity degradation caused by 

degradation processes not related to charge-discharge cycling. The calendar 

degradation model takes into account three degradation stress factors related to 

calendar aging: average SOC during storage (SOCavg,cal), average temperature (Tavg) and 

time (t). The average SOC can be calculated from the SOC time series data and the 

average temperature from the temperature time series data. 

The operating principle of the degradation model can be summarized as follows: 
 
Estimating the degradation 

1. Analyzing the SOC data with the Rainflow algorithm 

a. Calculation of cycle depths (ΔDOD) 

b. Calculation of average SOCs of the cycles (SOCavg,cyc) 

c. Calculation of full cycles cycled during the observation period (FCE) 

2. Calculation of average SOC from the SOC data (SOCavg,cal)  

3. Calculation of average temperature from the temperature data (Tavg) 

4. Estimation of degradation during the observation period 

a. Estimation of cycle degradation with cycle degradation model 

b. Estimation of calendar degradation with calendar degradation model 

c. Estimated total degradation is the sum of estimated cycle degradation 

and estimated calendar degradation 

 
The cycle degradation model can be expressed as: 

𝐶𝑑𝑒𝑔
𝑐𝑦𝑐

= 𝑆𝛥𝐷𝑂𝐷
𝑐𝑦𝑐

(𝛥𝐷𝑂𝐷, 𝛥𝐷𝑂𝐷𝑟𝑒𝑓)𝑆𝑆𝑂𝐶
𝑐𝑦𝑐

(𝑆𝑂𝐶, 𝑆𝑂𝐶𝑟𝑒𝑓)𝑆𝑇
𝑐𝑦𝑐

(𝑇, 𝑇𝑟𝑒𝑓)𝐶0 (𝐹𝑑𝑒𝑔
𝑐𝑦𝑐(𝐹𝐶𝐸0)

− 𝐹𝑑𝑒𝑔
𝑐𝑦𝑐(𝐹𝐶𝐸0 + 𝐹𝐶𝐸)) 

=
𝑓𝛥𝐷𝑂𝐷

𝑐𝑦𝑐
(𝛥𝐷𝑂𝐷𝑟𝑒𝑓)

𝑓𝛥𝐷𝑂𝐷
𝑐𝑦𝑐 (𝛥𝐷𝑂𝐷)

𝑓𝑆𝑂𝐶
𝑐𝑦𝑐

(𝑆𝑂𝐶𝑟𝑒𝑓)

𝑓𝑆𝑂𝐶
𝑐𝑦𝑐(𝑆𝑂𝐶)

𝑓𝑇
𝑐𝑦𝑐

(𝑇𝑟𝑒𝑓)

𝑓𝑇
𝑐𝑦𝑐(𝑇)

𝐶0(𝐹𝑑𝑒𝑔
𝑐𝑦𝑐(𝐹𝐶𝐸0) − 𝐹𝑑𝑒𝑔

𝑐𝑦𝑐
(𝐹𝐶𝐸0 + 𝐹𝐶𝐸)) 

where coefficients 𝑆𝛥𝐷𝑂𝐷
𝑐𝑦𝑐

, 𝑆𝑆𝑂𝐶
𝑐𝑦𝑐

 and 𝑆𝑇
𝑐𝑦𝑐

 describe the effect of each degradation stress 

factor on cycle degradation. These stress factor coefficients are based on the 

degradation stress factor models 𝑓𝛥𝐷𝑂𝐷
𝑐𝑦𝑐

, 𝑓𝑆𝑂𝐶
𝑐𝑦𝑐

 and 𝑓𝑇
𝑐𝑦𝑐

 formed in Chapter 3.1. 𝐶0 is the 

initial capacity of the battery, 𝐹𝑑𝑒𝑔
𝑐𝑦𝑐

 is the cycle aging model for the battery, 𝐹𝐶𝐸0 is the 

cycle age of the battery in the beginning of the observation period and 𝐹𝐶𝐸 is the number 

of full cycles performed during the observation period. 
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An example cycle aging model for NMC cell is presented in Figure 17. The cycle aging 

model is based on battery lifetime data provided by the battery manufacturer and 

depends on battery chemistry and type. In practice the cycle aging model based on 

experimental cycle life data also includes the time dependent degradation (calendar 

aging) occurring during cycling. The cycle life tests are typically performed with higher 

C-rates than those used in INVADE pilots and therefore the corresponding number of 

cycles is achieved in shorter cycling time. If the pilot battery is operated with low C-rates 

it is reasonable to extend the calculation of calendar degradation to cover also the cycling 

phase. 

 

Figure 17: A cycle aging model for Samsung SDI NMC cell. The model is based on Samsung 
SDI’s lab test results for Samsung SDI 68Ah cell presented in [25]. Test conditions: 100% DOD, 

1C/1C, 25°C. 

The calendar degradation model can be expressed as: 

𝐶𝑑𝑒𝑔
𝑐𝑎𝑙 = 𝑆𝑆𝑂𝐶

𝑐𝑎𝑙 (𝑆𝑂𝐶, 𝑆𝑂𝐶𝑟𝑒𝑓)𝑆𝑇
𝑐𝑎𝑙(𝑇, 𝑇𝑟𝑒𝑓)𝐶0 (𝐹𝑑𝑒𝑔

𝑐𝑎𝑙 (𝑡0) − 𝐹𝑑𝑒𝑔
𝑐𝑎𝑙 (𝑡0 + 𝑡)) 

=
𝑓𝑆𝑂𝐶

𝑐𝑎𝑙(𝑆𝑂𝐶𝑟𝑒𝑓)

𝑓𝑆𝑂𝐶
𝑐𝑎𝑙(𝑆𝑂𝐶)

𝑓𝑇
𝑐𝑎𝑙(𝑇𝑟𝑒𝑓)

𝑓𝑇
𝑐𝑎𝑙(𝑇)

𝐶0 (𝐹𝑑𝑒𝑔
𝑐𝑎𝑙 (𝑡0) − 𝐹𝑑𝑒𝑔

𝑐𝑎𝑙 (𝑡0 + 𝑡)) 

where coefficients 𝑆𝑆𝑂𝐶
𝑐𝑎𝑙  and 𝑆𝑇

𝑐𝑎𝑙 describe the effects of degradation stress factors on 

calendar degradation. These stress factor coefficients are based on the degradation 

stress factor models 𝑓𝑆𝑂𝐶
𝑐𝑎𝑙  and 𝑓𝑇

𝑐𝑎𝑙 formed in Chapter 3.2. 𝐶0 is the initial capacity of the 

battery, 𝐹𝑑𝑒𝑔
𝑐𝑎𝑙  is the calendar aging model for the battery, 𝑡0 is the initial calendar age of 
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the battery and 𝑡 is the length of the time period for which the calendar degradation is 

estimated. Time 𝑡 can be either the length of the observation period or battery idle time 

during the observation period, depending on how the cycle aging model and calendar 

aging model are implemented. A linear calendar aging model based on reported battery 

calendar life is used unless better information is available. 

The total degradation is the sum of estimated cycle degradation and estimated 

calendar degradation: 

𝐶𝑑𝑒𝑔 = 𝐶𝑑𝑒𝑔
𝑐𝑦𝑐

+ 𝐶𝑑𝑒𝑔
𝑐𝑎𝑙  

The degradation stress factor models as well as the cycle aging model and the calendar 

aging model depend on the chemistry and type of the battery. Therefore, the degradation 

model needs to be customized according to the battery to be modelled. 
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5.2 Implementation of the SOH estimation tool 

The SOH estimation tool is implemented as a stand-alone tool, which can be used to 

update the estimated SOH of the battery for the INVADE platform. The tool incorporates 

a battery degradation model (Chapter 5.1) that addresses the degradation stress factors 

to the historical usage data of the battery system. Time-series data is given as an input, 

and the estimated SOH is provided as an output. As the change of the battery SOH is 

slow, a periodic update of the SOH estimation in the platform is enough to maintain 

sufficient accuracy in battery state estimation.  

The SOH tool is implemented on Microsoft Excel so that its use would be simple for the 

INVADE pilots. For estimating the battery SOH, the Excel based SOH tool requires some 

basic battery parameters and measurement data from the pilot battery. Required inputs 

for the SOH estimation tool are presented in Table 9. 

 

Input Symbol Unit Explanation 

Nominal capacity Cnom kWh The nominal capacity of the battery. 

Initial capacity C0 kWh The capacity of the battery at the beginning of the 
observation period. Can be calculated from nominal 
capacity if the initial SOH is known. 

Initial calendar age t0 day The calendar age of the battery at the beginning of 
the observation period. 

Initial cycle age FCE0 FCE Number of cycles cycled at the beginning of the 
observation period. 

SOC SOC % Battery SOC time series data during the observation 
period. 

Battery temperature T °C Battery temperature time series data during the 
observation period. Environmental temperature can 
be used if no temperature data from battery pack is 
available. 

Table 9: Required inputs for the SOH estimation tool. 

The most important measurement data is the SOC of the battery during the observation 

period. Sufficient measurement frequency would be the same as in the INVADE platform, 

which is every 15 minutes. Another useful measurement data is the temperature of the 

battery during the observation period. Environmental temperature or longer-term 

average can also be used if no temperature data measured from the battery pack is 

available. 
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To use the SOH estimation tool, basic battery parameters (Table 9) and time series data 

from the battery need to be imported to the Excel-based tool. The data should include 

the SOC value and corresponding time stamp throughout the whole observation period. 

Also temperature data should be included if it is available. Once the data is imported, the 

Rainflow Counting algorithm and other algorithms implemented in Excel analyse the 

historical data and identify the stress factor conditions. 

The degradation model (Chapter 5.1) implemented in Excel takes into account these 

stress factor conditions and estimates the cycle degradation and calendar degradation 

of the battery during the observation period. Based on these estimates and the nominal 

capacity (Cnom) and the initial capacity of the battery at the beginning of the observation 

period (C0), the SOH tool calculates the estimates for the current capacity and SOH of 

the battery. A development version of the SOH estimation tool is presented in Figure 18. 

 

Figure 18: A development version of the SOH estimation tool implemented in Excel. 

For different INVADE pilots the SOH estimation tool needs to be customized depending 

on the battery used in the pilot. The degradation model integrated into the SOH tool 

utilizes different degradation stress factor models depending on the battery chemistry. 

Additionally, the degradation model exploits the lifetime data provided by the battery 

manufacturer, which depends on the battery type.  
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6 Battery end of life criteria 

When the battery can no longer meet its performance requirements, it has reached its 

end-of-life (EOL), and has to be removed from the application. Being able to properly 

define this point is important, because it affects both the system performance and safety. 

If the battery has degraded too much, it may not be able to respond to the requirements 

set by the application where the battery is used. Also the risk of a critical failure 

happening in the battery pack will increase when the battery degrades. Earlier, we have 

explained that EOL is typically defined to be reached when the capacity of the LIB has 

decreased to 80% of the rated capacity [1].  

For electric vehicle (EV) batteries a typical definition for end-of-life is when 70-80% of 

the original energy capacity is remaining [28] [29]. This originates to a standard 

established by the US Advanced Battery Consortium (USABC) in 1996. According to this 

standard the EOL has been reached when either the net delivered capacity of a cell, 

module or battery is less than 80% of its rated capacity or the peak power capability is 

less than 80% of the rated power at 80% DOD [30]. After that, several other standards 

have been published regarding EV LIBs, e.g. IEC 62660-1:2010, ISO 12405-4:2018, and 

SAE J2288:2008, shown in Table 10. A review on the existing and upcoming standards 

has been published by JRC [31]. 

Naturally, one key issue when determining the EOL is the durability of the battery. Over 

its lifetime, the performance of the battery deteriorates due to the effect of both 

electrochemical ageing during usage and calendar ageing when not being used. The 

factors affecting to this ageing have been discussed already in D6.3 [1] and in Chapter 

3. For EV batteries, various lifetime targets have been set: A calendar life of 10-15 years 

by 2020 and 2000-3000 discharge cycles was set by U.S. Department of Energy [31], 

and lifetime of 10-15 years by 2030 was set in the EUROBAT’s roadmap [32]. One 

challenge is that the lifetime results vary a lot depending the chemistry and even between 

different cells with the same chemistry. 

Four types of testing methods for EOL are presented in current standards. Calendar 

ageing tests are used to measure the battery performance (e.g. capacity) under a defined 

temperature during a defined period of time. Cycle life ageing tests are used to measure 

the performance parameters as a function of cycle number during electrochemical 

cycling at a defined temperature, current rate, and upper and lower cut-off voltages. In-

vehicle ageing tests are used to measure the battery performance under real driving 

conditions by using a driving cycle, e.g. New European Driving Cycle (NEDC). In an 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D6.4 - Advanced state of health diagnostics tool Page 34 of 60 

accelerated ageing test, a battery cell is aged by enhancing the rate of degradation 

process compared to normal operation. Functional parameters, e.g. capacity, internal 

resistance, etc. are measured. The purpose of the accelerated ageing test is to reduce 

the amount of time used in the testing. However, reaction path should remain the same 

as in the normal ageing, otherwise, the result may not be correctly extrapolated to normal 

ageing conditions. It is worth noticing that none of the existing standards combine the 

effect of cycle ageing and calendar ageing. [31] 

Cycle life standards consist of methods to determine initial performance of the battery, 

used charge/discharge cycles, methods to periodically evaluate the battery performance 

during cycling, and termination criteria for the cycle life test. European standards 

concerning the cycle ageing are IEC 62660-1:2010, ISO 12405-4:2018, SAE 

J2288:2008, and SAE J1798:2008. Both IEC and ISO standards have different 

requirements for HEVs and BEVs. One question regarding the cycle life standards is 

whether the cycle tests should be performed in cell level or system level. Currently, the 

ISO 12405 standard requires tests in system level while, the in the IEC 62660 standard, 

the tests are done in the cell level. In SAE 2288:2008, the tests are done in module level. 

[31] 

Both IEC 62660-1:2010 and ISO 12405-4:2018 require different test conditions for HEV 

and BEV batteries. For the capacity determination, constant current cycling at 1/3C is 

required for BEV batteries and 1C for HEV batteries. HEV batteries should be tested 

between 30% and 80% SOC whereas for BEV batteries the test region is between 20% 

and 80% SOC. [31] 

Regading cycling, one difference is the temperature. The IEC 62660-1:2010 requires 

cycling at 45 °C, and the performance evaluation at 25° for both BEVs and HEVs, 

whereas ISO 12405-4:2018 requires 25 °C temperature for HEVs and for BEVs the 

cycling is performed at 25°C and the performance evaluation is done in both 25°C and -

10°C. SAE J2288:2008 requires all testing done in 25 °C. [31] 

SAE J2288:2008 defines a test methodology to determine the expected service life of 

electric vehicle battery modules. The performance of the module is checked every 28 

days of cycling. The performance parameters and periodic performance evaluation is 

similar to that in IEC 62660.1:2010. 

In most standards, the termination criteria for the cycle age test is that if one of the 

performance values have decreased below 80% of its initial value, the test is terminated. 

The exception is ISO 12405-4:2018, which only requires to report the decrease of the 

capacity but does not require to terminate the test. [31] 
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Table 10. Standards regarding the EOL and cycle life of EV batteries. 

Standard Level Performance measurements 
measure 

Termination 

IEC 62660 cell HEVs: capacity every 14 days 

power every 7 days 

BEVs: every 28 days, 
measure capacity, dynamic 
capacity (25°C and 45°C) and 
power at 50% SoC in 25 °C 

if capacity, dynamic 
discharge capacity or 
power has decreased to 
less than 80% of the initial 
value (BEV) 

if capacity or power has 
decreased to less than 80% 
of the initial value (HEV) 

ISO 12405-4:2018 

 

system HEVs: power test after 7 days 

capacity every 14 days 

BEVs: every 28 days perform 
standard cycle and charge 

every 8 weeks 

limits defined by 
manufacturer reached 

power test cannot be 
performed fully 

agreement between 
supplier and customer 

SAE 2288:2008 module capacity, dynamic capacity, 
power every 28 days 

measured capacity is <80% 
of the rated capacity 

peak power capability is 
<80% of the rated power at 
80% DoD 
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6.1 Second life batteries 

In 2018, European Union published a JRC report on Standards for the performance and 

durability assessment of electric vehicle batteries. One of the outcomes of this report 

was concerning second life batteries: 

“A clear definition of battery end of life (EoL) is needed. There is a need for establishing 

standards containing criteria and guidelines for evaluating battery status (e.g. state of 

health (SoH), safety) and its potential usefulness for second use applications.” [31] 

There are not many publications related to EoL or SoH of second life batteries. However, 

a literature review by Martinez-Laserna et al. found out that in many publications it has 

been shown that batteries reaching the ageing knee would not be eligible for a second 

life use [33]. For example, in a study by Martinez-Laserna et al. battery second life ageing 

performance was analysed with cells at different ageing phases. Those cells which were 

reused on a second life application before reaching the ageing knee (i.e. before 

experiencing a change in the dominant ageing mechanism), showed very good 

performance. The cells that were reused after reaching the ageing knee exhibited a very 

fast degradation. [34] In another experimental study by Martinez-Laserna et al. data 

proved that reusing the batteries on a mild demanding application does not slow down 

the ageing trend, once the ageing knee is reached. Thus, according to the results, the 

cells experiencing any changes in the dominant ageing mechanism would have to be 

retired from operation, either on the first or the second life use phases, because of two 

main reasons: 

1. Ah-throughput (and thus the number of cycles) that these cells can withstand 

after reaching the ageing knee would be insufficient to make profitable extending 

their operation 

2. It might be unsafe to maintain such cells in operation. 

To conclude, only the cells that do not experience any changes in the dominant ageing 

mechanism may be eligible for a second life use. [35] 

Additionally, since the dominant ageing mechanism would not change before retiring the 

batteries from operation, there would not be any electrochemical difference in the 

batteries’ ageing phenomena, and hence first life battery lifetime models might be also 

usable to predict the second life battery ageing performance. Taking into account the 

strong influence of the first life battery ageing upon the technical viability of a potential 

second life use, tracking data of first life battery ageing appears as a key resource for 
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decision making. Indeed, the first life battery ageing data would be crucial to select the 

most suitable batteries and predict their ageing performance on a potential second life 

use. Similarly, tracking second life battery ageing turns out to be essential to identify 

battery failure and avoid any safety events. [35] 

 

Figure 19. Left: General shape for capacity versus cycle number plots [36]. Right: Capacity 
retention with First Use mileage and Second Use duration [37]. 

Figure 19 highlights the features of a very general capacity versus cycle number plot. 

The shape is reminiscent of a discharge curve (voltage versus capacity), and necessarily 

so. The rate of capacity decrease is initially high (region A), but slows quickly (region B) 

and, after a few hundreds of cycles, slows again (region C) before starting a rapid 

increase (region D). End of life, defined as when the battery reaches 80% of its initial 

capacity, usually occurs in region C, so battery manufacturers do not publicly report data 

for region D. [36] 

The following summary of experimental data can be made [36]: 

1. Capacity loss on storage has reversible and irreversible components. 

2. Capacity loss on storage or cycling increases with increasing temperature. 

3. Capacity loss on storage increases with increasing cell voltage. 

4. Cycling causes capacity loss at a greater rate than storage. 

5. Capacity loss can correlate with cell impedance. 

It is crucial to be able to observe the ageing knee. This could be done by monitoring and 

logging SOH over the use. At the linear phase of the capacity vs. cycle number (time) 

the slope (s) is k. As soon as the slope changes dramatically (s<<k) it can be stated that 

the ageing knee has been reached. In order to be able to define the right values for linear 

phase (k) and ageing knee, the following knowledge is required: 

1. Usage/ageing history in the first life. 

2. Point of retirement in the first life. 

3. Requirements of the second life applications. 
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7 Screening life cycle assessment of batteries 

The screening LCA study in INVADE focuses on defining the assessment framework 

and finding the best available estimates for the global warming potential of batteries 

applied in the pilot sites. The intention of this study is not to cross-compare the pilots or 

various battery technologies used within the project, but rather to assess the 

environmental benefits associated with the implementation of the pilots. One of the key 

benefits of life cycle thinking is avoidance of environmental burden shifting across 

multiple life cycle phases. This means that impacts at one specific phase of the life cycle 

cannot be minimized at the cost of increased impact in any other phase. 

The batteries with specifications presented in Table 1 have been and will be further 

studied in this project. The research work included also personal contacts to pilot 

representatives and other technology experts to find out the status and technical 

specifications for pilots.  The screening LCA serves as a basis for the full scale LCA to 

be performed further using the field data from the pilots. 

7.1 Methodological background  

As depicted in Figure 20, the life cycle of a battery begins from the raw material extraction 

and conversion, continues to production, distribution and use. The life cycle ends with 

so called end-of-life phase. With the growing emphasis on circular economy, the re-use 

of batteries, remanufacturing of its elements, and recycling or recovery of materials 

should be prioritized over conventionally practiced landfill disposal. 

 

Figure 20. Battery life cycle [38] 

Despite screening LCA does not have its own methodology per se, it predominantly 

follows the LCA methodology presented in international ISO 14040/44 standards. A 
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typical LCA included four phases: goal and scope definition, inventory analysis, impact 

assessment and interpretation. First in LCA the goal and the scope are defined.  The 

inventory analysis denotes for the input data collection. The input data for LCA is either 

primary or case-specific, i.e. originating from the actual production processes, or 

secondary or average, i.e. collected from generic databases and literature. Data 

collection questionnaire is a common way to collect data from suppliers in an LCA. In 

INVADE, an Excel based screening LCA questionnaire (Figure 22) was created and 

tailored for each pilot depending on its specifications. In this study, the screening 

approach referred to limited data collection as compared with the full scale LCA and 

reported the available results per one part of the studied system, e.g. battery production. 

The relation between the inventory and impact assessment phases is shown in Figure 

21.  

 

Figure 21. The inventory and impact assessment phases in LCA 
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Figure 22. Screening LCA data collection questionnaire 

As a results of the inventory analysis, a list of emissions, wastes and raw materials from 

the whole life cycle of product is being compiled with their amounts. This step is carried 

out in LCA tools. 

In the impact assessment stage, the results from the inventory stage are classified into 

selected environmental impact categories as shown in Figure 23 with the example of 

several emissions for global warming, acidification, and abiotic depletion impact 

categories. Finally, the masses of emissions and raw materials are multiplied with 
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specific factors to get the results in equivalents of reference substances, e.g. carbon 

dioxide for the global warming category. The characterized results could complementary 

be normalised and weighted. Commonly, the impact assessment is carried out with an 

LCA software tool.  

 

Figure 23. Framework of the impact assessment steps for three different impact categories, 
global warming potential highlighted 

The tools used in this study are SULCA and GaBi. The databases used are those 

provided by GaBi and Ecoinvent [39]. Some information was sourced from literature. The 

related characterization factors are employed at the midpoint level, i.e. without 

normalisation and weighting. Environmental impact was limited to the impact on climate 

change only. Other impact categories which could be included if sufficient data is 

available include ozone depletion, photochemical ozone creation, terrestrial acidification, 

marine eutrophication and fresh water eutrophication.  

Finally, the results of the LCA study are summarized during the interpretation stage. Also, 

relevant conclusions taking into consideration the objectives set and the wanted use 

purpose are being made. The interpretation means in this study that the authors 

recommend next steps to the full-scale LCA. 
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7.2 Li-ion batteries 

The main components of a Li-ion cell are anode (negative electrode), cathode (positive 

electrode), electrolyte and a separator between them. The structure of a Li-ion cell is 

presented in Figure 24. In applications, such as EVs, the battery cells are assembled 

into larger units called battery modules, which form the battery pack. In addition to the 

battery cells, the battery pack contains also a cooling system and a battery management 

system (BMS), which controls the use of the battery pack and monitors the state of the 

cells. 

 

Figure 24. Structure of a Li-ion cell and battery pack. [38] 

The environmental impact of batteries was assessed analysing the available data and 

studies. In the literature there are LCA studies on several battery types. Following the 

needs of the INVADE pilots, only LIBs with NCM and LFP chemistries, as well as redox 

flow batteries, were analysed. No other types of batteries were studied.  

Peters and Weil [40] identified five studies with complete and sufficient life cycle 

inventory on the production of LIBs including the studies by Majeau-Bettez et al. [41] and 

Ellingsen et al. [42]. All relevant articles were brought to a shared library kept in 

Mendeley. The inventory from Majeau-Bettez et al. [41] and Ellingsen et al. [42] was 

replicated in the project using LCA software tool SULCA and the Ecoinvent v3.4 

database. The LCA model created after Majeau-Bettez et al. [41] for NCM and LFP 

batteries is presented in Figure 25. The model allows to change some of the parameters 

of the battery production and assembly process. Replication of the model enables deeper 

analysis of environmental impact of the batteries. The contribution of different processes 

to the environmental impact of the NCM battery modelled after Majeau-Bettez et al. [41] 

is shown in Figure 26. The results showed that the battery production and assembly, 

production of BMS and positive electrode production are the main contributors to this 

results. 
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Figure 25. SULCA modelling flow sheet for NCM and LFP li-ion battery modelled after Majeau-
Bettez et al. [41] 
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Figure 26: The cradle-to-gate GWP and the GWPs of battery components indicators per kg of 
Li-ion battery (NCM) 

Table 11 lists the GWP values of NCM batteries production retrieved from literature for 

comparison. The values are presented per kWh of storage capacity of the battery. 

Table 11. GWP values from selected studies for NCM batteries 

Literature source GWP, kg CO2-eq/ kWh 

storage capacity 

Which life cycle 

stages included 

Notes 

Ellingsen et al 

2014 [42] 

172; 240-487 cradle-to-gate The lower value gained under the 

optimal conditions, whereas the 

higher range reported depending on 

the amount of electricity consumed 

during the batteries production 

Ambrose and 

Kendall 2016 [43] 

254 cradle-to-gate Mean GWP 

Kim et al 2016 [44]  140 cradle-to-gate  

Majeau-Bettez et 

al., 2011 [41] 

200 cradle-to-gate  

US. EPA 2013 [45] 121 cradle-to-gate producing 1kWh of storage 

capacity 
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7.2.1 Use in stationary applications 

When LIBs are used in stationary applications, they can be used to increase the 

utilization rate of renewable electricity produced from solar panels of wind farms and thus 

to reduce the impact from consuming grid electricity. 

The value of GWP in the use phase depends on the energy grid mix. Table 12 

summarizes the GWPs for country specific electricity grid mixes. The value “GWP, solar” 

refers to the GWP of solar electricity generation accounting for the impact from solar 

panels production and the use of water for washing the panels during their use phase 

and wastewater treatment. The value “GWP, average” relates to the average GWP 

values retrieved from the Ecoinvent database and from Moro and Lonza [46]. 

Furthermore, using the historical data of the share of renewables in the electricity grids 

in chosen countries retrieved from World Bank [47] (Figure 27), the share of renewables 

was extrapolated to the year 2025 to make up the column “GWP, in 2025”. 

Table 12. GWP values for country-specific grid mixes, according to Ecoinvent 3.4 database 

Country GWP, solar, 

g CO2-eq/ kWh 

GWP, average, 

g CO2-eq/ kWh 

GWP, in 2025,  

g CO2-eq/ kWh 

Germany 102 622 N.A. 

Bulgaria 71 656 560 

Spain 65 347 242 

the Netherlands 98 558 507 

Norway 80 21 not listed due to currently high 

share of renewables 

N.A. - not analysed because the information on the German pilot plant came after the analysis have been performed. 

It shall be noted that the local grid mix and the mix during peak hours might differ 

substantially. As the batteries are applied to peak shaving during peak hours, the impact 

during the peak hours is more relevant for the project than the average national gird 

mixes. The local grid mixes are analysed in INVADE by UPC and reported in D3.4 Draft 

life cycle analysis. 
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Figure 27: Share of renewable electricity in chosen countries (World Bank 2018) and predictions 
based on a linear correlation 

7.2.2 Recycling 

There are multiple options for recycling of LIBs. According to Zeng et al. [48], all LIBs 

recycling processes could be divided into mechanical, pyrometallurgical, 

hydrometallurgical, and biological. According to the authors, research on 

hydrometallurgical recycling of LIBs occupies 58% of all research activities in the field. 

During the process, LIBs are dismantled into different parts, and then metal-containing 

fractions incinerated and slag is leached with chemicals to selectively regain metals. 

As with the LIBs production, data on LIBs recycling is uncertain. The following values for 

recycling of LIBs are listed in the table. The median GWP value from these sources 

identified was 16±11 kg CO2-eq./ kWh. 

Table 13. GWP values from selected studies for LIBs 

Literature source GWP 

kg CO2-eq/ kWh 

Which life cycle 
stages included 

Ellingsen et al 2016 [49] 8 recycling 

Li et al 2014 [50] 27 recycling 

US. EPA 2013 [45] 16-32 recycling 

 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D6.4 - Advanced state of health diagnostics tool Page 47 of 60 

7.2.3 Remanufacturing 

Besides recycling, the batteries can be refurbished to fulfil the needs of other 

applications, so called second-life applications. This is particularly possibly for the 

batteries used in vehicles because they still have approximately 80% of their capacity at 

the end of their service. Usually, batteries which reached their end of their service lives 

are being transported to the remanufacturing facilities where they are inspected and 

tested to determine the SOH. If needed, the container, battery management system, and 

other auxiliary components of the batteries could be replaced. Due to their less-

demanding use in stationary applications, the second-life BMS systems are smaller and 

lighter compared to an EV’s BMS [51]. The energy consumption of the remanufacturing 

is estimated as the level of 27 kWh per battery check [52] or 4812 kWh for testing 4500 

cells from EV LIB packs to build one stationary battery pack for 450 kWh energy storage 

[51]. 

7.3 Calculation results from degradation stress factor analysis 

To study the integration of degradation stress factors within LCA, NCM batteries made 

by Nissan (Gen4) and installed in a Norwegian pilot plant were used as a point of 

reference. Table 14 lists the specifications of the batteries used in this LCA study. The 

warranty conditions imply the use of the battery for 2810 cycles, which would mean its 

use for 7,7 years with 1 cycle per day and the energy throughout of 25,3 MWh. The 

reference conditions for the lifetime determination were: 90% cycle depth, 50% average 

state of charge, operating temperature of 25 ºC. 

Table 14: Parameters of batteries used in the LCA study incorporating stress factors. 

Parameters Value 

Cell chemistry technology NMC 

Nominal capacity  10 kWh 

Ah per pack  111,4 Ah 

Warranty (daily, 90%DoD, 1C) 313000 Ah 

Initial SOH  100% 

Roundtrip efficiency  90% 
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Figure 28 shows that consuming 25,3 MWh of electricity from grid in Spain during the 

lifetime of the battery would results in emitting 8760 kg CO2-eq., whereas installing a 

battery with 10 kWh capacity, daily using it and terminating would result in the GWP of 

3520 kg CO2-eq. This means that a 60% reduction from the baseline situation could be 

achieved. This reduction for other countries studied, namely Bulgaria, Finland, the 

Netherlands, and Norway ranged 0-78%. 

 

Figure 28: GWP of using electricity from existing grid (blue area) and that of using electricity 
from solar panels and stored in batteries installed on that purpose and terminated after the 

lifetime of the battery. 

 

When considering the impact of stress factors on lifetime of the battery, which was 

described previously, the following situation were studied:  

1. decrease of depth of discharge from 90% to 50% (S1) resulting in the increase 

of the energy throughout to 56,9 MWh; 

2. increase of operating temperature from 25 ºC to 40 ºC (S2.1) or decrease to 10 

ºC (S2.2) resulting in the decrease of the energy throughput to 13,7 MWh and 

17,7 MWh, respectively; 

3. increase of the average state of charge from 50% to 75% (S3.1) and decrease to 

25% (S3.2) resulting in the decrease of the energy throughput of 11,8 MWh and 

14,3 MWh, respectively. 
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Figure 29: Comparison of the influence of different impact factors on the results for different 
countries (BG - Bulgaria, NE - the Netherlands, ES - Spain). 

Figure 29 shows that the decrease of the depth of discharge is the only stress factor 

resulting in prolonged battery lifetime. The reduction of the depth of discharge to 50% 

significantly prolongs the lifetime of LIBs by around 2,5 times, which in turn results in 

higher GWP reduction as compared to the reference scenario of battery use. It should 

be noted that the impact of the depth of discharge on the battery’s lifetime was modelled 

using the findings of Ecker et al. 2014 [4] which are presented in Figure 2. The findings 

show dramatic increase in the lifetime of LIBs with the reduced depth of discharge. 

Other stress factors, such as the operating temperature and average SOC were the most 

optimal in the reference conditions, so their variation to either side resulted in reduced 

lifetime of the battery. Decrease of the operating temperature to 10 ºC resulted in the 

reduction of GWP by around 60%, while the increase to 40 ºC led to the reduction by 

around 45%. Finally, the decrease of the average SOC to 25% would lead to the 

reduction of the lifetime by around 50%, whereas the increase of state of charge to 75% 

would lead to the increase in the lifetime by around 35% as compared with the reference 

scenario. 

 



INVADE H2020 project – Grant agreement nº 731148 

Deliverable D6.4 - Advanced state of health diagnostics tool Page 50 of 60 

7.4 Summary of redox flow batteries LCA results 

In a redox flow battery (RFB) the energy storage and energy conversion function are 

separated. The liquid electrolytes are stored in tanks, and pumped through stacks of 

battery cells, where the electrochemical reactions take place (Figure 30). Compared to 

other battery types, the possibility for spatial separation gives redox flow batteries the 

benefit that the stacks (determinant for the power rating of the battery) and the tanks 

(determinant for the storage capacity) can be dimensioned and tailored independently. 

[53] [54] This makes the RFBs very suitable for stationary large-scale storage systems. 

The RFBs are gaining growing attention, due this flexible modular design and other 

benefits, such as long cycling life, active thermal management, and better ensured 

security [54].  

 

Figure 30: Basic concept of vanadium redox flow battery. 

Currently, the most promising RFB technology is vanadium redox flow batteries (VRFB), 

where vanadium is used in the electrolyte [53]. The advantage of VRFB is that the same 

element can be used on both sides of the battery cell, which helps to avoid the cross-

contamination of the electrolytes. In addition, the VRFBs have fast response and long 

cycle and service life, and they do not suffer from permanent self-discharge [53]. 

Weber et al. [53] have made a detailed LCA study on the emissions of producing the 

VRFBs. Their results propose that the emissions of the production of VRFBs are mainly 
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formed during the production of vanadium for the electrolyte, i.e. almost 90% of the total 

emissions are related to this production phase (Figure 31). Vanadium is usually produced 

from vanadium containing titanomagnetite ore. The main product is pig iron, and 

vanadium is concentrated in the slag from which it is recovered. The process requires 

high electricity inputs [53]. In their study, Weber et al. [53] have assumed that vanadium 

is produced in South Africa, where the electricity is mainly produced by coal. Therefore, 

the emissions of electricity used for vanadium production represent 46% of total 

emissions of the VRFB production [53].  According to Ecoinvent 3.5 [55], the average 

high voltage electricity mix for South Africa has an emission factor of 1032gCO2-eq/kWh 

in 2014.  

 

Figure 31: Illustration of the impact of the different production steps to the total emission of a 
VRFB. Data roughly estimated from Weber et al. [53]. 

Figure 32 illustrates the total emissions with possible other production sites with 30, 60, 

and 90% lower average emissions for electricity (around 720gCO2-eq/kWh, 410gCO2-

eq/kWh, and 100gCO2-eq/kWh, respectively). In addition to South-Africa, vanadium is 

produced in US, Russia, China and some other countries such as Switzerland, Taiwan, 

Germany, and Brazil [56]. 
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Figure 32: Illustration of the impact of 30, 60, and 90 % lower emissions for electricity production 
to the total emission. Original result, 38.2kgCO2-eq/MWh is from Weber et al. [53], and the total 

emission is estimated per MWh of electricity delivered by battery over lifetime (20 years). 
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7.5 Conclusions and further research needs 

In the screening of the LCA of batteries, the authors studied the relevant LCA calculation 

guidelines, analysed research articles and life cycle inventory databases to find average 

values for global warming potentials of batteries focusing on NCM-batteries. The best 

available input data and Ecoinvent database was utilized to create a LCA calculation 

model for NCM and LFP battery cradle-to-gate phases. Also GWP values for the redox 

flow battery were searched and analysed from the literature. Technical battery 

specifications were requests from INVADE pilot representatives. 

It was noted, that the data on remanufacturing of LIBs was scarce, even in the literature. 

It was also found that the different literature studies lead often down to the same base 

study. For VRFB, only one relevant study was found. Thus, the diversity of battery life 

cycle inventory data needs to be increased. Many studies use already produced data as 

the data source, which lead to rather old data age. The reliability of results could be 

increased the more industry specific data.  

The second life batteries were identified as an interesting topic for future research. There 

are no clear guidelines on how to address shift from the first to the second life cycle. The 

SOH factor was identified as a suitable factor determining the usability of retired batteries 

in the second life batteries.  
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